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1. Introduction

In this paper we are concerning with the solvability of the semilinear operator system

A1(x, y, z, w) = x

A2(x, y, z, w) = y

A3(x, y, z, w) = z

A4(x, y, z, w) = w


(1)

in a complete gauge space X (space endowed with a family of pseudo-metrics). Here A1, A2, A3, A4 : X4 → X are given non-

linear operators. Systems of this type arise from mathematical modelling of many interaction, competitive and cooperative

processes from a variety of disciplines, including physics, biology, chemistry, engineering and other sciences. For instance,

the system

x(t) =

∫ t

t−τ1
f1(s, x(σ1(s)), y(σ2(s)), z(σ3(s)), w(σ1(s)))ds

y(t) =

∫ t

t−τ2
f2(s, x(σ1(s)), y(σ2(s)), z(σ3(s)), w(σ1(s)))ds

z(t) =

∫ t

t−τ3
f3(s, x(σ1(s)), y(σ2(s)), z(σ3(s)), w(σ1(s)))ds

w(t) =

∫ t

t−τ4
f1(s, x(σ1(s)), y(σ2(s)), z(σ3(s)), w(σ1(s)))ds


(2)
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is a mathematical model for the spread of two interacted infectious diseases with contact rates that vary seasonally. In these

equations x(t), y(t), z(t), w(t) represent the proportion of infectives in a population at time t, for each of the four epidemics;

τ1, τ2, τ3, τ4 stand for the length of time an individual remains infectious of each one of the diseases; and f1, f2, f3, f4 are the

proportion of new infectives per unit time for the four epidemics. The modified arguments σ1(t), σ2(t), σ3(t), σ4(t) can be of

retarded type, when σ1(t), σ2(t), σ3(t), σ4(t) ≤ t, or of advanced type, if σ1(t), σ2(t), σ3(t), σ4(t) ≥ t. For only one disease,

and without argument deviations, such a model was introduced by Cooke and Kaplan [2] (see also Precup [16]).

It is obvious that system 1 can be viewed as a fixed point problem,

T (u) = u (3)

in the space X4, where u = (x, y, z, w) and T = (A1, A2, A3, A4). Therefore, we may think to apply to 3, in X4 endowed

with the gauge structure induced by that of X, different abstract existences results from the theory of nonlinear operators on

gauge spaces. Such a result is the contraction principle extended to gauge spaces by Colojoara (1961) [1], Gheorghiu (1967)

[5] and Tarafdar (1974) [23]. However, as pointed out by Perov and Kibenko [15] in connection with Banach’s contraction

principle and Precup [17] Mishra et al., [9] and cited their in, for other abstract principles (Schauder’s, Leray-Schauder’s

and Krasnoselskii’s cone theorems), we may expect that better results can be obtained for system 1 if X4 is endowed with a

family of vector-valued pseudo-metrics. Of course, in this situation the contraction condition has to be expressed in terms of

a matrix instead of scalar Lipschitz constants allowing the two mappings A1, A2, A3 and A4 to satisfy more relaxed Lipschitz

conditions.

Our first goal in this paper is to present Perov type fixed point theorems for contractive mappings in Gheorghiu’s sense on

spaces endowed with a family of vector-valued pseudo-metrics. Then we present applications to system 2 with parameter

standardization τ1 = τ2 = τ3 = τ4 = 1 in two cases:

(a). for advanced arguments τ1 = τ2 = τ3 = τ4 = t+ 4,

(b). for unmodified arguments τ1 = τ2 = τ3 = τ4 = t.

The use of a gauge structure is motivated by our interest in discussing long term behaviour of the system, i.e., t ∈ [0,∞),

while the advanced arguments in the first example lead to Gheorghiu’s contraction notion. Our abstract results are new

and complement the existing literature in fixed point theory in gauge/uniform spaces. In addition, compared to previous

applications in Precup [18] and Precup-Viorel [19], our new applications give to the vector approach a new asset for its use

in the treatment of systems.

