A Note on a Line Graph of the Zero Divisor Graph of a Commutative Ring

Jaydeep Parejiya ${ }^{1, *}$, Yesha Hathi ${ }^{1}$ and Patat Sarman ${ }^{1}$
1 Department of Mathematics, Government Polytechnic, Rajkot, Gujarat, India.

Abstract

The rings considered in this article are commutative with identity $1 \neq 0$. Recall that the zero divisor graph of a ring R is a simple undirected graph whose vertex set is the set of all nonzero zero divisors of the ring R and two distinct vertices x, y are adjacent in this graph if and only if $x y=0$. In this article we studied the line graph of the zero divisor graph of a ring and we proved some results regarding the diameter of the line graph.

MSC: $\quad 13 \mathrm{~A} 15,05 \mathrm{C} 25$.

Keywords: Line graph, zero divisor graph, diameter of a graph.
(c) JS Publication.

1. Introduction

The rings considered in this article are commutative with identity $1 \neq 0$. In 1988, Beck [6] defined the concept of zero divisor graph of a commutative ring R, where the vertices of this graph are all elements in the ring and two vertices x , y are adjacent in this graph if and only if $x y=0$. Anderson and Livingston in [3] modified the definition of zero divisor graphs by restricting the vertices to the nonzero zero divisors of the ring R. The zero divisor graph was extensively studied in $[1-3,6]$. The authors K. Nazzal and M. Ghanem in [8], studied the line graph of zero divisor graph. Let G be a simple undirected finite graph. Recall from [8] that line graph of G is denoted as $L(G)$ is defined to be the graph whose vertices are the edges of G, with two vertices being adjacent if the corresponding edges share a vertex in G. This article is motivated by the interesting theorem proved on line graph of zero divisor graph of ring R in $[8,9]$.

It is useful to recall the following definitions from graph theory before we describe the results that are proved in this article on $L(\Gamma(R))$. Let $G=(V, E)$ be a graph. Let $a, b \in V$ with $a \neq b$. Recall that the distance between a and b, denoted by $d(a, b)$ is defined as the length of a shortest path in G if there exists such a path in G; otherwise, we define $d(a, b)=\infty$. We define $d(a, a)=0$. The diameter of G, denoted by $\operatorname{diam}(G)$ is defined as $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V\}$ [5]. A simple graph $G=(V, E)$ is said to be complete if every pair of distinct vertices of G are adjacent in G [5, Definition 1.1.11]. Recall from [5, Definition 1.2.2], that a clique of G is a complete subgraph of G. A subset S of G is said to be an independent set if no two members of S are adjacent in G. A graph $G=(V, E)$ is said to be bipartite if V can be partitioned into nonempty subsets V_{1} and V_{2} such that each edge of G has one end in V_{1} and the other in V_{2}. A bipartite graph with vertex partition V_{1} and V_{2} is said to be complete if each element of V_{1} is adjacent to every element of V_{2}. A complete bipartite graph with vertex partition V_{1} and V_{2} is called a star if either $\left|V_{1}\right|=1$ or $\left|V_{2}\right|=1$ [5, Definition 1.1.12].

[^0]Let R be any ring. We denote the set of all zero divisor of ring R by $Z(R)$. A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal. Recall that an element x of ring R is said to be nilpotent if there exist positive integer n such that $x^{n}=0$. The set of all nilpotent elements of ring R is said to be nilradical and it is denoted by $\operatorname{nil}(R)$.

Let R be a ring. In Section 2 of this article, some results regarding diameter of $L(\Gamma(R))$ is proved. It is proved in Theorem 2.1 that if $\Gamma(R)$ is a complete graph then $\operatorname{diam}(L(G(R))) \in\{0,1,2\}$. It is shown by means of an examples in Remark 2.2 that $\operatorname{diam}(L(G(R)))$ attains all the three values $0,1,2$, when $\Gamma(R)$ is a complete graph. In Theorem 2.3 it is proved that When $\operatorname{diam}(\Gamma(R)=2$, then $1 \leq \operatorname{diam}(L(\Gamma(R))) \leq 3$. In example 2.4, example of a ring R is given for which $\operatorname{diam}(\Gamma(R)=2$ and $\operatorname{diam}(L(\Gamma(R)))=3$ and in example 2.5, example of a ring is given for which $\operatorname{diam}(\Gamma(R)=2=\operatorname{diam}(L(\Gamma(R)))$.

