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Abstract

Fractional Fourier-Bessel type transformation is defined. Then using these transformations the
pseudo-differential Bessel type operators %% , is also defined. After that we introduce some class
of symbols, Sobolev and Bessel type potentials spaces. Properties of these transformations and

operators are investigated.
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1. Introduction and Motivation

The term "pseudo-differential operators" [1-4] has a fairly broad definition and covers such chapters
as harmonic analysis, partial differential equation, computations, quantum mechanics. In
mathematics, medicine, scientific computing, and engineering, natural sciences current trends and
novel applications are highlighted. The emphasis is on contemporary developments in mathematics,
engineering, medicine, scientific computers, and the natural sciences. In reality, Kohn-Nirenberg and
Hoérmander were the ones who first introduced the pseudo-differential calculus. Pseudo-differential
operators on IRy are standard or conventional generalizations of partial differential operators or
ordinary differential operators and singular integrals. Many faculties, scientists, Ph.D students and
researchers of other field developed the theory of pseudo-differential operators with the help of
following types of integral operators similar as Fourier transforms ([5,6]), Hankel transform ([7-9]),
Fourier Bessel Transform on R ([10,11]), Weinstein transform ([12]), Laguerre hypergroups ([13]) and
Jacobi differential operators ([14]). From 19th century Fourier analysis is a most frequently used tools

in scientific studies/streams [15-18]. In mathematical literature, a generalized concept of the Fourier
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transform well known as the fractional Fourier transform was considered in 1980-1987, by Mcbride,

Kerr and Namias [19,20]. The fractional Fourier transform (FrFT) [?,21,22] has been defined as follows:

(F'9)() = §°(2) = [ K'(x,2)g(x)dx )
eei(x2+§22)cot9 —ixijcsc(?, 0 # nﬂ’nez
_1 ,—ixg _
K(x) = e 0
5(x—Q), 0 =2nm
S(x+¢), 6=2n+1)m,

Where C? =,/ %. In the present manuscript, we consider first order Bessel operator Ag with the
theory of Bessel potentials which is mentioned in [24], defined for x € R;, B € R such that > —1 by

a2 26+1d
+5+—

Aﬁ:@ x dx’

Now using the Kernel of (1) we define the Bessel type function ]g as follows: for ¢ € Ry, B> —3,

_ reg+y 1P P dx
IE(C)—\/W/_1<1—962>5 K®(x,§)dx. 2)

In this manuscript, we introduce first order Bessel type operator A, defined for x € Ry, B > —3 by

+1
x

2

= — _ - . _ 4 )
B~ dx2 X P i¢sect) — 4x¢csc 9) cotd. (3)

If 6 = Z, we get A% = Ag. Firstly, we define fractional Fourier-Bessel type transformation F, g with the

help of (2) as follows: for any ¢ € .%/(R)

(Fp)@) = [, o()IB@dps(x), ¥ GERs, @

S

dug(x) = x**1dx. Now we also introduce the definition of the Sobolev type spaces ‘H 5(R4) as the
set of all ¢ € ./(R) such that

(f a+ien

In this article we consider a set of symbols, denoted by A [25] which will be used in the upcoming

2 3
FO@| @) <o ®

sections. Next, we define pseudo-differential Bessel type operators ,@9’ . on 7 (R) associated with the

set A as follows:

(#9)(&) = [ JB©)alx,8) (Fhp)@dps(x), ©

. . 9
where a(x,¢) is the corresponding to the operator % .
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The current manuscript is was primarily inspired /motivated by the works of [10,11,26,27]

2. Definitions and Notes for Preliminary Terms

We start out by making some notations on the useful spaces that we will require for this article.
e Ry ={z€R, z>0}.
* Z.(R) is the space of all even C*-functions with compact support.

e €°(R) is the space of all even C*—functions on R and

6e0(R) = {h : b is an even continuousfunction defined on R such that h(x) — 0 as ||x|| —

+oco and ||k

%, =sup{h(x) :x € R} < +00}.

e The Schwartz space .7, (R) consists of all even C®-functions on R.

e 7/(R) is the space of even tempered distributions on R.

© L(Ry) = {h :R — C such that HhHZZ = Jg, W) [Pdpp(x) < +oo, dup(x) = x**dx, B>

—%and1§p<oo}.