In order to make clear the connection of our results to the existing literature, we conclude this introductory section recalling

some definitions and results (details can be found in Precup [16]). By a vector-valued metric on a set X one means a map

d : X ×X → Rn with the following properties: d(x, y) ≥ 0 for all x, y ∈ X and if d(x, y) = 0 then x = y; d(x, y) = d(y, x)

for all x, y ∈ X; d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Here, if a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn, then by a ≤ b we mean that ai ≤ bi for i = 1, 2, . . . , n. A set

X endowed with a vector-valued metric d is said to be a generalized metric space. For the generalized metric spaces, the

notions of a convergent sequence, Cauchy sequence and completeness are similar to those for usual metric spaces.

Let (X, d) be a generalized metric space. A map T : X → X is said to be a generalized contraction if there exists a matrix

M ∈ Mn×n(R+) such that

Mk → 0 as k →∞ (4)
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and

d(T (x), T (y)) ≤Md(x, y) for all x, y ∈ X.

The Lipschitz matrix M satisfying 4 is said to be convergent to zero. The extension of Banach’s fixed point theorem to

generalized contractions on spaces with a vector-valued metric is due to Perov and Kibenko (see [15] and [16]).

Theorem 1.1. (Perov) Let (X, d) be a complete generalized metric space and T : X → X be a generalized contraction with

Lipschitz matrix M . Then T has a unique fixed point x∗ and for each x0 ∈ X, one has

d(T k(x0), x∗)) ≤Mk(I −M)−1d(x0, T (x0))

for all k ∈ N.

As concerns matrices which are convergent to zero, we mention the following equivalent characterizations (see Precup [17]):

If M be a square matrix of nonnegative numbers, then the following statements are equivalent:

(i). the matrix M is convergent to zero;

(ii). I −M is non-singular and (I −M)−1 = I +M +M2 + . . . ;

(iii). |λ| < 1 for every λ ∈ C with det(M − λI) = 0;

(iv). I −M is non-singular and (I −M)−1 has nonnegative elements.

Finally we recall basic definitions and results of the theory of gauge spaces. A map d : X ×X → R+ is said to be a pseudo-

metric, or a gauge on the set X, if it has the following properties: d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z)+d(z, y)

for all x, y, z ∈ X. A family P = {dα}α∈Λ of pseudometrics on X (or a gauge structure on X) is said to be separating if for

each pair of points x, y ∈ X with x = y, there is a dα ∈ P such that dα(x, y) = 0. A pair (X,P) of a nonempty set X and a

separating gauge structure P on X is called a gauge space.

It is well-known (see Dugundji [5: pp. 198–204]) that any family P of pseudometrics on a set X induces on X a structure

U of uniform space and conversely, any uniform structure on X is induced by a family of pseudo-metrics on X. In addition,

U is separating (or Hausdorff) if and only if P is separating. Hence we may identify gauge spaces to Hausdorff uniform

spaces. We now recall the notion of contraction on a gauge space, introduced by Gheorghiu [7] (see also Chi̧ s-Precup [2]

and Angelov [1]). Let (X,P) be a gauge space with P = {dα}α∈Λ . A map T : D(T ) ⊂ X → X is a contraction if there

exists a function ϕ : Λ→ Λ and a ∈ RΛ
+, a = {aα}α∈Λ such that

dα(T (x), T (y)) ≤ aαdϕ(α)(x, y)

for all α ∈ Λ and x, y ∈ D(T ) and
∞∑
i=1

aαaϕ(α)aϕ2(α) . . . aϕi−1(α)dϕi(α)(x, y) <∞

for every α ∈ Λ and x, y ∈ D(T ). Here ϕi is the i− th iterate of ϕ.