2. On the diameter of $L(\Gamma(R))$

Theorem 2.1. Let R be a commutative ring. If $\operatorname{diam}(\Gamma(R))=1$, then $\operatorname{diam}(L(\Gamma(R))) \in\{0,1,2\}$.
Proof. As $\operatorname{diam}(\Gamma(R))=1$, it follows from [2, Theorem 2.6] that $x y=0$ for each pair of distinct zero divisors x and y of R and R has atleast two zero divisors. So, $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $Z(R)=P$ with $P^{2}=(0)$.

Case (i): $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Then, $\Gamma(R)$ has only edge $(0,1)-(1,0)$. So, $L(\Gamma(R))$ has only one vertex. So, $\operatorname{diam}(L(\Gamma(R)))=0$.
Case (ii): $Z(R)=P$ with $P^{2}=(0)$.
Subcase (i): If $|P|=3$.
Then, $\left|Z^{*}(R)\right|=\left|P^{*}\right|=2$. Let $x, y \in Z^{*}(R), x \neq y$. Then, $\Gamma(R)$ has only one edge $x-y$. So, $L(\Gamma(R))$ has only one vertex $[x, y]$. So, $\operatorname{diam}(L(\Gamma(R)))=0$.

Subcase (ii): If $|P|=4$.
Then, $\left|Z^{*}(R)\right|=\left|P^{*}\right|=3$. As, $\operatorname{diam}(\Gamma(R))=1$, it follows $\Gamma(R)$ is a triangle. So, $L(\Gamma(R))$ is a path on two vertices. So, $\operatorname{diam}(L(\Gamma(R)))=1$.

Subcase (iii): If $|P| \geq 5$. Let $a, b, c, d \backslash P^{*}$ and $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]$ and $e_{2}=\left[\begin{array}{ll}c & d\end{array}\right]$ be any two vertices of $L(\Gamma(R))$. Also, note that e_{1} and e_{2} are not adjacent in $L(\Gamma(R))$. So, $\operatorname{diam}(L(\Gamma(R))) \geq 2$. As, $\operatorname{diam}(\Gamma(R))=1$, it follows that a and c are adjacent in $\Gamma(R)$. So, we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & c\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]=e_{2}$ between e_{1} and e_{2}. So, $\operatorname{diam}(L(\Gamma(R))) \leq 2$. Hence, $\operatorname{diam}(L(\Gamma(R)))=2$.

Remark 2.2. Here we present examples to show that in above theorem $\operatorname{diam}(L(\Gamma(R)))$ attains all the three number $0,1,2$. Note that the zero divisor of $\Gamma(R)$ for $R=\mathbb{Z}_{6}, \frac{F_{4}[x]}{\left(x^{2}\right)}, \mathbb{Z}_{25}$ is a complete graph. So, for $R \in\left\{\mathbb{Z}_{6}, \frac{F_{4}[x]}{\left(x^{2}\right)}, \mathbb{Z}_{25}\right\}$, $\operatorname{diam}(\Gamma(R))=1$. $\operatorname{But} \operatorname{diam}\left(L\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)\right)=0, \operatorname{diam}\left(L\left(\Gamma\left(\frac{F_{4}[x]}{\left(x^{2}\right)}\right)\right)\right)=1 \operatorname{and} \operatorname{diam}\left(L\left(\Gamma\left(\mathbb{Z}_{25}\right)\right)\right)=2$.

