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Abstract: Distance and distance related concepts are well studied and used in many applications of graph theory. In this we paper,
we introduce and study a new idea of fuzzy distance in fuzzy graphs and investigate the concepts like fuzzy eccentricity,

fuzzy centre, etc. and study the fuzzy distance matrix and centre of fuzzy graphs.
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1. Introduction

Graph theory had emerged as a major branch of applied mathematics in the last three decades and it is generally regarded

as a branch of Combinatorics. Graph is a widely used tool for solving combinatorial optimization problems in different areas

such as Geometry, Algebra, Number Theory, Topology, Optimization, Computer Science and Engineering. Most important

thing which is to be noted is that, when we have uncertainty regarding either the set of vertices or edges or both, the model

becomes a fuzzy graph. Distance and Central concepts play important roles in applications related with graphs and fuzzy

graphs. In this paper, the authors introduced the concept of a new distance called fuzzy distance in fuzzy graphs. In the

already existing distances, we simply sum the weights of edges in a geodesic between the given pair of nodes. The fuzzy

distance between a given pair of nodes represents the amount of flow between these nodes so that this distance concept is

more relevant, where the network modelled as a fuzzy network. In order to minimize the amount of money, time, energy,

the location of the centre of a fuzzy graph is always needy and useful in real life problems.

A fuzzy graph [3] is a pair G : (σ, µ) where σ is a fuzzy subset of a set S and µ is a fuzzy relation on σ. We assume

that S is finite and nonempty, µ is reflexive and symmetric. In all the examples σ is chosen suitably. Also, we denote the

underlying crisp graph by G∗ : (σ∗, µ∗) where σ∗ = {u ∈ S : σ (u) > 0} and µ∗ = {(u, v) ∈ S × S : µ (u, v) > 0}. A fuzzy

graph H : (τ, π) is called a partial fuzzy subgraph of G : (σ, µ) if τ (u) ≤ σ (u) for every vertex u ∈ σ and τ (u, v) ≤ µ (u, v)

for every pair of nodes (u, v) ∈ µ. In particular a fuzzy graph H : (τ, π) is called a fuzzy subgraph of G : (σ, µ) if τ (u) = σ (u)

for every vertex u ∈ σ and τ (u, v) = µ (u, v) for every pair of nodes (u, v) ∈ µ. A path P of length n is a sequence of

distinct nodes (u1, u2, . . . un) such that µ (ui, ui−1) > 0, i = 1, 2, . . . , n and the membership of a weakest edge is defined

as its strength. The strength of connectedness between two nodes x and y is defined as the maximum of the strengths
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of all paths between x and y and is denoted by CONNG(x, y). An x − y path P is called a strongest x − y path if its

strength equals CONNG(x; y) [4, 5]. A fuzzy graph G : (σ, µ) is connected if for every x, y in σ, CONNG(x; y) > 0. Unless

otherwise specified, as assume that G is connected. For the graph theoretical terms and definitions not explicitly defined

here, reader may refer Harary [1]. For the fuzzy set theoretical terms and definitions not explicitly defined here, reader may

refer [6].

2. Main Results

In this section, a new type of distance in fuzzy graphs is introduced and studied.

Definition 2.1. Let G : (σ, µ) be a fuzzy graph. Then the fuzzy distance between two nodes u and v is defined as dvf (u, v) =

∧
∑
{∧ (σ(u), σ(v)) ∗ µ(u, v)} where ∧ represents the minimum and ∗ represents the ordinary product.

Remark 2.2. The distance dvf satisfies the properties of a metric so that (σ∗, dvf ) is a Metric Space.

1. dvf (u, v) ≥ 0 for all u 6= v and dvf (u, v) = 0 iff u = v (Positivity).

2. dvf (u, v) = dvf (v, u) for all u, v ∈ σ∗ (Symmetry).

3. dvf (u, v) ≤ dvf (u,w) + dvf (w, v) for all u, v, w ∈ σ∗ (Triangle Inequality).

Definition 2.3. The fuzzy eccentricity of a node u in the fuzzy graph G : (σ, µ) is defined as evf (u) =
∨

v∈V (dvf (u, v))

where ∨ represents the maximum.

Definition 2.4. The fuzzy radius of the graph G : (σ, µ) is the minimum of the fuzzy eccentricities of all nodes and denoted

as rvf (G). i.e., rvf (G) =
∧

u∈V (evf (u)).

Definition 2.5. Fuzzy diameter of the graph G is the maximum of the fuzzy eccentricities of all nodes in G and denoted as

dvf (G). i.e,. dvf (G) =
∨

u∈V (evf (u)).

Definition 2.6. A node v in the fuzzy graph G is called fuzzy eccentric node of another node u if evf (u) = dvf (u, v). The

set of all fuzzy eccentric nodes u is denoted by u∗vf .

Definition 2.7. Nodes with minimum fuzzy eccentricity are called fuzzy central nodes or fuzzy radial nodes and nodes with

maximum eccentricity are called fuzzy diametrical nodes.

Theorem 2.8. In any connected fuzzy graph G, rvf (G) ≤ dvf (G) ≤ 2rvf (G).

