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Abstract: The rings considered in this article are commutative with identity 1 6= 0. Recall that the zero divisor graph of a ring R is
a simple undirected graph whose vertex set is the set of all nonzero zero divisors of the ring R and two distinct vertices

x, y are adjacent in this graph if and only if xy = 0. In this article we studied the line graph of the zero divisor graph of

a ring and we proved some results regarding the diameter of the line graph.
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1. Introduction

The rings considered in this article are commutative with identity 1 6= 0. In 1988, Beck [6] defined the concept of zero

divisor graph of a commutative ring R, where the vertices of this graph are all elements in the ring and two vertices x,

y are adjacent in this graph if and only if xy = 0. Anderson and Livingston in [3] modified the definition of zero divisor

graphs by restricting the vertices to the nonzero zero divisors of the ring R. The zero divisor graph was extensively studied

in [1–3, 6]. The authors K. Nazzal and M. Ghanem in [8], studied the line graph of zero divisor graph. Let G be a simple

undirected finite graph. Recall from [8] that line graph of G is denoted as L(G) is defined to be the graph whose vertices are

the edges of G, with two vertices being adjacent if the corresponding edges share a vertex in G. This article is motivated by

the interesting theorem proved on line graph of zero divisor graph of ring R in [8, 9].

It is useful to recall the following definitions from graph theory before we describe the results that are proved in this article

on L(Γ(R)). Let G = (V,E) be a graph. Let a, b ∈ V with a 6= b. Recall that the distance between a and b, denoted by

d(a, b) is defined as the length of a shortest path in G if there exists such a path in G; otherwise, we define d(a, b) = ∞.

We define d(a, a) = 0. The diameter of G, denoted by diam(G) is defined as diam(G) = sup{d(a, b)|a, b ∈ V } [5]. A simple

graph G = (V,E) is said to be complete if every pair of distinct vertices of G are adjacent in G [5, Definition 1.1.11]. Recall

from [5, Definition 1.2.2], that a clique of G is a complete subgraph of G. A subset S of G is said to be an independent set

if no two members of S are adjacent in G. A graph G = (V,E) is said to be bipartite if V can be partitioned into nonempty

subsets V1 and V2 such that each edge of G has one end in V1 and the other in V2. A bipartite graph with vertex partition

V1 and V2 is said to be complete if each element of V1 is adjacent to every element of V2. A complete bipartite graph with

vertex partition V1 and V2 is called a star if either |V1| = 1 or |V2| = 1 [5, Definition 1.1.12].
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Let R be any ring. We denote the set of all zero divisor of ring R by Z(R). A prime ideal P is said to be a minimal prime

ideal over an ideal I if it is minimal among all prime ideals containing I. A prime ideal is said to be a minimal prime ideal

if it is a minimal prime ideal over the zero ideal. Recall that an element x of ring R is said to be nilpotent if there exist

positive integer n such that xn = 0. The set of all nilpotent elements of ring R is said to be nilradical and it is denoted by

nil(R).

Let R be a ring. In Section 2 of this article, some results regarding diameter of L(Γ(R)) is proved. It is proved in Theorem

2.1 that if Γ(R) is a complete graph then diam(L(G(R))) ∈ {0, 1, 2}. It is shown by means of an examples in Remark 2.2

that diam(L(G(R))) attains all the three values 0,1,2, when Γ(R) is a complete graph. In Theorem 2.3 it is proved that

When diam(Γ(R) = 2, then 1 ≤ diam(L(Γ(R))) ≤ 3. In example 2.4, example of a ring R is given for which diam(Γ(R) = 2

and diam(L(Γ(R))) = 3 and in example 2.5, example of a ring is given for which diam(Γ(R) = 2 = diam(L(Γ(R))).

2. On the diameter of L(Γ(R))

Theorem 2.1. Let R be a commutative ring. If diam(Γ(R)) = 1, then diam(L(Γ(R))) ∈ {0, 1, 2}.

Proof. As diam(Γ(R)) = 1, it follows from [2, Theorem 2.6] that xy = 0 for each pair of distinct zero divisors x and y of

R and R has atleast two zero divisors. So, R ∼= Z2 × Z2 or Z(R) = P with P 2 = (0).