Theorem 2.3. Let R be a commutative ring. If $\operatorname{diam}(\Gamma(R))=2$, then $1 \leq \operatorname{diam}(L(\Gamma(R))) \leq 3$.
Proof. Since, $\operatorname{diam}(\Gamma(R))=2$, it follows from [3, Theorem 2.6] that either R is reduced with exactly two minimal prime ideals and atleast three nonzero zero divisors or $Z(R)$ is an ideal whose square is not (0) and each pair of distinct zero divisors has a nonzero annihilator.

Case (i): R is reduced with exactly two minimal prime ideals P_{1} and P_{2} and at least three nonzero zero divisors.
Then, $Z(R)=P_{1} \cup P_{2}$ and $P_{1} \cap P_{2}=(0)$.
Subcase (i): $\left|P_{1}\right|=2$ and $\left|P_{2}\right| \geq 3$.
Then, $\Gamma(R)$ is a star graph $K_{1, n}$, where $\left|P_{2}\right|=n+1$. So, $L(\Gamma(R))$ is a complete graph on $\frac{n(n+1)}{2}$. So, $\operatorname{diam}(L(\Gamma(R)))=1$.

Subcase(iii) $\left|P_{1}\right| \geq 3$ and $\left|P_{2}\right| \geq 3$. Then, $\Gamma(R)$ is a complete bipartite graph with vertex partition $Z^{*}(R)=V_{1} \cup V_{2}$, where $V_{1}=P_{1} \backslash\{0\}$ and $V_{2}=P_{2} \backslash\{0\}$. Since, $\left|P_{1}\right| \geq 3$ and $\left|P_{2}\right| \geq 3$, it follows that $\left|V_{1}\right| \geq 2$ and $\left|V_{2}\right| \geq 2$. Let $x_{1}, x \in V_{1}, x_{1} \neq x$ and $y_{1}, y \in V_{2}, y_{1} \neq y$. Then, $e_{1}=\left[\begin{array}{ll}x & y\end{array}\right], e_{2}=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right]$ are vertices of $L(\Gamma(R))$. Note that e_{1} and e_{2} are not adjacent in $L(\Gamma(R))$. So, $\operatorname{diam}(L(\Gamma(R)))$ geq2. Let $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right], e_{2}=\left[\begin{array}{ll}c & d\end{array}\right] \in V(L(\Gamma(R)))$ and e_{1} and e_{2} are not adjacent vertices of $V(L(\Gamma(R)))$. As, $a-b$ is an edge of $\Gamma(R)$, without loss of generality, we can assume that $a \in V_{1}=P_{1} \backslash\{0\}$ and $b \in V_{2}=P_{2} \backslash\{0\}$. Similarly, we can assume that $c \in V_{1}=P_{1} \backslash\{0\}$ and $d \in V_{2}=P_{2} \backslash\{0\}$. As, $a \in V_{1}$ and $d \in V_{2}$, they are adjacent in $\Gamma(R)$. So, we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & d\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]=e_{2}$. Hence, $\operatorname{diam}(L(\Gamma(R))) \leq 2$. Therefore, $\operatorname{diam}(L(\Gamma(R)))=2$.

Case (ii): $Z(R)$ is an ideal whose square is not (0) and each pair of zero divisors has a nonzero annihilator.
Let $Z(R)=P, P^{2} \neq(0)$. As $\operatorname{diam}(\Gamma(R))=2$, we can find $x, y \in Z^{*}(R)$ with $x y \neq 0$ and $x \neq y$. Let $e_{1}=[a \quad b]$ and $e_{2}=\left[\begin{array}{ll}c & d\end{array}\right]$ be any two vertices of $L(\Gamma(R))$. Assume that e_{1} and e_{2} are not adjacent in $L(\Gamma(R))$. If $a c=0$, then we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & c\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]=e_{2}$ between e_{1} and e_{2} of length of 2 . Similarly, $a c=0$, then we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}b & c\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]=e_{2}$ between e_{1} and e_{2} of length of 2 . Similarly, in the case $a d=0$ and $b d=0$, there is a path between e_{1} and e_{2} of length of 2 . So, we can assume that $a c \neq 0, a d \neq 0, b c \neq 0, b d \neq 0$. Now, Since a and c are two different zero divisors, by hypothesis there exist $y \in Z^{*}(R)$ such that $a y=0=c y$. Now, $y \neq a$ as $a c \neq 0, y \neq b$ as $b c \neq 0, y \neq d$ as $a d \neq 0, y \neq c$ as $a c \neq 0$. Hence, $y \notin\{a, b, c, d\}$. So, we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & y\end{array}\right]-\left[\begin{array}{ll}c & y\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]=e_{2}$ between e_{1} and e_{2} of length 3. So, $\operatorname{diam}(L(\Gamma(R))) \leq 3$.