* L¥(R) = {h:]R—> C such that ||h||L2o = ess suph(x)rer < +00}.

Introducing the mono-axially operator Ag for g > —1 as follows

@ gprid
dx? x dx’

Ap

3. The Fractional Fourier-Bessel Type Transform

Definition 3.1. The fractional Fourier-Bessel type transform of ¢ € Lg([0, o0)) is the function F, g with the
help of (2), defined as follows:

(FEo)@) = [ oI@dns(x),  VEeRy, )

dug(x) = x*Pdx.

Example 3.2. The mapping ¢(x) = e belongs to Lg([0, oo)) and we have

(F9)(©) = 5T(B+ DI, ¥ £ 20,

Example 3.3. The function ¢(x) =e™* € Lg([0, o0)) and we get

(Fgo) (&) =T(2B+2)J3(8), V¢ =0.
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Theorem 3.4. For B> —3 and ¢ > 0. The Kernel K%(x,¢) satisfies the following equation
ApK?(x,8) = = esc? 0K (x,8), (8)

where

@ 2pt1 d 2841,
o _ 4~ d 5 B -
Ap=oa T ( X +21xcot9) R (3x cotd —2(B+1)i+ ” i¢sect 4x§csc9) cot.

Proof. We have

dK'(x,g) _ d 00, I inesco
dx dx
= K%x,¢)i(xcoth — Ecsca). )

Similarly, we get

dx? dx \ dx
= —(xcot® — Fesch)?K? (x,E) + icotfK® (x,¢). (10)

PK(xE) _ d <d K@(m)

Obtain

MK (x,8) = dz(K;if’C)) + <2ﬁ jl +2ixcot9> d<K9d(;’§))

2 1
+ <3x2cot9—2(ﬁ—|—1)i—|— ‘B; iésec9—4xécsc9> cotfK? (x,&).

(11)
Using (9) and (10) in (11), we obtain

A%Ke(x,é) = —esc? 0K (x,€).

Remark 3.5. By the Principle of Mathematical Induction, we get
(A%)'K*(x,8) = (=1)'(§esc§)?K*(x,8), V I€N.

The transform ]-"g : Sf/ ﬁ(lR+) — S, p(IRy) is continuous and linear.
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Proof. We assume f € 57 ;(R+). We have

d? 26+1 d . 2B+1.
0 2 _ _
Ag 2 +( +21xcot0) I (3x cotf —2(B+1)i+ p» i¢secf 4x§csc0) cotf
d? d
T tolx )dx +d(x),

where, c(x) = 2ﬁ+1 +2ixcotf and d(x) = (Bx2 cotd —2(B+1)i+ @iésec@ —4xgcsc 9) cotf. Applying
Leibniz’s Theorem of successive differentiation of pointwise multiplication of functions, the differential

operator (A%)P forany p =0, 1, 2, 3, 4,... we obtain

Z ek dxk

where, egp(x) =1 and remaining ¢?(x) are functions of 25—“ + 2ixcotf or <3xzcot9 —2(B+1)i+
2 +1ZC secO — 4x¢ CSC9) cot® and its derivatives, x and cotf, csc6, secfl. Therefore, the result is got

by using the fact that for all p > 0, there exist i, > 0 and j, > 0, R, such that

a (26+1 .
T ( . + 21xcot9> <hp, x>Ry,
and
ar » . 2B+1. .
il _ - < >
P ((39( cotf —2(p+1)i+ < i¢sect 4x§csc9) cot9> <Jp X2R,
and ]-"g is an isomorphism from S? p(Ry) onto S, g(IR+.). Proof of the Theorem ? is completed. O

Theorem 3.6. For { > 0, the function h(x) = A%Ke(x,g) is a regular generalized function.