Case (i): R ∼= Z2 × Z2.

Then, Γ(R) has only edge (0, 1)− (1, 0). So, L(Γ(R)) has only one vertex. So, diam(L(Γ(R))) = 0.

Case (ii): Z(R) = P with P 2 = (0).

Subcase (i): If |P | = 3.

Then, |Z∗(R)| = |P ∗| = 2. Let x, y ∈ Z∗(R), x 6= y. Then, Γ(R) has only one edge x− y. So, L(Γ(R)) has only one vertex

[x, y]. So, diam(L(Γ(R))) = 0.

Subcase (ii): If |P | = 4.

Then, |Z∗(R)| = |P ∗| = 3. As, diam(Γ(R)) = 1, it follows Γ(R) is a triangle. So, L(Γ(R)) is a path on two vertices. So,

diam(L(Γ(R))) = 1.

Subcase (iii): If |P | ≥ 5. Let a, b, c, d \ P ∗ and e1 = [a b] and e2 = [c d] be any two vertices of L(Γ(R)). Also, note

that e1 and e2 are not adjacent in L(Γ(R)). So, diam(L(Γ(R))) ≥ 2. As, diam(Γ(R)) = 1, it follows that a and c are

adjacent in Γ(R). So, we have a path e1 = [a b]− [a c]− [c d] = e2 between e1 and e2. So, diam(L(Γ(R))) ≤ 2. Hence,

diam(L(Γ(R))) = 2.

Remark 2.2. Here we present examples to show that in above theorem diam(L(Γ(R))) attains all the three number 0, 1, 2.

Note that the zero divisor of Γ(R) for R = Z6,
F4[x]

(x2)
,Z25 is a complete graph. So, for R ∈ {Z6,

F4[x]

(x2)
,Z25}, diam(Γ(R)) = 1.

But diam(L(Γ(Z6))) = 0, diam
(
L
(

Γ
(

F4[x]

(x2)

)))
= 1 and diam (L (Γ (Z25))) = 2.

Theorem 2.3. Let R be a commutative ring. If diam(Γ(R)) = 2, then 1 ≤ diam(L(Γ(R))) ≤ 3.

Proof. Since, diam(Γ(R)) = 2, it follows from [3, Theorem 2.6] that either R is reduced with exactly two minimal prime

ideals and atleast three nonzero zero divisors or Z(R) is an ideal whose square is not (0) and each pair of distinct zero

divisors has a nonzero annihilator.

Case (i): R is reduced with exactly two minimal prime ideals P1 and P2 and at least three nonzero zero divisors.

Then, Z(R) = P1 ∪ P2 and P1 ∩ P2 = (0).

Subcase (i): |P1| = 2 and |P2| ≥ 3.

Then, Γ(R) is a star graph K1,n, where |P2| = n + 1. So, L(Γ(R)) is a complete graph on n(n+1)
2

. So, diam(L(Γ(R))) = 1.
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Subcase(iii) |P1| ≥ 3 and |P2| ≥ 3. Then, Γ(R) is a complete bipartite graph with vertex partition Z∗(R) = V1 ∪V2, where

V1 = P1\{0} and V2 = P2\{0}. Since, |P1| ≥ 3 and |P2| ≥ 3, it follows that |V1| ≥ 2 and |V2| ≥ 2. Let x1, x ∈ V1, x1 6= x and

y1, y ∈ V2, y1 6= y. Then, e1 = [x y], e2 = [x1 y1] are vertices of L(Γ(R)). Note that e1 and e2 are not adjacent in L(Γ(R)).

So, diam(L(Γ(R))) geq2. Let e1 = [a b], e2 = [c d] ∈ V (L(Γ(R))) and e1 and e2 are not adjacent vertices of V (L(Γ(R))).

As, a − b is an edge of Γ(R), without loss of generality, we can assume that a ∈ V1 = P1 \ {0} and b ∈ V2 = P2 \ {0}.

Similarly, we can assume that c ∈ V1 = P1 \ {0} and d ∈ V2 = P2 \ {0}. As, a ∈ V1 and d ∈ V2, they are adjacent in Γ(R).