In the following Example 2.4 we gave an example of a $\operatorname{ring} R$ for which $\operatorname{diam}(\Gamma(R))=2$ and $\operatorname{diam}(L(\Gamma(R)))=3$.
Example 2.4. Consider the ring $R=\frac{\cup_{n=1}^{\infty} K\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]}{\left.\left.I=\left\{\left\langle x_{i} x_{j}\right| i \neq j, i, j \in \mathbb{N}\right\}\right\rangle\right\rangle}$. Note that R is a reduced Ring. Let $M=\frac{\left\{x_{i} \mid i \in \mathbb{N}\right\}}{I}$. Then $M=Z(R)$ is an ideal of R with $M^{2}=(0)$. Let $X_{i}=x_{i}+I$. Note that $e_{1}=\left[\begin{array}{ll}x_{1}+x_{3} & x_{2}+x_{4}\end{array}\right]$ and $e_{1}=\left[\begin{array}{ll}x_{1}+x_{2} & x_{3}+x_{4}\end{array}\right]$ are vertices of $L(\Gamma(R))$. Note that e_{1} and e_{2} are not adjacent in $L(\Gamma(R))$. Now,

$$
\begin{aligned}
& \left(x_{1}+x_{3}\right)\left(x_{1}+x_{2}\right)=x_{1}^{2} \neq 0 \\
& \left(x_{1}+x_{3}\right)\left(x_{3}+x_{4}\right)=x_{3}^{2} \neq 0 \\
& \left(x_{2}+x_{4}\right)\left(x_{1}+x_{2}\right)=x_{2}^{2} \neq 0 \\
& \left(x_{2}+x_{4}\right)\left(x_{3}+x_{4}\right)=x_{4}^{2} \neq 0 .
\end{aligned}
$$

So, $\operatorname{diam}(L(\Gamma(R))) \geq 3$. Now, by Theorem 2.2, we have $\operatorname{diam}(L(\Gamma(R))) \leq 3$. Hence, $\operatorname{diam}(L(\Gamma(R)))=3$.
In the following Example 2.5 we gave an example of a $\operatorname{ring} R$ for which $\operatorname{diam}(\Gamma(R))=2$ and $\operatorname{diam}(L(\Gamma(R)))=2$.
Example 2.5. Consider the ring $R=\frac{K[x, y]}{\left(x^{3}\right)}$, where K is a field. Then $M=Z(R)=\frac{(x)}{\left(x^{3}\right)}$ is an maximal ideal of R and $M^{2} \neq(0)$. Let $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]$ and $e_{2}=\left[\begin{array}{ll}c & d\end{array}\right]$ be any two non adjacent vertices of $L(\Gamma(R))$. As, $a, b, c, d \in M$, we have $a=\bar{f} x$ and $a=\bar{g} x$. Now, sinceab $=0$, we have $f g \in M$. Hence, either $f \in M$ or $g \in M$. Without loss of generality we can assume that $f \in M$. Hence, $f=x$ s for some $s \in K$. So, $a=x^{2}$ s. similarly we can assume that $c=x^{2} r$ for some $r \in K$. So, we have $a d=0$. Hence, we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & d\end{array}\right]-\left[\begin{array}{cc}c & d\end{array}\right]=e_{2}$ of length 2 between e_{1} and e_{2}. So, diam $(L(\Gamma(R))) \leq 2$. Now, consider the elements $e_{1}=\left[\begin{array}{ll}x & x^{2} y\end{array}\right]$ and $e_{2}=\left[\begin{array}{ll}x^{2} & x y\end{array}\right]$ of $L(\Gamma(R))$. Note that e_{1} and e_{2} are not adjacent in $L(\Gamma(R))$. Therefore, $\operatorname{diam}(L(\Gamma(R))) \geq 2$. So, $\operatorname{diam}(L(\Gamma(R)))=2$.

