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1. Introduction

Let A be an algebraically closed field of characteristic zero, and let Nm = Nm(A) be the algebra of m×m matrices over A.

Given a set K = {B1, . . . , Bt} of m ×m matrices, we would like to have conditions for when the Ai generate the algebra

Mn. In other words, determine whether every matrix in Nm can be written in the form T (B1, . . . , Bt), where T is a non-

commutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.)

The case m = 1 is of course trivial, and when t = 1, the single matrix B1 generates a commutative sub algebra. We therefore

assume that m, t ≥ 2. This question has been studied by many authors, see for example the extensive bibliography in [7].

We will give some generalize in the case of m = 2 or 3.

2. General Observations

Let G be the algebra generated by K. If we could show that the dimension of G as a vector space is m2, it would follow that

G = Nm. This can sometimes be done when we know a linear spanning set H = {H1, . . . , Hq} of G. Let N be the m2 × q

matrix obtained by writing the matrices in H as column vectors. We would like to show that rank N = m2. Since N is an

m2 ×m2 matrix and rank N = rank(NN∗), it sufficient to show that det(NN∗) 6= 0. Unfortunately, the size of H may be

big [4]. In this paper we will combine this method with results of Shemesh and Spencer, Rivlin, Aslaksen and Sletsjoe to

get some simple results for m = 2 or 3.

Lemma 2.1. Let {B1, . . . , Bt} be a set of matrices in Nm where m = 2 or 3. The bi’s generate Nm if and only if they do

not have a common eigenvector.

We can therefore use the following theorem due to Shemesh [5].
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Theorem 2.2. Two m×m matrices, B and H, have a common eigenvector if and only if

m−1∑
u,v=1

[Bu, Hv]∗[Bu, Hv]

is singular.

Adding scalar matrices to the Bi’s does not change the subalgebra they generate, so we some-times assume that our

matrices lie in WM = {N ∈ Nm| trace N = 0}. We also sometimes identify matrices in Nm with vectors in Am2 , and

if M1, . . . ,Mm2 ∈ Nm, then det(M1, . . . ,Mm2) denotes the determinant of the m2 × m2 matrix whose jth column is Mj ,

written as (Mj1, . . . ,Mjm)t, where Mjk is the kth row of Mj for k = 1, 2, . . . , n. We write the scalar matrix aI as a. When

we say that a set of matrices generate Nm, we are talking about Nm as an algebra, while when we say that a set of matrices

form a basis of Nm, we are talking about Nm as a vector space.

3. The 2× 2 Case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3 × 3 case.

Notice that the proof gives us an explicit basis for N2.

Theorem 3.1. Let B,H ∈ N2. B and H generate N2 if and only if [B,H] is invertible.

Proof. We know that in matrix BH = −HB, then a direct computation shows that

det(I, B,H,BH) = − det(I, B,H,HB) = det[B,H].

Hence

det(I,B,H, [B,H]) = 2 det[B,H] (1)

But if I, B,H, [B,H] are linearly independent, then the dimension of G as a vector space is 4, so B and H generate N2. We

call [N,M, T ] = [N, [M,T ]] a double commutator. The characteristic polynomial of A can be written as

λ2 − (trace B)λ+ ((trace B)2 − trace B2)/2.

It follows that the discriminant of the characteristic polynomial of A can be written as discriminant (B) = 2 trace B2 −

(trace B)2.

Lemma 3.2. Let B,H,G ∈ N2 and suppose that no two of them generate N2. Then B,H,G generate N2 if and only if the

double commutator [B,H,G] = [B, [H,G]] is invertible.

Proof. A direct computation shows that

det(I, B,H,G)2 = − det[B, [H,G]]− discriminant(B) det[H,G] (2)

But if I, B,H,G are linearly independent, then B,H and G generate N2.

Notice that the above proof gives us an explicit basis for N2. We can now give a complete solution for the case m = 2.

Theorem 3.3. The matrices B1, . . . , Bt ∈ N2 generate N2 if and only if at least one of the commutators [Bi, Bj ] or double

commutators [Bi, Bj , Bk] = [Bi, [Bj , Bk]] is invertible.
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Proof. If t > 4, the matrices are linearly dependent, so we can assume that t ≤ 4. Suppose that B1, B2, B3, B4 generate

N2, but that no proper subset of them generates N2. Then the four matrices are linearly independent, and we can write the

identity I as a linear combination of them. If the coefficient of B4 in this expression is nonzero, then B1, B2, B3, I span

and therefore generate N2, so B1, B2, B3 generate N2. Thus, if B1, . . . , Bt generate N2, we can always find a subset of three

of these matrices that generate N2.

4. Two 3× 3 Matrices

In the case of two 3× 3 matrices, we have the following well-known theorem.

Theorem 4.1. Let B,H ∈ N3. If [B,H] is invertible, then B and H generate N3.

For N ∈ N3, we define L(N) to be the linear term in the characteristic polynomial of N. Hence L(N) = ((trace N)2 −

trace N2)/2, which is equal to the sum of the three principal minors of degree two of N. Notice that L(N) is invariant under

conjugation, and that if [B,H] is singular, then [B,H] is nilpotent if and only if L([B,H]) = 0. The following theorem

shows that if [B,H] is invertible and L([B,H]) 6= 0, then we can give an explicit basis for N3.