Proof. Let f € S2(Ry). We get

(f) = (OG0, F) = [ AR () )7

= /IR —2esc? 0K (x, &) f(x)x*dx

Thus,

|<h'f>} - ](A%K"(x,g),ﬁ\ < }Czcscze‘leo(f)/]R(l+x2)fm‘K9(x’€)Hx2ﬁ+1’dx
= |82 esc? 0] QoI (1 +x3) K (1, ) 1|

Proof of the Theorem 3.6 is completed. O
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Theorem 3.7. Let f € S2(R.). We have

(AGK®(x,€),f) = (K°(x,8),(AR)*f),  for all§>0 (12)

+1
X

d? 26+1 . d . 2B
0\ * _ 2 _
(Aﬁ) + ( p» 21xcot0) I + (3x cotd —6(f+1)i+

= iEsech — 4xgcsc0) cotd. (13)

Proof. We get firstly

(MK ), f) = [ ABK(x 2 f(x)x

2
= / [d + (2ﬁ+ ! +21’xcot(9>i
R, X

dx? dx
2+1
X

+ (3x2cot9 —2(B+1)i+ i¢sech —4x§csc9) Cot()}
x  K%(x,&) f(x)x*dx
d? 26+1d
— [ (K + k) )
+ 2ixcot0i1<9(x,@)f(x)xzﬁ“dx

R, dx
28+1
x

+ / <3x2cot9 —-2(B+1)i+

+

i&sech — 4x{csc 9) cotOK? (x, &) f (x)x*dx

= If + 13 + Ig (say),

where
d? 26+1d
0 — LN 286+1d 4 2611
I /1R+ <dx2K (x,¢) + ” de (x,§)>f(x)x dx
— 1 df o d e 2541
= [ g P R 0
d
) = ' — (K 2B+1
L R+21xcot0dx (K%(x,8)) f(x)x?+dx
and

28+1

= /IR (33(2 cotd —2(B+1)i+ Tié’sec@ — 4xé’csc9) cotOK? (x, &) f (x)x* dx.
+

From the fact that x?f*1 ~ ¢?¥,  x — co. Applying integration by parts, we obtain

d d
1= —/]R+ M(Ke(x,g))xzﬁﬂj;(xx)dx
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Again applying integration by parts, we obtain

2
= /]R+ <(2f5+1)xﬁdfd(;)+x2ﬂ+1d£2x))f<"(xlé‘)dx

2p

_ / K9<x,€)d2f(x)xzﬁ+1dx+/ Ke(x,g)(2,8+1)x(df(x)>x25“dx.
R, R.

dx? X2\ dx

By the same process, we obtain

If = —4i(B + 1) cotd /}R ) x?PH f(x)K? (x,§)dx — 2icot6 xzﬁ“dfd(;)Ke(x,C)dx-

Ry

Therefore,

f(

x)
2

2
B+B+1 = /R <(25+1)xﬁdf<x>+x2/3+1dd
+

I >K9(x,(§)dx

2 2
b [ Rt [ pes ) g ()

- 4i(ﬁ+1)€0t9/}1{+ 26213“]{(96)1(6(96,C:?')dx—21'c0’c(9/IR+ xzﬁﬂdj{;(;)Ke(X,C)dx
26+1
x
d? 26+1 . d
= /H<+K9(x'§)thcz+ ( ‘Bx —21xcot0>dx

2B+ 1
X

+ / (3x2c0t9—2(ﬁ—|—1)i—|— i(;‘sec(%—4x(,‘csc9>cotQKg(x,(;‘)f(x)xzﬁﬂdx
R4

+ <3x2c0t9 —6(B+1)i+ i¢sech — 4x§csc9> cotO}f(x)} 2Pty

= KU 0f) f)a
= (K'(x,2), (83)"F).

This completes the proof. O

Theorem 3.8. For f € S2(R..). We get

FE((AD £)(8) = —&es®0F(f)(E),  VE>0.

Proof. Applying the Theorem 3.4 and Theorem 3.7, We have for ¢ > 0

RS N@ = [ K EOIBE(6F) ()

= s 0FL()(E)-

Therefore,

Fo(89) 1) (@) = ~Ses?0FF(F)(E), Ve >0
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which achieves the result. O

4. Conclusion and Discussions for Further Research

In the manuscript, we have defined the Bessel type function ]g, first order Bessel type operator A9,
fractional Fourier-Bessel type transformation F, g We have also introduced the definition of the Sobolev
type spaces G]I—I%(IRJF) and pseudo-differential Bessel type operators %’9, . Some properties of these
transformations and operators have been investigated in this article. The future extension of domain of
fractional Fourier-Bessel type transform will be .7, (R) and Z.(R), L?( [0, +oo[ ), LP( [0, +oo[), 1<
p <2, MP( [0, +oo[). Wavelet type transform associated with fractional Fourier-Bessel type transform

will be introduced with some mathematical properties.
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