Lemma 2.6. Let R be a ring, $Z(R)$ is an ideal of R whose square is not (0) and each pair of distinct zero divisors has a nonzero annihilator. If there exist $a, b, c, d \in Z^{*}(R)$ such that $a b=0, c d=0, a c \neq 0, a d \neq 0, b c \neq 0, b d \neq 0$. Then $d_{L(\Gamma(R))}\left(\left[\begin{array}{ll}a & b\end{array}\right],\left[\begin{array}{ll}c & d\end{array}\right]\right) \geq 3$.

Proof. Since, $\left[\begin{array}{ll}a & b\end{array}\right]$ and $\left[\begin{array}{ll}c & d\end{array}\right]$ are not adjacent in $L(\Gamma(R))$. So, $d_{L(\Gamma(R))}\left(\left[\begin{array}{ll}a & b\end{array}\right],\left[\begin{array}{ll}c & d\end{array}\right]\right) \geq 2$. Suppose that there exist a path of length 2 between $\left[\begin{array}{ll}a & b\end{array}\right]$ and $\left[\begin{array}{ll}c & d\end{array}\right]$ in $L(\Gamma(R))$. Let $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}x & y\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]$ is a path of length 2 between $\left[\begin{array}{ll}a & b\end{array}\right]$ and $\left[\begin{array}{ll}c & d\end{array}\right]$ in $L(\Gamma(R))$. Note that $\{x, y\} \cap\{a, b\}$ is a singleton set. Without loss of generality we can assume that $\{x, y\} \cap\{a, b\}=\{x\}$ with $x=a$. Then $\{a, y\} \cap\{c, d\}=\{y\}$. So, $y \in\{c, d\}$. without loss of generality we can assume that $y=c$. Then $a c=0$. This is in contradiction to the hypothesis. So, there is no path of length 2 between $\left[\begin{array}{ll}a & b\end{array}\right]$ and $\left[\begin{array}{ll}c & d\end{array}\right]$ in $L(\Gamma(R))$. $d_{L(\Gamma(R))}\left(\left[\begin{array}{ll}a & b\end{array}\right],\left[\begin{array}{ll}c & d\end{array}\right]\right) \geq 3$.

Lemma 2.7. Let R be a reduced ring, $Z(R)=P$ is an ideal of R whose square is not (0). Let $\{a, b, c, d\} \subseteq P^{*}$ and the subgraph of $\Gamma(R)$ induced on $\{a, b, c, d\}$ is a clique, then $\operatorname{diam}(L(\Gamma(R)))=3$.

Proof. Note that $e_{1}=\left[\begin{array}{ll}a+c & b+d\end{array}\right]$ and $e_{2}=\left[\begin{array}{ll}a+b & c+d\end{array}\right]$ are vertices of $L(\Gamma(R))$. Also we have

$$
\begin{aligned}
& (a+c)(a+b)=a^{2} \neq 0 \\
& (a+c)(c+d)=c^{2} \neq 0 \\
& (b+d)(a+b)=b^{2} \neq 0 \\
& (b+d)(c+d)=d^{2} \neq 0
\end{aligned}
$$

