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Abstract

Fractional Fourier-Bessel type transformation is defined. Then using these transformations the

pseudo-differential Bessel type operators Bθ
β, a is also defined. After that we introduce some class

of symbols, Sobolev and Bessel type potentials spaces. Properties of these transformations and

operators are investigated.
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1. Introduction and Motivation

The term "pseudo-differential operators" [1–4] has a fairly broad definition and covers such chapters

as harmonic analysis, partial differential equation, computations, quantum mechanics. In

mathematics, medicine, scientific computing, and engineering, natural sciences current trends and

novel applications are highlighted. The emphasis is on contemporary developments in mathematics,

engineering, medicine, scientific computers, and the natural sciences. In reality, Kohn-Nirenberg and

Hörmander were the ones who first introduced the pseudo-differential calculus. Pseudo-differential

operators on R+ are standard or conventional generalizations of partial differential operators or

ordinary differential operators and singular integrals. Many faculties, scientists, Ph.D students and

researchers of other field developed the theory of pseudo-differential operators with the help of

following types of integral operators similar as Fourier transforms ([5,6]), Hankel transform ([7–9]),

Fourier Bessel Transform on R+ ([10,11]), Weinstein transform ([12]), Laguerre hypergroups ([13]) and

Jacobi differential operators ([14]). From 19th century Fourier analysis is a most frequently used tools

in scientific studies/streams [15–18]. In mathematical literature, a generalized concept of the Fourier
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transform well known as the fractional Fourier transform was considered in 1980-1987, by Mcbride,

Kerr and Namias [19,20]. The fractional Fourier transform (FrFT) [?,21,22] has been defined as follows:

(F θ φ)(ξ) = φ̂θ(ξ) =
∫

R
Kθ(x,ξ)φ(x)dx (1)

Kθ(x,ξ) =



Cθe
i(x2+ξ2)cotθ

2 −ixξ cscθ , θ ̸= nπ,nϵZ

1√
2π

e−ixξ , θ = π
2

δ(x − ξ), θ = 2nπ

δ(x + ξ), θ = (2n + 1)π,

Where Cθ =
√

1−i cotθ
2π . In the present manuscript, we consider first order Bessel operator ∆β with the

theory of Bessel potentials which is mentioned in [24], defined for x ∈ R+, β ∈ R such that β >− 1
2 by

∆β =
d2

dx2 +
2β + 1

x
d

dx
.

Now using the Kernel of (1) we define the Bessel type function Jθ
β as follows: for ξ ∈ R+, β > − 1

2 ,

Jθ
β(ξ) =

Γ(β + 1)√
πΓ(β + 1

2 )

∫ 1

−1
(1 − x2)β− 1

2 Kθ(x,ξ)dx. (2)

In this manuscript, we introduce first order Bessel type operator ∆θ
β, defined for x ∈ R+, β > − 1

2 by

∆θ
β =

d2

dx2 +
(2β + 1

x
+ 2ix cotθ

) d
dx

+
(

3x2 cotθ − 2(β + 1)i +
2β + 1

x
iξ secθ − 4xξ cscθ

)
cotθ. (3)

If θ = π
2 , we get ∆θ

β = ∆β. Firstly, we define fractional Fourier-Bessel type transformation F θ
β with the

help of (2) as follows: for any φ ∈ S ′
e (R)

(F θ
β φ)(ξ) =

∫
R+

φ(x)Jθ
β(ξ)dµβ(x), ∀ ξ ∈ R+, (4)

dµβ(x) = x2β+1dx. Now we also introduce the definition of the Sobolev type spaces θHs
β(R+) as the

set of all φ ∈ S ′
e (R) such that

(∫
R+

(1 + |ξ|)2s
∣∣∣(F θ

β φ)(ξ)
∣∣∣2 dµβ(ξ)

) 1
2

< ∞. (5)

In this article we consider a set of symbols, denoted by Λ [25] which will be used in the upcoming

sections. Next, we define pseudo-differential Bessel type operators Bθ
β, a on Se(R) associated with the

set Λ as follows:

(Bθ
β,a φ)(ξ) =

∫
R+

Jθ
β(ξ)a(x,ξ)(F θ

β φ)(ξ)dµβ(x), (6)

where a(x,ξ) is the corresponding to the operator Bθ
β,a.
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The current manuscript is was primarily inspired/motivated by the works of [10,11,26,27]

2. Definitions and Notes for Preliminary Terms

We start out by making some notations on the useful spaces that we will require for this article.