Proof. The inequality rvf (G) ≤ dvf (G) follows from definition. Let u, v be two nodes such that dvf (u, v) = dvf (G). Let

w be a fuzzy central node of G. By triangle inequality dvf (u, v) ≤ dvf (u,w) + dvf (w, v) ≤ rvf (G) + rvf (G) = 2rvf (G).

Definition 2.9. Centre of a fuzzy graph G is the subgraph induced by the fuzzy central nodes and Periphery of the fuzzy

graph G is the subgraph induced by the set of all fuzzy diametrical nodes.

3. Fuzzy Self-centred Graphs

Now, we discuss the properties of self-centred graphs with respect to the new distance.

Definition 3.1. A fuzzy graph G is fuzzy self-centred if it is isomorphic with its fuzzy centre.
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Figure 1.

In fuzzy graph, dvf (x, y) = 0.08, dvf (x, z) = 0.12, dvf (x,w) = 0.08, dvf (y, w) = 0.12, dvf (y, z) = 0.12, dvf (z, w) = 0.04.

From the underlying graph, d (x, y) = 1, d (x, z) = 2, d (x,w) = 1, d (y, z) = 1, d (y, w) = 1, d (z, w) = 1. Hence,

evf (x) = evf (y) = evf (z) = evf (w) = 0.12 so that e (x) = e (z) = 2, e (y) = e (w) = 1. Thus the fuzzy graph in Figure 1 is

fuzzy self-centred, but the underlying graph (Figure 2) is not self-centred,

Theorem 3.2. If a connected fuzzy graph G is fuzzy self-centred, then each node of G is fuzzy eccentric.

Proof. Assume that G is fuzzy self-centred. Let u be an arbitrary node of G and let u ∈ u∗vf . From the definition of fuzzy

eccentric node, evf (u) = dvf (u, v). Since G is fuzzy self-centred, evf (u) = evf (v) and hence evf (u) = dvf (u, v) = dvf (v, u).

Thus u is a fuzzy eccentric node of v. Hence every node of G is fuzzy eccentric.

Theorem 3.3. If a connected fuzzy graph G is fuzzy self-centred, then for every pair of nodes u, v such that whenever u is

a fuzzy eccentric node of v, then v should be one of the fuzzy eccentric node of u.

Proof. We assume that the fuzzy graph G is fuzzy self-centred. Let u be a fuzzy eccentric node of v. Then, evf (v) =

dvf (v, u). Since G is a fuzzy self-centred graph, all nodes will have the same fuzzy eccentricity. evf (v) = evf (u). Hence,

evf (u) = dvf (v, u) = dvf (u, v) so that evf (u) = dvf (u, v). Thus, v is a fuzzy eccentric node of u.

Theorem 3.4 (Embedding Theorem). Every fuzzy graph G is the fuzzy centre of some fuzzy connected graph G.

Proof. Let G : (σ, µ) be a fuzzy graph with n nodes. Construct a new graph H by adding four nodes {u, v, w, x}. Construct

H as the sequential join u+ v +G+ w + x. Let k be the minimum weight among all the edges of G. Assign the value k to

all the new edges of H. Then evf (u) = evf (x) = 4k, evf (v) = evf (w) = 3k. evf (y) = 2k, ∀ y ∈ G. Thus every node of G is

a fuzzy central node of H and hence G is a fuzzy centre of H.

Figure 2.
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4. Fuzzy Distance Matrix

Definition 4.1. Let G : (σ, µ) be a connected fuzzy graph with n nodes. The fuzzy distance matrix Dvf = (di,j) is a square

matrix of order n and is defined by (di,j) = dvf (vi, vj).

Definition 4.2. The max-max composition of a square matrix with itself is a square matrix of same order whose (i, j)th

entry is given by di,j = max {max(di1,d1j),max(di2,d2j), . . . ,max(din,dnj)}.

Figure 3.

The fuzzy distance matrix and its max-max composition are given below:

Dvf =



0 0.09 0.15 0.09

0.09 0 0.15 0.09

0.15 0.15 0 0.06

0.09 0.09 0.06 0


, Dvf ◦Dvf =



0.15 0.15 0.15 0.15

0.15 0.15 0.15 0.15

0.15 0.15 0.15 0.15

0.15 0.15 0.15 0.09


Theorem 4.3. Let G : (σ, µ) be a connected fuzzy graph. The diagonal elements of the max-max composition of the fuzzy

distance matrix of G with itself are the fuzzy eccentricities of the nodes.

Theorem 4.4. A connected fuzzy graph G : (σ, µ) is fuzzy self-centred if and only if all the entries in the principal diagonal

of the max-max composition of the fuzzy distance matrix with itself are the same.

Proof. The principal diagonal entries in the max-max composition of the fuzzy distance matrix with itself are the fuzzy

eccentricities of the nodes. This means evf (u) is same for all u in G. Then G is fuzzy self-centred.

5. Conclusion

Fuzzy graphs are precise models of all kinds of networks. Distance is an important concept in the graph theory and Discrete

Mathematics. In this paper, the authors made an attempt to generalize the concept of distance. The concept of fuzzy

distance is relevant as it represents the net flow between a given pair of nodes of a fuzzy graph.
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