We note that this notion was first introduced by Marinescu [8] in locally convex spaces assuming that ϕ2 = ϕ and then by

Colojoarǎ [1] in uniform spaces, under the same condition. The case ϕ = 1Λ (identity) was considered by Tarafdar [23] (see

also Frigon [4]). Also note that a somewhat different notion of contraction in a uniform space was defined by Knill [7] in

terms of entourages.

Theorem 1.2 ([5]). Let (X,P) be a complete gauge space and let T : X → X be a contraction. Then T has a unique fixed

point which can be obtained by successive approximations starting from any element of X.
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2. Main Abstract Results

In this section we introduce the notions of a vector-valued pseudo-metric, generalized gauge space and generalized contraction.

Then Gheorghiu’s theorem is extended for generalized contractions on complete generalized gauge spaces. A second result

is concerning with mappings which are contractive in Gheorghiu’s sense only on one of its orbits. The results are Perov-

Gheorghiu mixtures and have the advantages of both approaches.

Definition 2.1. Let Z be a set. A vector-valued map D : Z×Z → Rn+ is said to be a vector-valued pseudo-metric, or a vector-

valued gauge on Z, if it has the following properties: D(u, u) = 0; D(u, v) = D(v, u); and D(u, v) ≤ D(u,w)+D(w, v) for all

u, v, w ∈ Z. Here again, if a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn, then by a ≤ b we mean ai ≤ bi for i = 1, 2, . . . , n.

A family G = {Dα}α∈Λ of vector-valued pseudo-metrics on Z (or a generalized gauge structure on Z) is said to be separating

if for each pair of points u, v ∈ Z with u = v, there is a Dα ∈ G such that Dα(u, v) = 0. A pair (Z,G) of a nonempty set Z

and a separating generalized gauge structure G on Z is called a generalized gauge space. For the generalized gauge spaces,

the notions of a convergent sequence, Cauchy sequence and completeness are similar to those for usual gauge spaces. By

analogy, we can introduce the vector version of Gheorghiu’s notion of contraction.

Definition 2.2. Let (Z,G) be a generalized gauge space with G = {Dα}α ∈ Λ. A map T : D(T ) ⊂ Z → Z is a generalized

contraction if there exists a function ϕ : Λ→ Λ and M ∈Mn×n(R+)Λ , M = {Mα}α∈Λ such that

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v) for all α ∈ Λ and u, v ∈ D(T ) (5)

and

∞∑
i=1

MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (6)

for every α ∈ Λ and u, v ∈ D(T ).

Now the Perov type analog for generalized contractions of Gheorghiu’s fixed point theorem reads as follows:

Theorem 2.3. Let (Z,G) be a complete generalized gauge space and let T : Z → Z be a generalized contraction. Then T

has a unique fixed point which can be obtained by successive approximations starting from any element of Z.

Proof. Let u0 be an arbitrary element of Z. Define a sequence (uk) by

uk+1 = T (uk), k ∈ N. (7)

Then using 5 we have

Dα(uk, uk+1) = Dα(T (uk−1), T (uk))

≤ MαDϕ(α)(uk−1, uk)

= MαDϕ(α)(T (uk−2), T (uk−1))

≤ MαMϕ(α)Dϕ2(α)(uk−2, uk−1)

...

≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u0, u1)
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for every α ∈ Λ and k = 1, 2, . . . . As a consequence we have

Dα(uk, uk+m) = Dα(uk, uk+1) + · · ·+Dα(uk+m−1, uk+m)

≤
m−1∑
n=0

MαMϕ(α) . . .Mϕk+n−1(α)Dϕk+n(α)(u0, u1)

=

k+m−1∑
i=k

MαMϕ(α) . . .Mϕi−1(α)Dϕi(α)(u0, u1).

