
Int. J. Math. And Appl., 8(1)(2020), 95–100

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

A Generalized Method to Find the Square Root of Matrix

Whose Characteristic Equation is Quadratic

Ram Milan Singh1,∗

1 Department of mathematics, Govt. P. G. College, Tikamgarh, Madhya Pradesh, India.
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1. Introduction

Let Mn(C) be the set of all complex matrices whose order is n× n. Matrix Q is said to be a square root of matrix P, if the

matrix product Q.Q = P . Now, what is the square root of matrix such as

 p q

r s

. It is not, in general

 √p √q√
r
√
s

. It

is easy to see that the upper left entry of its square is p+
√
q and not p. In recent years, several article have been written

about the root of a matrix, and one can refer to [4–6]. A number of method have been proposed to computing the square

root of matrix and these are usually based on Newton’s method, either directly or the sign function (see e.g., [1–3]).

2. Generalized Method

The set of all matrices which their square is P , denoted by
√
P , i.e.,

√
P =

{
Y : Y ∈Mn (C) , Y 2 = P

}
This set can be very large .For example, we will see that

√
I has infinite members. We can define the nth root of a matrix

P as follows.

n
√
P = {Y : Y ∈Mn (C) , Y n = P}

It is well known to all, if P =

 p q

r s

, then characteristic equation is

λ2 − (Trace P )λ+ det P = 0 (1)
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Apply Cayley - Hamilton theorem, putting λ = P , then equation (1) is

P 2 − (Trace P )P + (det P ) I = 0

Thus, we have

P 2 = (Trace P )P − (det P ) I (2)

Putting, P 2 = Q, then equation (2) is

Q = (Trace P )P − (det P ) I

Q+ (det P ) I = (Trace P )P

1

(Trace P )
[Q+ (det P ) I] = P (3)

Lemma 2.1. Let P be a 2× 2 matrix. Then trace P 2 = (trace P )2 − 2 det P .

Proof. Suppose λ1 and λ2 are the two Eigen values of the matrix P. Then we can easy to see that λ2
1 and λ2

2 are the Eigen

values of P 2. We know that, trace P = λ1 + λ2 and det P = λ1λ2. Then,

trace P 2 = λ2
1 + λ2

2

= (λ1 + λ2)2 − 2λ1λ2

= (trace P )2 − 2 det P

Second Proof. In other words, let P =

 p q

r s

. Then,

P 2 =

 p q

r s


 p q

r s


P 2 =

 p2 + rq pq + qs

pr + rs s2 + rq

 .
Therefore,

Trace P 2 =
(
p2 + rq

)
+ (s2 + rq)

Trace P 2 = p2 + s2 + 2rq

Trace P 2 = p2 + s2 + 2ps− 2ps+ 2rq

Trace P 2 = (p+ s)2 − 2(ps− rq) (4)

But, trace P = p+ s and det P = ps− qr, then equation (4), Trace P . Let P,Q ∈M2
n(C) = (trace P )2 − 2 det P .

Remark 2.2. Let P,Q ∈M2(C) and P 2 = Q. Then the following statements are holds:

(1). det P =
√

det Q.

(2). tracet P =
√
trace Q+ 2

√
det Q.
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Example 2.3. Let Q =

 8 5

3 8

. So det Q = 64 − 15 = 49, and trace Q = 8 + 8 = 16, therefore if P 2 = Q, then,

det P =
√

det Q =
√

49 = ±7, and trace P =
√
trace Q+ 2

√
det Q =

√
16 + 2

√
49 =

√
16± 14, taking positive and

negative sign then, trace P = ±
√

30 or trace P = ±
√

2, thus, from equation (3),

P =
1

(trace P )
[Q+ (detP ) I] ,

P =
1

±
√

30


 8 5

3 8

+ (±7)

 1 0

0 1


 or

P =
1

±
√

2


 8 5

3 8

+ (±7)

 1 0

0 1




Therefore,

P =
1

±
√

30


 8 5

3 8

+ (7)

