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1. Introduction

Let A be an algebraically closed field of characteristic zero, and let N,,, = N,,,(A) be the algebra of m x m matrices over A.
Given a set K = {Bu,..., B¢} of m X m matrices, we would like to have conditions for when the A; generate the algebra
M,,. In other words, determine whether every matrix in N,, can be written in the form T'(Bu,..., Bt), where T is a non-
commutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.)
The case m = 1 is of course trivial, and when ¢ = 1, the single matrix B; generates a commutative sub algebra. We therefore
assume that m,¢t > 2. This question has been studied by many authors, see for example the extensive bibliography in [7].

We will give some generalize in the case of m = 2 or 3.

2. General Observations

Let G be the algebra generated by K. If we could show that the dimension of G as a vector space is m?, it would follow that
G = N,,,. This can sometimes be done when we know a linear spanning set H = {H1,..., H,} of G. Let N be the m? x ¢
matrix obtained by writing the matrices in H as column vectors. We would like to show that rank N = m?. Since N is an
m? x m? matrix and rank N = rank(NN*), it sufficient to show that det(NN*) # 0. Unfortunately, the size of H may be
big [4]. In this paper we will combine this method with results of Shemesh and Spencer, Rivlin, Aslaksen and Sletsjoe to

get some simple results for m = 2 or 3.

Lemma 2.1. Let {Bu,...,B:} be a set of matrices in N,,, where m =2 or 8. The b;’s generate Ny, if and only if they do

not have a common eigenvector.

We can therefore use the following theorem due to Shemesh [5].
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Theorem 2.2. Two m X m matrices, B and H, have a common eigenvector if and only if

m—1
Z [Bu7H’U]*[Bu7H’U]
w,v=1

is singular.

Adding scalar matrices to the B;’s does not change the subalgebra they generate, so we some-times assume that our
matrices lie in Wy = {N € N,,| trace N = 0}. We also sometimes identify matrices in N,, with vectors in 4,2, and
if Mq,...,M,,2 € Ny, then det(Ma,..., M,,2) denotes the determinant of the m? x m? matrix whose j*® column is M;j,
written as (M1, ..., M;m)t, where My is the k™ row of M; for k = 1,2,...,n. We write the scalar matrix al as a. When
we say that a set of matrices generate N,,, we are talking about N,, as an algebra, while when we say that a set of matrices

form a basis of N,,, we are talking about IV, as a vector space.

3. The 2 x 2 Case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3 x 3 case.

Notice that the proof gives us an explicit basis for Na.
Theorem 3.1. Let B,H € N>. B and H generate N2 if and only if [B, H] is invertible.

Proof. We know that in matrix BH = —H B, then a direct computation shows that
det(I,B,H,BH) = —det(I, B, H, HB) = det[B, H].
Hence
det(I, B, H,[B, H]) = 2det[B, H] (1)

But if I, B, H, [B, H| are linearly independent, then the dimension of G as a vector space is 4, so B and H generate No. We

call [N, M, T] = [N,[M,T]] a double commutator. The characteristic polynomial of A can be written as
A\ — (trace B)X + ((trace B)® — trace B?)/2.

It follows that the discriminant of the characteristic polynomial of A can be written as discriminant (B) = 2 trace B> —

(trace B)2. O

Lemma 3.2. Let B, H,G € N2 and suppose that no two of them generate No. Then B, H,G generate N2 if and only if the
double commutator [B, H,G] = B, [H, G]] is invertible.

Proof. A direct computation shows that
det(I, B, H,G)? = — det[B, [H, G]] — discriminant(B) det[H, G| (2)

But if I, B, H, G are linearly independent, then B, H and G generate Ns. (I
Notice that the above proof gives us an explicit basis for No. We can now give a complete solution for the case m = 2.

Theorem 3.3. The matrices Bi,...,B; € Na generate Ny if and only if at least one of the commutators [B;, Bj] or double

commutators [B;, Bj, By] = [Bs, [Bj, B]] is invertible.
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Proof. 1f t > 4, the matrices are linearly dependent, so we can assume that ¢t < 4. Suppose that Bi, B2, B3, By generate
N2, but that no proper subset of them generates N2. Then the four matrices are linearly independent, and we can write the
identity I as a linear combination of them. If the coefficient of B4 in this expression is nonzero, then By, Ba, B3, I span
and therefore generate N2, so B1, B2, B3 generate N2. Thus, if B1,..., B generate N2, we can always find a subset of three

of these matrices that generate Na. O

4. Two 3 x 3 Matrices

In the case of two 3 x 3 matrices, we have the following well-known theorem.
Theorem 4.1. Let B, H € Ns. If [B, H] is invertible, then B and H generate Ns.

For N € N3, we define L(N) to be the linear term in the characteristic polynomial of N. Hence L(N) = ((trace N)? —
trace N?)/2, which is equal to the sum of the three principal minors of degree two of N. Notice that L(IN) is invariant under
conjugation, and that if [B, H]| is singular, then [B, H] is nilpotent if and only if L([B, H]) = 0. The following theorem

shows that if [B, H] is invertible and L([B, H]) # 0, then we can give an explicit basis for Ns.