Hence, according to 6, (uk) is a Cauchy sequence. Let u∗ be its limit. Then, letting k → ∞ in 7 gives u∗ = T (u∗). For

uniqueness, assume that u1, u2 are two fixed points of T . Then

Dα(u1, u2) = Dα(T (u1), T (u2))

≤ MαDϕ(α)(u1, u2)

≤ MαMϕ(α)Dϕ2(α)(u1, u2)

...

≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u1, u2)

and using 6 we obtain that Dα(u1, u2) = 0 for every α ∈ Λ . Since family G is separating we deduce that u1 = u2.

From the proof of Theorem 2.3 we immediately obtain the following result guaranteeing the existence of a fixed point as

limit of the successive approximation sequence which starts from a given element of the space.

Theorem 2.4. Let (Z,G) be a generalized gauge space with G = {Dα}α ∈ Λ and let T : Z → Z be a mapping. Assume that

there is u0 ∈ Z, C > 0, ϕ : Λ→ Λ andM ∈Mn×n(R+)Λ , M = {Mα}α∈Λ such that the following conditions hold:

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v) for all α ∈ Λ and u, v ∈ Z,
∞∑
i=1

MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (8)

Dα(u0, T (u0)) ≤ C for all α ∈ Λ. (9)

Then T has at least one fixed point which can be obtained by successive approximations starting from u0.

Remark 2.5. Here are some useful particular cases: If there is an integer p ≥ 2 with ϕp = ϕ, then conditions 6 and 8

reduce to the assumption that

Mϕ(α) . . .Mϕp−1(α)

is convergent to zero for every α ∈ Λ. Thus, if p = 2, that is ϕ2 = ϕ (Marinescu’s situation), then 6 and 8 hold if

Mϕ(α) is convergent to zero for every α ∈ Λ.

In particular, if ϕ = 1Λ (Tarafdar’s situation), then 6 and 8 are satisfied provided that Mα is convergent to zero for every

α ∈ Λ.
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Now we turn back to system 1. We assume that X is a complete gauge space with the family of pseudo-metrics P = {dα}α∈Λ.

We denote Z := X4, T := (A1, A2, A3, A4) and G := {Dα}α∈Λ, where

Dα(u, v) =



dα(x, x1)

dα(y, y1)

dα(z, z1)

dα(w,w1)


(10)

for every u := (x, y, z, w), v := (x1, y1, z1, w1) ∈ X4 and α ∈ Λ. Then (Z,G) is a complete generalized gauge space.

Specialized to this case, Theorems 2.3 and 2.4 yield the following results.

Theorem 2.6. Assume that (X,P) is a complete gauge space with P = {dα}α∈Λ and that there exists a function ϕ : Λ→ Λ

and nonnegative constants a1
α, b

1
α, c

1
α, d

1
α, a2

α, b
2
α, c

2
α, d

2
α a

3
α, b

3
α, c

3
α, d

3
α, a4

α, b
4
α, c

4
α, d

4
α such that

dα(A1(x, y, z, w), A1(x1, y1, z1, w1)) ≤ a1
αdϕ(α)(x, x1) + b1αdϕ(α)(y, y1) + c1αdϕ(α)(z, z1) + d1

αdϕ(α)(w,w1),

dα(A2(x, y, z, w), A2(x1, y1, z1, w1)) ≤ a2
αdϕ(α)(x, x1) + b2αdϕ(α)(y, y1) + c2αdϕ(α)(z, z1) + d2

αdϕ(α)(w,w1),

dα(A3(x, y, z, w), A3(x1, y1, z1, w1)) ≤ a3
αdϕ(α)(x, x1) + b3αdϕ(α)(y, y1) + c3αdϕ(α)(z, z1) + d3

αdϕ(α)(w,w1),

dα(A4(x, y, z, w), A4(x1, y1, z1, w1)) ≤ a4
αdϕ(α)(x, x1) + b4αdϕ(α)(y, y1) + c4αdϕ(α)(z, z1) + d4