Theorem 4.2. Let B,H ∈ N3. Then

det(I, B,B2, H,H2, BH,HB, [B, [B,H]], [H, [H,B]]) = 9 det[B,H]L([B,H]), (3)

so if det[B,H] 6= 0 and L([B,H]) 6= 0, then {I, B,B2, H,H2, BH,HB, [B, [B,H]], [H, [H,B]]} form a basis for N3.

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2). We can

also use Shemesh’s Theorem to characterize pairs of generators for N3.

Theorem 4.3. The two 3× 3 matrices B and H generate N3 if and only if both

m−1∑
u,v=1

[Bu, Hv]∗[Bu, Hv] and

m−1∑
u,v=1

[Bu, Hv][Bu, Hv]∗

are invertible.

5. Three or More 3× 3 Matrices

We start with the following theorem due to Laffey [6].

Theorem 5.1. Let K be a set of generators for N3. If K has more than four elements, then N3 can be generated by a

proper subset of K.

It is therefore sufficient to consider the cases t = 3 or 4. Following the approach outlined earlier, we start by finding a linear

spanning set. Using the polarized Cayley-Hamilton Theorem, Spencer and Rivlin [1, 2] deduced the following theorem.

Theorem 5.2. Let B,H,G ∈ N3. Define

K(B) = {B,B2}

S(B,H) = {H,B2H,BH2, B2H2, B2HB,B2H2A}

K(B1, B2) = S(B1, B2) ∪ S(B2, B1)
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S(B,H,G) = {BHG,B2HG,HB2G,HGB2, B2H2G,GB2H2, BHGB2}

K(B1, B2, B3) =
⋃
α∈K3

T (Bσ(1), Bσ(2), Bσ(3)).

1. The sub algebra generated by B and H is spanned by I ∪K(B) ∪K(H) ∪K(B,H).

2. The sub algebra generated by B, H and G is spanned by I ∪K(B) ∪K(H) ∪K(B,H) ∪K(B,H,G).

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that Nm can be generated by

words of length [m2 + 2]/3. For N3 this gives words of length 4. The general bound has been improved by Pappacena [4].

We next give a version of Shemesh’s Theorem for three 3× 3 matrices.

Theorem 5.3. The matrices B,H,G ∈ N3 have a common eigenvector if and only the matrix

N(B,H,G) =
∑

N∈K(B),
M∈K(H)

[N,M ]∗[N,M ] +
∑

N∈K(B),
M∈K(G)

[N,M ]∗[N,M ] +
∑

N∈K(H),
M∈K(G)

[N,M ]∗[N,M ] +
∑

N∈K(B,H),
M∈K(G)

[N,M ]∗[N,M ]

is singular.

Proof. Let G be the algebra generated by B,H,G. Set

X =
⋂

N∈K(B),
M∈K(H)

ker[N,M ]
⋂

N∈K(B),
M∈K(G)

ker[N,M ]
⋂

N∈K(H),
M∈K(G)

ker[N,M ]
⋂

N∈K(B,H),
M∈K(G)

ker[N,M ]

We claim that X is invariant under G. Let x ∈ X and consider Gx. We know from Theorem 5.1 that any element of G is a

linear combination of terms of the form t(B,H)Giu(B,H)Gjv(B,H) with t(B,H), u(B,H), v(B,H) ∈ I ∪K(B) ∪K(H) ∪

K(B,H). Since x ∈ ker[K(B,H),K(G)] ∩ ker[K(B),K(G)] ∩ ker[K(H),K(G)], we get

t(B,H)Giu(B,H)Gjv(B,H)x = t(B,H)Giu(B,H)v(B,H)Gjx

= t(B,H)Gi+ju(B,H)v(B,H)x

= t(B,H)u(B,H)v(B,H)Gi+jx

= Gi+jt(B,H)u(B,H)v(B,H)x.

In the same way we use the fact that x ∈ [K(B),K(H)] to sort the terms of the form t(B,H)u(B,H)v(B,H)x, so that we

finally get

Gx = {aijkGiHjBkx|0 ≤ i, j, k ≤ 2, aijk ∈ A}

Using the above technique, it follows easily that Gx ⊂ X and that X is G invariant. Hence we can restrict G to X, but since

the elements of G commute on X, they have a common eigenvector, and we can finish as in the proof of Theorem 2.2.

From this we deduce the following theorem.

Theorem 5.4. Let B,H,G ∈ N3. Then B,H,G generate N3 if and only if both N(B,H,G) and N(Bt, Ht, Gt) are invertible.

For the case of four matrices, we can prove the following theorem.
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Theorem 5.5. The matrices B1, B2, B3, B4 ∈ N3 have a common eigenvector if and only the matrix

N(B1, B2, B3, B4) =

4∑
i,j=1
i<j

 ∑
N∈K(Bi)
M∈K(Bj)

[N,M ]∗[N,M ]

 +

3∑
i,j=1
i<j

 ∑
N∈K(Bi,Bj)

M∈K(B4)

[N,M ]∗[N,M ]


+

∑
N∈K(B1,B2)
M∈K(B3)

[N,M ]∗[N,M ] +
∑

N∈K(B1,B2,B3)
M∈K(B4)

[N,M ]∗[N,M ]

is singular.

Proof. Similar to the proof of Theorem 5.3.

From this we deduce the following theorem.

Theorem 5.6. Let B,H,G, J ∈M3. Then B,H,G, J generate N3 if and only if both N(B,H,G, J) and N(Bt, Ht, Gt, J t)

are invertible.
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