• R+ = {z ∈ R, z > 0}.

• De(R) is the space of all even C∞-functions with compact support.

• C ∞
e (R) is the space of all even C∞−functions on R and

Ce,0(R) =

{
h : h is an even continuousfunction defined on R such that h(x) → 0 as ||x|| →

+∞ and ||h||Ce,0 = sup{h(x) : x ∈ R} < +∞
}

.

• The Schwartz space Se(R) consists of all even C∞-functions on R.

• S ′
e (R) is the space of even tempered distributions on R.

• Lp
β(R+) =

{
h : R → C such that ||h||p

Lp
β

=
∫

R+
|h(x)|pdµβ(x) < +∞, dµβ(x) = x2β+1dx, β >

− 1
2 and 1 ≤ p < ∞

}
.

• L∞
β (R) =

{
h : R → C such that ||h||L∞

β
= ess suph(x)x∈R < +∞

}
.

Introducing the mono-axially operator ∆β for β > − 1
2 as follows

∆β =
d2

dx2 +
2β + 1

x
d

dx
.

3. The Fractional Fourier-Bessel Type Transform

Definition 3.1. The fractional Fourier-Bessel type transform of φ ∈ Lβ([0, ∞)) is the function F θ
β with the

help of (2), defined as follows:

(F θ
β φ)(ξ) =

∫
R+

φ(x)Jθ
β(ξ)dµβ(x), ∀ξ ∈ R+, (7)

dµβ(x) = x2β+1dx.

Example 3.2. The mapping φ(x) = e−x2
belongs to Lβ([0, ∞)) and we have

(F θ
β φ)(ξ) =

1
2

Γ(β + 1)Jθ
β(ξ), ∀ ξ ≧ 0.

Example 3.3. The function φ(x) = e−x ∈ Lβ([0, ∞)) and we get

(F θ
β φ)(ξ) = Γ(2β + 2)Jθ

β(ξ), ∀ξ ≧ 0.
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Theorem 3.4. For β > − 1
2 and ξ > 0. The Kernel Kθ(x,ξ) satisfies the following equation

∆θ
βKθ(x,ξ) = −ξ2 csc2 θKθ(x,ξ), (8)

where

∆θ
β =

d2

dx2 +
(2β + 1

x
+ 2ix cotθ

) d
dx

+
(

3x2 cotθ − 2(β + 1)i +
2β + 1

x
iξ secθ − 4xξ cscθ

)
cotθ.

Proof. We have

d(Kθ(x,ξ))
dx

=
d

dx

(
Cθe

i(x2+ξ2)cotθ
2 −ixξ cscθ

)
= Kθ(x,ξ)i(x cotθ − ξ cscα). (9)

Similarly, we get

d2(Kθ(x,ξ))
dx2 =

d
dx

(
d

dx
Kθ(x,ξ)

)
= −(x cotθ − ξ cscθ)2Kθ(x,ξ) + i cotθKθ(x,ξ). (10)

Obtain

∆θ
βKθ(x,ξ) =

d2(Kθ(x,ξ))
dx2 +

(
2β + 1

x
+ 2ix cotθ

)
d(Kθ(x,ξ))

dx

+

(
3x2 cotθ − 2(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ

)
cotθKθ(x,ξ).

(11)

Using (9) and (10) in (11), we obtain

∆θ
βKθ(x,ξ) = −ξ2 csc2 θKθ(x,ξ).

Remark 3.5. By the Principle of Mathematical Induction, we get

(∆θ
β)

lKθ(x,ξ) = (−1)l(ξ cscθ)2lKθ(x,ξ), ∀ l ∈ N.