Theorem 4.2. Let B,H € Ns. Then

det(I, B, B*>,H,H?, BH, HB, B, B, H)), [H, [H, B]]) = 9det|B, H|L([B, H]), (3)

so if det[B, H] # 0 and L([B, H]) # 0, then {I, B, B*,H, H> BH, HB, B, [B, H],[H, [H, B]]} form a basis for N.

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2). We can

also use Shemesh’s Theorem to characterize pairs of generators for Ns.

Theorem 4.3. The two 3 X 3 matrices B and H generate N3 if and only if both

m—1 m—1
> B, H'I'[B*,H"] and > [B",H"|[B*,H"]"
w,v=1 w,v=1

are invertible.

5. Three or More 3 x 3 Matrices

We start with the following theorem due to Laffey [6].

Theorem 5.1. Let K be a set of generators for N3. If K has more than four elements, then N3 can be generated by a

proper subset of K.

It is therefore sufficient to consider the cases t = 3 or 4. Following the approach outlined earlier, we start by finding a linear

spanning set. Using the polarized Cayley-Hamilton Theorem, Spencer and Rivlin [1, 2] deduced the following theorem.

Theorem 5.2. Let B, H,G € N3. Define

K(B) = {B,B%}
S(B,H)={H,B°H,BH? B*H* B*HB,B°H’ A}

K(Bi1,Bs) = S(Bi1, B2) U S(Ba, By)
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S(B,H,G)={BHG,B’HG,HB’G, HGB’, B°H°G,GB’H’, BHGB"}

K(B1,By, Bs) = | T(B5(1), B+(2), B+(3)).

acKs3
1. The sub algebra generated by B and H is spanned by I UK(B)U K(H)U K (B, H).
2. The sub algebra generated by B, H and G is spanned by [ UK(B)UK(H)UK(B,H)UK(B,H, Q).

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that N,, can be generated by
words of length [m? + 2]/3. For N3 this gives words of length 4. The general bound has been improved by Pappacena [4].

We next give a version of Shemesh’s Theorem for three 3 x 3 matrices.

Theorem 5.3. The matrices B, H,G € N3 have a common eigenvector if and only the matriz

N(B,H,G)= Y [N,M]'[N,M]+ > [N,MJ'[N,M]+ > [N,M]'[N,M]+ > [N,M][N,M]

NeK(B), NeK(B), NeK(H), NeK(B,H),
MEK(H) MeK(G) MeK(G) MEK(G)

is singular.

Proof. Let G be the algebra generated by B, H, G. Set

X= () ke [NM] () ker[N,M] () ker[N,M] () ker[N,M]

NEK(B), NeEK(B), NEK(H), NEK(B,H),
MEK (H) MEK(G) MEK(G) MEK(G)

We claim that X is invariant under G. Let z € X and consider Gx. We know from Theorem 5.1 that any element of G is a
linear combination of terms of the form (B, H)G'u(B, H)G’v(B, H) with t(B, H),u(B, H),v(B,H) € UK (B)U K(H) U
K (B, H). Since = € ker[K (B, H), K(G)] N ker[K(B), K(G)]Nker[K(H), K(GQ)], we get

t(B,H)G'w(B,H)G’v(B, H)x = t(B, H)G'u(B, H)v(B, H) G«
= (B, H)G""u(B, H)v(B, H)x
= (B, H)u(B,H)v(B,H)G" "z

= G"YH(B, H)u(B, H)v(B, H)x.

In the same way we use the fact that © € [K(B), K(H)] to sort the terms of the form ¢(B, H)u(B, H)v(B, H)z, so that we
finally get

Gz = {aijxG'H B 2|0 < i, j,k < 2,a:;, € A}

Using the above technique, it follows easily that G, C X and that X is G invariant. Hence we can restrict G to X, but since

the elements of G commute on X, they have a common eigenvector, and we can finish as in the proof of Theorem 2.2. [
From this we deduce the following theorem.
Theorem 5.4. Let B, H,G € N3. Then B, H,G generate N3 if and only if both N(B, H,G) and N(B*, H',G") are invertible.

For the case of four matrices, we can prove the following theorem.
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Theorem 5.5.

is singular.

The matrices B1, B2, B3, B4 € N3 have a common eigenvector if and only the matriz

4 3
N(B1,B2, B3, Ba) = Y SOINMIIN M|+ > > [N, MJ'[N, M]
i,j=1 \ NEK(B;) i,j=1 \ NeK(B;,B;)
i<j \MeK(Bj) 1<Jj MEK (By)

+ >IN, MJ[N,M]+ > N, MJ*[N, M]

NEK(B;,B3) NeEK(B1,B,B3)
M€K (Bs) MEK (By)

Proof.  Similar to the proof of Theorem 5.3.

From this we deduce the following theorem.

Theorem 5.6. Let B, H,G,J € Ms. Then B, H,G,J generate N3 if and only if both N(B, H,G,J) and N(B*, H",G", J*)

are invertible.
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