If $a+c=b+d$, then $d(a+c)=d(b+d)$. Hence, $d^{2}=0$. This is not possible as R is reduced. so, $a+c \neq b+d$. Similarly, $a+c \neq c+d, b+d \neq c+d, a+b \neq c+d$. So, from Lemma 2.6, we obtain that $d_{L(\Gamma(R))}\left(\left[\begin{array}{ll}a & b\end{array}\right],\left[\begin{array}{ll}c & d\end{array}\right]\right) \geq 3$. Therefore, $\operatorname{diam}(L(\Gamma(R))) \geq 3$. As, $\operatorname{diam}(\Gamma(R))=2$, we have $\operatorname{diam}(L(\Gamma(R))) \leq 3$. Hence, $\operatorname{diam}(L(\Gamma(R)))=3$.

Corollary 2.8. Let R be a reduced ring, $Z(R)=P$ is an ideal of R whose square is not (0) and each pair of distinct zero divisors has a non zero annhilator. If $\omega(\Gamma(R)) \geq 4$, then $\operatorname{diam}(L(\Gamma(R)))=3$.

Lemma 2.9. Let R be a reduced ring with exactly three minimal prime ideals then diam $(L(\Gamma(R)))=2$.
Proof. Let P_{1}, P_{2}, P_{3} are three minimal prime ideals of R. Let $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]$ and $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]$ be any two non adjacent vertices of $L(\Gamma(R))$. If $a c=0$, then we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}a & c\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]$ of length 2 between e_{1} and e_{2} in $L(\Gamma(R))$. Similarly, if $a d=0, b c=0$ or $b d=0$ then we have a path of length 2 between e_{1} and e_{2} in $L(\Gamma(R))$. So, we assume that $a c \neq 0$. Without loss of generality we can assume that $a c \notin P_{1}$. Hence, $a \notin P_{1}$ and $c \notin P_{1}$. Now from $a b=0 \in P_{1}$ and $a \notin P_{1}$, we have $b \in P_{1}$. Similarly from $c d=0$ and $c \notin P_{1}$, we have $d \in P_{1}$. Now, $b d \neq 0$. Hence, $b d \notin P_{2}$. So, $b \notin P_{2}$ and $d \notin P_{2}$. As, $a b=0$ and $c d=0$, we have $a \in P_{2}$ and $c \in P_{2}$. Now from $a d \neq 0$, we obtain that $a d \notin P_{3}$. Hence, $d \notin P_{3}$ and $a \notin P_{3}$. Therefore, $c \in P_{3}$ and $b \in P_{3}$. So, $c \in P_{2} \cap P_{3}$ and $b \in P_{1} \cap P_{3}$. Hence, $b c \in P_{1} \cap P_{2} \cap P_{3}=(0)$. Hence, $b c=0$. So, we have a path $e_{1}=\left[\begin{array}{ll}a & b\end{array}\right]-\left[\begin{array}{ll}b & c\end{array}\right]-\left[\begin{array}{ll}c & d\end{array}\right]$ of length 2 between e_{1} and e_{2} in $L(\Gamma(R)) . \operatorname{So}, \operatorname{diam}(L(\Gamma(R)))=2$.

References

[1] D. D. Anderson and M. Naseer, Becks coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
[2] D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean Algebras, J. Pure Appl. Algebra, 180(3)(2003), 221-241.
[3] D. F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434447.
[4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Reading Massachusetts, (1969).
[5] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext Springer, (2000).
[6] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
[7] R. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York, (1972).
[8] K. Nazzal and M. Ghanem, On the Line Graph of the Zero Divisor Graph for the Ring of Gaussian Integers Modulo n, International Journal of Combinatorics, Hindawi Publication, 2012(2012), 13 pages, Article ID 957284.
[9] Sheela Suthar and Om Prakash, Covering of Line Graph of Zero Divisor Graph over Ring, British Journal of Mathematics and Computer Science, 5(2015), 728-734.

[^0]: * E-mail: parejiyajay@gmail.com