The transform F θ
β : S2

e, β(R+)→ Se, β(R+) is continuous and linear.
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Proof. We assume f ∈ S2
e, β(R+). We have

∆θ
β =

d2

dx2 +
(2β + 1

x
+ 2ix cotθ

) d
dx

+
(

3x2 cotθ − 2(β + 1)i +
2β + 1

x
iξ secθ − 4xξ cscθ

)
cotθ

=
d2

dx2 + c(x)
d

dx
+ d(x),

where, c(x) = 2β+1
x + 2ix cotθ and d(x) =

(
3x2 cotθ − 2(β+ 1)i+ 2β+1

x iξ secθ − 4xξ cscθ
)

cotθ. Applying

Leibniz’s Theorem of successive differentiation of pointwise multiplication of functions, the differential

operator (∆θ
β)

p for any p = 0, 1, 2, 3, 4, . . . we obtain

(∆θ
β)

p( f ) =
2p

∑
k=0

eθ
k(x)

dk

dxk ( f ),

where, eθ
2p(x) = 1 and remaining eθ

k(x) are functions of 2β+1
x + 2ix cotθ or

(
3x2 cotθ − 2(β + 1)i +

2β+1
x iξ secθ − 4xξ cscθ

)
cotθ and its derivatives, x and cotθ, cscθ, secθ. Therefore, the result is got

by using the fact that for all p ≥ 0, there exist hp > 0 and jp > 0, Rp such that

∣∣∣∣∣ dp

dxp

(
2β + 1

x
+ 2ix cotθ

)∣∣∣∣∣ ≤ hp, x ≥ Rp,

and ∣∣∣∣∣ dp

dxp

((
3x2 cotθ − 2(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ
)

cotθ

)∣∣∣∣∣ ≤ jp, x ≥ Rp

and F θ
β is an isomorphism from S2

e, β(R+) onto Se, β(R+). Proof of the Theorem ? is completed.

Theorem 3.6. For ξ > 0, the function h(x) = ∆θ
βKθ(x,ξ) is a regular generalized function.

Proof. Let f ∈ S2
e (R+). We get

〈
h, f
〉
=
〈
∆θ

βKθ(x,ξ), f
〉

=
∫

R
∆θ

βKθ(x,ξ) f (x)x2β+1dx

=
∫

R
−ξ2 csc2 θKθ(x,ξ) f (x)x2β+1dx

Thus,

∣∣〈h, f
〉∣∣ = ∣∣〈∆θ

βKθ(x,ξ), f
〉∣∣ ≤

∣∣ξ2 csc2 θ
∣∣Qm,0( f )

∫
R
(1 + x2)−m∣∣Kθ(x,ξ)

∣∣|x2β+1|dx

=
∣∣ξ2 csc2 θ

∣∣Qm,0( f )||(1 + x2)−mKθ(x,ξ)x2β+1||1L1
β
.

Proof of the Theorem 3.6 is completed.
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Theorem 3.7. Let f ∈ S2
e (R+). We have

〈
∆θ

βKθ(x,ξ), f
〉
=
〈
Kθ(x,ξ), (∆θ

β)
∗ f
〉
, for all ξ > 0 (12)

where

(∆θ
β)

∗ =
d2

dx2 +
(2β + 1

x
− 2ix cotθ

) d
dx

+
(

3x2 cotθ − 6(β + 1)i +
2β + 1

x
iξ secθ − 4xξ cscθ

)
cotθ. (13)

Proof. We get firstly

〈
∆θ

βKθ(x,ξ), f
〉

=
∫

R+

∆θ
βKθ(x,ξ) f (x)x2β+1dx

=
∫

R+

[
d2

dx2 +
(2β + 1

x
+ 2ix cotθ

) d
dx

+
(

3x2 cotθ − 2(β + 1)i +
2β + 1

x
iξ secθ − 4xξ cscθ

)
cotθ

]
× Kθ(x,ξ) f (x)x2β+1dx

=
∫

R+

(
d2

dx2 Kθ(x,ξ) +
2β + 1

x
d

dx
Kθ(x,ξ)

)
f (x)x2β+1dx

+
∫

R+

2ix cotθ
d

dx
Kθ(x,ξ) f (x)x2β+1dx

+
∫

R+

(
3x2 cotθ − 2(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ
)

cotθKθ(x,ξ) f (x)x2β+1dx

= Iθ
1 + Iθ

2 + Iθ
3 (say),

where

Iθ
1 =

∫
R+

(
d2

dx2 Kθ(x,ξ) +
2β + 1

x
d

dx
Kθ(x,ξ)

)
f (x)x2β+1dx

=
∫

R+

1
x2β+1

d
dx

{
x2β+1 d

dx
Kθ(x,ξ)

}
f (x)x2β+1dx,

Iθ
2 =

∫
R+

2ix cotθ
d

dx
(
Kθ(x,ξ)

)
f (x)x2β+1dx

and

Iθ
3 =

∫
R+

(
3x2 cotθ − 2(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ
)

cotθKθ(x,ξ) f (x)x2β+1dx.