αdϕ(α)(w,w1), ,


(11)

for all x, x1, y, y1, z, z1, w, w1 ∈ X and α ∈ Λ. Let

Mα =



a1
α b1α c1α d1

α

a2
α b2α c2α d2

α

a3
α b3α c3α d3

α

a4
α b4α c4α d4

α


If

∞∑
i=1

MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (12)

for all u, v ∈ X4 and α ∈ Λ , then system 1 has a unique solution. Moreover, the solution is the limit of the sequence of

successive approximations

uk = (xk, yk, zk, wk),

xk+1 = A1(xk, yk, zk, wk),

yk+1 = A2(xk, yk, zk, wk)

zk+1 = A3(xk, yk, zk, wk),

wk+1 = A4(xk, yk, zk, wk)


(13)

for k = 0, 1, . . . , and starting from any initial pair (x0, y0, z0, w0) ∈ X4.

Proof. Clearly inequalities 11 can be written in the vector form

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v).

The result is now a direct consequence of Theorem 2.3.
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Theorem 2.7. Under the assumptions of Theorem 7, if there is u0 = (x0, y0, z0, w0) ∈ X4 and C > 0 such that

Dα(u0, T (u0)) ≤ C (14)

and

∞∑
i=1

MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α) <∞ (15)

for every α ∈ Λ , then system 1 has at least one solution which is the limit of sequence 13 starting from u0.

Proof. The result is a direct consequence of Theorem 2.4.

3. Applications to Integral Systems

Consider the system of integral equations with advanced argument

x(t) =

∫ t

t−1

f1(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

y(t) =

∫ t

t−1

f2(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

z(t) =

∫ t

t−1

f3(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

w(t) =

∫ t

t−1

f4(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds


(16)

for t ∈ [0,∞). Assume that

|f1(t, x, y, z, w)− f1(t, x1, y1, z1, w1)| ≤ k1(t)|x− x1|+ k2(t)|y − y1|+ k3(t)|z − z1|+ k4(t)|w − w1|,

|f2(t, x, y, z, w)− f2(t, x1, y1, z1, w1)| ≤ k5(t)|x− x1|+ k6(t)|y − y1|+ k7(t)|z − z1|+ k8(t)|w − w1|,

|f3(t, x, y, z, w)− f3(t, x1, y1, z1, w1)| ≤ k9(t)|x− x1|+ k10(t)|y − y1|+ k11(t)|z − z1|+ k12(t)|w − w1|,

|f4(t, x, y, z, w)− f4(t, x1, y1, z1, w1)| ≤ k13(t)|x− x1|+ k14(t)|y − y1|+ k15(t)|z − z1|+ k16(t)|w − w1|,


(17)

for every x, x1, y, y1, z, z1, w, w1 ∈ R, t ∈ [−1,∞) and some ki ∈ L1([−1,∞),R+), i = {1, 2, 3, 4, . . . , 16}. For each n ∈ N, let

a1
n =

∫ 2n+1

n−1

k1(t)dt, b1n =

∫ 2n+1

n−1

k2(t)dt, c1n =

∫ 2n+1

n−1

k3(t)dt, d1
n =

∫ 2n+1

n−1

k4(t)dt

a2
n =

∫ 2n+1

n−1

k5(t)dt, b2n =

∫ 2n+1

n−1

k6(t)dt, c2n =

∫ 2n+1

n−1

k7(t)dt, d2
n =

∫ 2n+1

n−1

k8(t)dt

a3
n =

∫ 2n+1

n−1

k9(t)dt, b3n =

∫ 2n+1

n−1

k10(t)dt, c3n =

∫ 2n+1

n−1

k11(t)dt, d3
n =

∫ 2n+1

n−1

k12(t)dt

a4
n =

∫ 2n+1

n−1

k13(t)dt, b4n =

∫ 2n+1

n−1

k14(t)dt, c4n =

∫ 2n+1

n−1

k15(t)dt, d4
n =

∫ 2n+1

n−1

k16(t)dt

and consider the matrix

Mα =



a1
α b1α c1α d1

α

a2
α b2α c2α d2

α

a3
α b3α c3α d3

α

a4
α b4α c4α d4

α


.
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Also define the matrix M∞ by