So, we have a path e1 = [a b]− [a d]− [c d] = e2. Hence, diam(L(Γ(R))) ≤ 2. Therefore, diam(L(Γ(R))) = 2.

Case (ii): Z(R) is an ideal whose square is not (0) and each pair of zero divisors has a nonzero annihilator.

Let Z(R) = P, P 2 6= (0). As diam(Γ(R)) = 2, we can find x, y ∈ Z∗(R) with xy 6= 0 and x 6= y. Let e1 = [a b] and

e2 = [c d] be any two vertices of L(Γ(R)). Assume that e1 and e2 are not adjacent in L(Γ(R)). If ac = 0, then we

have a path e1 = [a b] − [a c] − [c d] = e2 between e1 and e2 of length of 2. Similarly, ac = 0, then we have a path

e1 = [a b]− [b c]− [c d] = e2 between e1 and e2 of length of 2. Similarly, in the case ad = 0 and bd = 0, there is a path

between e1 and e2 of length of 2. So, we can assume that ac 6= 0, ad 6= 0, bc 6= 0, bd 6= 0. Now, Since a and c are two different

zero divisors, by hypothesis there exist y ∈ Z∗(R) such that ay = 0 = cy. Now, y 6= a as ac 6= 0, y 6= b as bc 6= 0,y 6= d as

ad 6= 0,y 6= c as ac 6= 0. Hence, y /∈ {a, b, c, d}. So, we have a path e1 = [a b]− [a y]− [c y]− [c d] = e2 between e1 and

e2 of length 3. So, diam(L(Γ(R))) ≤ 3.

In the following Example 2.4 we gave an example of a ring R for which diam(Γ(R)) = 2 and diam(L(Γ(R))) = 3.

Example 2.4. Consider the ring R =
∪∞

n=1K[[x1,x2,...,xn]]

I=〈{xixj |i 6=j,i,j∈N}〉 . Note that R is a reduced Ring. Let M = {xi|i∈N}
I

. Then

M = Z(R) is an ideal of R with M2 = (0). Let Xi = xi + I. Note that e1 = [x1 + x3 x2 + x4] and e1 = [x1 + x2 x3 + x4]

are vertices of L(Γ(R)). Note that e1 and e2 are not adjacent in L(Γ(R)). Now,

(x1 + x3)(x1 + x2) = x2
1 6= 0

(x1 + x3)(x3 + x4) = x2
3 6= 0

(x2 + x4)(x1 + x2) = x2
2 6= 0

(x2 + x4)(x3 + x4) = x2
4 6= 0.

So, diam(L(Γ(R))) ≥ 3. Now, by Theorem 2.2, we have diam(L(Γ(R))) ≤ 3. Hence, diam(L(Γ(R))) = 3.

In the following Example 2.5 we gave an example of a ring R for which diam(Γ(R)) = 2 and diam(L(Γ(R))) = 2.

Example 2.5. Consider the ring R = K[x,y]

(x3)
, where K is a field. Then M = Z(R) = (x)

(x3)
is an maximal ideal of R and

M2 6= (0). Let e1 = [a b] and e2 = [c d] be any two non adjacent vertices of L(Γ(R)). As, a, b, c, d ∈ M , we have a = fx

and a = gx. Now, sinceab = 0, we have fg ∈M . Hence, either f ∈M or g ∈M . Without loss of generality we can assume

that f ∈ M . Hence, f = xs for some s ∈ K. So, a = x2s. similarly we can assume that c = x2r for some r ∈ K. So, we

have ad = 0. Hence, we have a path e1 = [a b]− [a d]− [c d] = e2 of length 2 between e1 and e2. So, diam(L(Γ(R))) ≤ 2.

Now, consider the elements e1 = [x x2y] and e2 = [x2 xy] of L(Γ(R)). Note that e1 and e2 are not adjacent in L(Γ(R)).

Therefore, diam(L(Γ(R))) ≥ 2. So, diam(L(Γ(R))) = 2.