From the fact that x2β+1 ≃ e2βx, x → ∞. Applying integration by parts, we obtain

Iθ
1 = −

∫
R+

d
dx
(
Kθ(x,ξ)

)
x2β+1 d f (x)

dx
dx
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Again applying integration by parts, we obtain

Iθ
1 =

∫
R+

(
(2β + 1)xβ d f (x)

dx
+ x2β+1 d2 f (x)

dx2

)
Kθ(x,ξ)dx

=
∫

R+

Kθ(x,ξ)
d2 f (x)

dx2 x2β+1dx +
∫

R+

Kθ(x,ξ)(2β + 1)
x2β

x2β+1

(
d f (x)

dx

)
x2β+1dx.

By the same process, we obtain

Iθ
2 = −4i(β + 1)cotθ

∫
R+

x2β+1 f (x)Kθ(x,ξ)dx − 2i cotθ
∫

R+

x2β+1 d f (x)
dx

Kθ(x,ξ)dx.

Therefore,

Iθ
1 + Iθ

2 + Iθ
3 =

∫
R+

(
(2β + 1)xβ d f (x)

dx
+ x2β+1 d2 f (x)

dx2

)
Kθ(x,ξ)dx

+
∫

R+

Kθ(x,ξ)
d2 f (x)

dx2 x2β+1dx +
∫

R+

Kθ(x,ξ)(2β + 1)
x2β

x2β+1

(
d f (x)

dx

)
x2β+1dx

− 4i(β + 1)cotθ
∫

R+

x2β+1 f (x)Kθ(x,ξ)dx − 2i cotθ
∫

R+

x2β+1 d f (x)
dx

Kθ(x,ξ)dx

+
∫

R+

(
3x2 cotθ − 2(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ
)

cotθKθ(x,ξ) f (x)x2β+1dx

=
∫

R+

Kθ(x,ξ)
[{

d2

dx2 +

(
2β + 1

x
− 2ix cotθ

)
d

dx

+

(
3x2 cotθ − 6(β + 1)i +

2β + 1
x

iξ secθ − 4xξ cscθ

)
cotθ

}
f (x)

]
x2β+1dx

=
∫

R+

Kθ(x,ξ)(∆θ
β)

∗ f (x)x2β+1dx

=
〈
Kθ(x,ξ), (∆θ

β)
∗ f
〉
.

This completes the proof.

Theorem 3.8. For f ∈ S2
e (R+). We get

F θ
β

(
(∆θ

β)
∗ f
)
(ξ) = −ξ2 csc2 θF θ

β( f )(ξ), ∀ξ > 0.

Proof. Applying the Theorem 3.4 and Theorem 3.7, We have for ξ > 0

F θ
β

(
(∆θ

β)
∗ f
)
(ξ) =

∫
R+

Kθ(x,ξ)Jθ
β(ξ)

(
(∆θ

β)
∗ f (x)

)
x2β+1dx

= −ξ2 csc2 θF θ
β( f )(ξ).

Therefore,

F θ
β

(
(∆θ

β)
∗ f
)
(ξ) = −ξ2 csc2 θF θ

β( f )(ξ), ∀ξ > 0
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which achieves the result.

4. Conclusion and Discussions for Further Research

In the manuscript, we have defined the Bessel type function Jθ
β, first order Bessel type operator ∆θ

β,

fractional Fourier-Bessel type transformation F θ
β . We have also introduced the definition of the Sobolev

type spaces θHs
β(R+) and pseudo-differential Bessel type operators Bθ

β, a. Some properties of these

transformations and operators have been investigated in this article. The future extension of domain of

fractional Fourier-Bessel type transform will be S∗(R) and D∗(R), L2( [0, +∞[ ), Lp( [0, +∞[ ), 1 ≤

p ≤ 2, Mb( [0, +∞[ ). Wavelet type transform associated with fractional Fourier-Bessel type transform

will be introduced with some mathematical properties.
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