M∞ =



|k1|L1([−1,∞)) |k2|L1([−1,∞)) |k3|L1([−1,∞)) |k4|L1([−1,∞))

|k5|L1([−1,∞)) |k6|L1([−1,∞)) |k7|L1([−1,∞)) |k8|L1([−1,∞))

|k9|L1([−1,∞)) |k10|L1([−1,∞)) |k11|L1([−1,∞)) |k12|L1([−1,∞))

|k13|L1([−1,∞)) |k14|L1([−1,∞)) |k15|L1([−1,∞)) |k16|L1([−1,∞))


.

Our main result on system 16 is the following theorem.

Theorem 3.1. Let f1, f2, f3, f4 : [−1,∞) × R4 → R be four continuous functions and assume that inequalities 17 hold for

some ki ∈ L1([−1,∞),R+), i = {1, 2, 3, 4, . . . , 16}. In addition assume that there is u0 = (x0, y0, z0, w0) ∈ C([0,∞),R4) and

C > 0 such that

|T (u0)(t)− u0(t)| ≤ C for all t ∈ [0,∞), (18)

where T = (A1, A2, A3, A4) is given bellow. If the matrix

M∞ → 0, (19)

then system 16 has at least one solution (x, y, z, w) ∈ C([0,∞),R4)

Proof. We shall use Theorem 2.7. Here X = C[0,∞),Λ = N and for n ∈ N, dn : X ×X → R+ is given by

dn(x, y) = max
t∈[n,2n+1]

|x(t)− y(t)|.

Let A1, A2, A3 : C[0,∞),R3 → C[0,∞) be defined by

A1(x, y, z, w)(t) =

∫ t

t−1

f1(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

A2(x, y, z, w)(t) =

∫ t

t−1

f2(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

A3(x, y, z, w)(t)) =

∫ t

t−1

f3(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

A4(x, y, z, w)(t)) =

∫ t

t−1

f4(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds


First we prove the Lipschitz condition 11 with ϕ : N→ N given by ϕ(n) = n+1. Let t ∈ [n, 2n+1]. We have t−1 ∈ [n−1, 2n],

and when s ∈ [t− 1, t], then s+ 2 ∈ [n+ 1, 2n+ 3]. It follows that

|A(x, y, z, w)(t)−A(x1, y1, z1, w1)(t)| ≤
∫ 2n+1

n−1

|f1(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))

−
∫ 2n+1

n−1

f1(s, x1(s+ 4), y1(s+ 4), z1(s+ 4), w1(s+ 4))|ds

≤
∫ 2n+1

n−1

k1|x(s+ 4)− x1(s+ 4)|ds+

∫ 2n+1

n−1

k2|y(s+ 4)− y1(s+ 4)|ds

+

∫ 2n+1

n−1

k3|z(s+ 4)− z1(s+ 4)|ds+

∫ 2n+1

n−1

k4|w(s+ 4)− w1(s+ 4)|ds

≤ max
s∈[n+1,2n+3]

|x(s+ 4)− x1(s+ 4)|
∫ 2n+1

n−1

k1ds+ max
s∈[n+1,2n+3]

|y(s+ 4)− y1(s+ 4)|
∫ 2n+1

n−1

k2ds
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+ max
s∈[n+1,2n+3]

|z(s+ 4)− z1(s+ 4)|
∫ 2n+1

n−1

k3ds+ max
s∈[n+1,2n+3]

|w(s+ 4)− w1(s+ 4)|
∫ 2n+1

n−1

k4ds

≤ max
τ∈[n+1,2n+3]

|x(τ)− x1(τ)|
∫ 2n+1

n−1

k1ds+ max
τ∈[n+1,2n+3]

|y(τ)− y1(τ)|
∫ 2n+1

n−1

k2ds

+ max
τ∈[n+1,2n+3]

|z(τ)− z1(τ)|
∫ 2n+1

n−1

k3ds+ max
τ∈[n+1,2n+3]

|w(τ)− w1(τ)|
∫ 2n+1

n−1

k4ds

= a1
ndn+1(x, x1) + b1ndn+1(y, y1) + c1ndn+1(z, z1) + d1

ndn+1(w,w1).