 1 0

0 1


 or P =

1

±
√

30


 8 5

3 8

+ (−7)

 1 0

0 1


 and

P =
1

±
√

2


 8 5

3 8

+ (7)

 1 0

0 1


 or P =

1

±
√

2


 8 5

3 8

+ (−7)

 1 0

0 1


 ,

on calculating then we have,

P = ± 1√
30

 15 5

3 15

 or P = ± 1√
30

 1 5

3 1

 , and

P = ± 1√
2

 15 5

3 15

 or P = ± 1√
2

 1 5

3 1


Lemma 2.4. Let P ∈M2(C). If trace P = 0, then P 2 ∈ 〈I〉.

Proof. We will prove this lemma in two ways. In general, we have

P 2 − (trace P )P + (detP ) I = 0 (5)

Therefore, if trace P = 0, then from (5) we obtain,

P 2 + (det P ) I = 0

P 2 = − (det P ) I and P 2 ∈ 〈I〉

Second Proof. let P =

 p q

r s

, and p+ s = 0. Then,

P 2 =

 p q

r s


 p q

r s


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P 2 =

 p2 + rq pq + qs

pr + rs s2 + rq


Putting p = −s, then

P 2 =

 p2 + rq 0

0 s2 + rq


Hence, when p2 = s2 then P 2 = (p2 + rq).

Example 2.5. Let Q =

 1 3

2 2

. Then det Q = 2−6 = −4, and trace Q = 1 + 2 = 3. If P 2 = Q then det P =
√

det Q =

√
−4 = 2i, and

trace P =

√
trace Q+ 2

√
det Q

=

√
3 + 2

√
−4

=
√

3 + 4i.

Now,

P =
1

(trace P )
[Q+ (detP ) I] ,

P =
1

±
√

3 + 4i


 1 3

2 2

+ 2i

 1 0

0 1




P =
1

±
√

3 + 4i


 1 + 2i 3

2 2 + 2i




Lemma 2.6. For each β ∈ C and any matrix P,
√
βP =

√
β
√
P .

Proof. Suppose that β 6= 0 and Y ∈
√
BP . So Y 2 ∈ βP , hence Y√

β
∈
√
P , which implies that Y ∈

√
β
√
P .

Conversely, if Y ∈
√
BP , then Y 2

β
= P . Hence Y 2 = βP and Y ∈

√
βP . Now, we try to compute

√
I. Suppose that

P ∈M2(C) and P 2 = I. Let P =

 p q

r s

. Then,

P 2 =

 p2 + rq pq + qs

pr + rs s2 + rq

 ,
but P 2 = I, then

I =

 p2 + rq pq + qs

pr + rs s2 + rq


 1 0

0 1

 =

 p2 + rq pq + qs

pr + rs s2 + rq


Hence we have,

p2 + rq = 1 (6)
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pq + qs = 0 (7)

pr + rs = 0 (8)

s2 + rq = 1 (9)

From (7) and (8), q = 0 or p+ s = 0 and r = 0 or p+ s = 0. We consider two cases:

(1). If p+s = 0, then equation (7) and (8) hold. We have p2 + rq = 1 or p =
√

1− rq and since a+d = 0 and since p+s = 0

we have p = −s = −
√

1− rq. Therefore

P =


 √1− rq 0

0 −
√

1− rq

 : b, c ∈ C

 .

(2). If p + s 6= 0 we must have q = 0 and r = 0. Hence p = ±1 and s = ±1. Therefore there are two solutions 1 0

0 1

 and

 −1 0

0 −1

. Hence we can write

√
I =


 1 0

0 1

 ,
 −1 0

0 −1

 ∪
 √1− rq 0

0 −
√

1− rq

 b, c ∈ C

 .

Example 2.7. Let Q =

 16 0

0 16

. Therefore Q = 16

 1 0

0 1

 = 16I. Then
√
Q = 4

√
I, hence we have

√
I =


 2 0

0 2

 ,
 −2 0

0 −2

 ∪
 4
√

1− rq 2q

2r −4
√

1− rq

 : b, c ∈ C


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