Lemma 2.6. Let R be a ring, Z(R) is an ideal of R whose square is not (0) and each pair of distinct zero divisors has

a nonzero annihilator. If there exist a, b, c, d ∈ Z∗(R) such that ab = 0, cd = 0, ac 6= 0, ad 6= 0, bc 6= 0, bd 6= 0. Then

dL(Γ(R))([a b], [c d]) ≥ 3.
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Proof. Since, [a b] and [c d] are not adjacent in L(Γ(R)). So, dL(Γ(R))([a b], [c d]) ≥ 2. Suppose that there exist a path

of length 2 between [a b] and [c d] in L(Γ(R)). Let e1 = [a b]− [x y]− [c d] is a path of length 2 between [a b] and [c d]

in L(Γ(R)). Note that {x, y} ∩ {a, b} is a singleton set. Without loss of generality we can assume that {x, y} ∩ {a, b} = {x}

with x = a. Then {a, y} ∩ {c, d} = {y}. So, y ∈ {c, d}. without loss of generality we can assume that y = c. Then

ac = 0. This is in contradiction to the hypothesis. So, there is no path of length 2 between [a b] and [c d] in L(Γ(R)).

dL(Γ(R))([a b], [c d]) ≥ 3.

Lemma 2.7. Let R be a reduced ring, Z(R) = P is an ideal of R whose square is not (0). Let {a, b, c, d} ⊆ P ∗ and the

subgraph of Γ(R) induced on {a, b, c, d} is a clique, then diam(L(Γ(R))) = 3.

Proof. Note that e1 = [a + c b + d] and e2 = [a + b c + d] are vertices of L(Γ(R)). Also we have

(a + c)(a + b) = a2 6= 0

(a + c)(c + d) = c2 6= 0

(b + d)(a + b) = b2 6= 0

(b + d)(c + d) = d2 6= 0

If a + c = b + d, then d(a + c) = d(b + d). Hence, d2 = 0. This is not possible as R is reduced. so, a + c 6= b + d. Similarly,

a + c 6= c + d, b + d 6= c + d, a + b 6= c + d. So, from Lemma 2.6, we obtain that dL(Γ(R))([a b], [c d]) ≥ 3. Therefore,

diam(L(Γ(R))) ≥ 3. As, diam(Γ(R)) = 2, we have diam(L(Γ(R))) ≤ 3. Hence, diam(L(Γ(R))) = 3.

Corollary 2.8. Let R be a reduced ring, Z(R) = P is an ideal of R whose square is not (0) and each pair of distinct zero

divisors has a non zero annhilator. If ω(Γ(R)) ≥ 4, then diam(L(Γ(R))) = 3.

Lemma 2.9. Let R be a reduced ring with exactly three minimal prime ideals then diam(L(Γ(R))) = 2.

Proof. Let P1, P2, P3 are three minimal prime ideals of R. Let e1 = [a b] and e1 = [a b] be any two non adjacent vertices

of L(Γ(R)). If ac = 0, then we have a path e1 = [a b]− [a c]− [c d] of length 2 between e1 and e2 in L(Γ(R)). Similarly,

if ad = 0, bc = 0 or bd = 0 then we have a path of length 2 between e1 and e2 in L(Γ(R)). So, we assume that ac 6= 0.

Without loss of generality we can assume that ac /∈ P1. Hence, a /∈ P1 and c /∈ P1. Now from ab = 0 ∈ P1 and a /∈ P1, we

have b ∈ P1. Similarly from cd = 0 and c /∈ P1, we have d ∈ P1. Now, bd 6= 0. Hence, bd /∈ P2. So, b /∈ P2 and d /∈ P2. As,

ab = 0 and cd = 0, we have a ∈ P2 and c ∈ P2. Now from ad 6= 0, we obtain that ad /∈ P3. Hence, d /∈ P3 and a /∈ P3.

Therefore, c ∈ P3 and b ∈ P3. So, c ∈ P2 ∩ P3 and b ∈ P1 ∩ P3. Hence, bc ∈ P1 ∩ P2 ∩ P3 = (0). Hence, bc = 0. So, we have

a path e1 = [a b]− [b c]− [c d] of length 2 between e1 and e2 in L(Γ(R)). So, diam(L(Γ(R))) = 2.
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