Taking the maximum over [n, 2n+ 1] yields

dn(A1(x, y, z, w), A1(x1, y1, z1, w1)) ≤ a1
ndn+1(x, x1) + b1ndn+1(y, y1) + c1ndn+1(z, z1) + d1

ndn+1(w,w1)

dn(A1(x, y, z, w), A1(x1, y1, z1, w1)) ≤ a1
ndϕ(n)(x, x1) + b1ndϕ(n)(y, y1) + c1ndϕ(n)(z, z1) + d1

ndϕ(n)(w,w1)

for every (x, y, z, w), (x1, y1, z1, w1) ∈ X4. Similarly, for A2, A3, A4 we have,

dn(A2(x, y, z, w), A2(x1, y1, z1, w1)) ≤ a2
ndϕ(n)(x, x1) + b2ndϕ(n)(y, y1) + c2ndϕ(n)(z, z1) + d2

ndϕ(n)(w,w1)

dn(A3(x, y, z, w), A3(x1, y1, z1, w1)) ≤ a3
ndϕ(n)(x, x1) + b3ndϕ(n)(y, y1) + c3ndϕ(n)(z, z1) + d3

ndϕ(n)(w,w1)

dn(A4(x, y, z, w), A4(x1, y1, z1, w1)) ≤ a4
ndϕ(n)(x, x1) + b4ndϕ(n)(y, y1) + c4ndϕ(n)(z, z1) + d4

ndϕ(n)(w,w1)

for every (x, y, z, w), (x1, y1, z1, w1) ∈ X4. Hence 11 holds. Furthermore, condition 14 is guaranteed by assumption 18. Also,

for every n ∈ N, Mn ≤M∞ and thus series 15 is dominated by

∞∑
k=0

Mk
∞

which is convergent in view of assumption 19. Hence 15 is satisfied. Therefore Theorem 2.7 can be applied.

4. An Integral System Without Modification of the Argument

Consider the system of integral equations

x(t) =

∫ t

t−1

f1(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

y(t) =

∫ t

t−1

f2(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

z(t) =

∫ t

t−1

f3(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds

w(t) =

∫ t

t−1

f4(s, x(s+ 4), y(s+ 4), z(s+ 4), w(s+ 4))ds


(20)

for t ∈ [0,∞), where x(t) = ψ1(t), y(t) = ψ2(t), z(t) = ψ3(t) and w(t) = ψ4(t) for t ∈ [−1, 0] and ψ1, ψ2, ψ3, ψ4 are

given functions. We assume that inequalities 17 hold for every x, x1, y, y1, z, z1, w, w1 ∈ R, t ∈ [0,∞) and some ki ∈

L1
loc([0,∞),R+), i = {1, 2, 3, 4, . . . , 16}. For n ∈ N \ {0}, we denote

a1
n =

∫ 2n+1

n−1

k1(t)dt, b1n =

∫ 2n+1

n−1

k2(t)dt, c1n =

∫ 2n+1

n−1

k3(t)dt, d1
n =

∫ 2n+1

n−1

k4(t)dt

a2
n =

∫ 2n+1

n−1

k5(t)dt, b2n =

∫ 2n+1

n−1

k6(t)dt, c2n =

∫ 2n+1

n−1

k7(t)dt, d2
n =

∫ 2n+1

n−1

k8(t)dt

a3
n =

∫ 2n+1

n−1

k9(t)dt, b3n =

∫ 2n+1

n−1

k10(t)dt, c3n =

∫ 2n+1

n−1

k11(t)dt, d3
n =

∫ 2n+1

n−1

k12(t)dt
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a4
n =

∫ 2n+1

n−1

k13(t)dt, b4n =

∫ 2n+1

n−1

k14(t)dt, c4n =

∫ 2n+1

n−1

k15(t)dt, d4
n =

∫ 2n+1

n−1

k16(t)dt

and consider the matrix.

Mα =



a1
α b1α c1α d1

α

a2
α b2α c2α d2

α

a3
α b3α c3α d3

α

a4
α b4α c4α d4

α


.

Theorem 4.1. Let f1, f2, f3, f4 : [−1,∞)×R4 → R be four continuous functions, ψ1, ψ2, ψ3, ψ4 ∈ C[−1, 0] and assume that

inequalities 17 hold for some ki ∈ L1
loc([0,∞),R+), i = {1, 2, 3, 4, . . . , 16}. For n ∈ N \ {0} , matrix

Mn → 0 (21)

then system 20 has a unique solution (x, y, z, w) ∈ C[0,∞),R3.

Proof. The result follows from Theorem 2.6 if we take into account Remark 2.5 about Tarafdar’s situation. Here X =

C[0,∞), Λ = N \ {0} , for each n ∈ N \ {0},

dn : X ×X → R+

is given by

dn(x, y) = max
t∈[0,n]

|x(t)− y(t)|,

ϕ : N \ {0} → N \ {0} , ϕ(n) = n, and A1, A2, A3, A4 : C[0,∞),R4 → C[0,∞) are defined by

A1(x, y, z, w)(t) =

∫ t

t−1

f1(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

A2(x, y, z, w)(t) =

∫ t

t−1

f2(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

A3(x, y, z, w)(t) =

∫ t

t−1

f3(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

A4(x, y, z, w)(t) =

∫ t

t−1

f4(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

where

x̃(t) =


ψ1(t) for − 1 ≤ t < 0

x(t) for t ≥ 0

ỹ(t) =


ψ2(t) for − 1 ≤ t < 0

y(t) for t ≥ 0

z̃(t) =


ψ3(t) for − 1 ≤ t < 0

z(t) for t ≥ 0

and

w̃(t) =


ψ4(t) for − 1 ≤ t < 0

w(t) for t ≥ 0
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Remark 4.2. When ki ∈ L1([0,∞),R+), i = {1, 2, 3, 4, . . . , 16} then a sufficient condition for 21 to hold for every n ∈ N\{0}

is that the matrix

M∞ =



|k1|L1([−1,∞)) |k2|L1([−1,∞)) |k3|L1([−1,∞)) |k4|L1([−1,∞))

|k5|L1([−1,∞)) |k6|L1([−1,∞)) |k7|L1([−1,∞)) |k8|L1([−1,∞))

|k9|L1([−1,∞)) |k10|L1([−1,∞)) |k11|L1([−1,∞)) |k12|L1([−1,∞))

|k13|L1([−1,∞)) |k14|L1([−1,∞)) |k15|L1([−1,∞)) |k16|L1([−1,∞))


. (22)

Indeed, for each n ∈ N \ {0} , one has Mn ≤M∞, whence, since the entries of all matrices are non-negative, Mk
n ≤Mk

∞ for

all k ∈ N. Consequently, if Mk
∞ → 0 as k → ∞ , then Mk

n → 0 as k → ∞ , too. However, 22 is not a necessary condition

for 21 as shows the following contre-example:

k1(t) = (t+ 1)−2, ki = 0 for i = {2, 3, 4, . . . , 16}.

In this case

Mn =



n
n+1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


and

M∞ =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Clearly, for every n ∈ N \ {0}, Mn converges to zero, but M∞ does not.
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