Generalized Method to Find the Generators of Matrix Algebras when its Dimension 2 and 3

Ram Milan Singh ${ }^{1, *}$
1 Department of mathematics, Govt. P. G. College, Tikamgarh, Madhya Pradesh, India.

Abstract

Let A be an algebraically closed field of characteristic zero and consider a set of 2×2 or 3×3 matrices. Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix algebra.

Keywords: Generator, Matrix, Common left eigen vector, Sub Algebra (C) JS Publication.

1. Introduction

Let A be an algebraically closed field of characteristic zero, and let $N_{m}=N_{m}(A)$ be the algebra of $m \times m$ matrices over A. Given a set $K=\left\{B_{1}, \ldots, B_{t}\right\}$ of $m \times m$ matrices, we would like to have conditions for when the A_{i} generate the algebra M_{n}. In other words, determine whether every matrix in N_{m} can be written in the form $T\left(B_{1}, \ldots, B_{t}\right)$, where T is a noncommutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.) The case $m=1$ is of course trivial, and when $t=1$, the single matrix B_{1} generates a commutative sub algebra. We therefore assume that $m, t \geq 2$. This question has been studied by many authors, see for example the extensive bibliography in [7]. We will give some generalize in the case of $m=2$ or 3 .

2. General Observations

Let G be the algebra generated by K. If we could show that the dimension of G as a vector space is m^{2}, it would follow that $G=N_{m}$. This can sometimes be done when we know a linear spanning set $H=\left\{H_{1}, \ldots, H_{q}\right\}$ of G. Let N be the $m^{2} \times q$ matrix obtained by writing the matrices in H as column vectors. We would like to show that rank $N=m^{2}$. Since N is an $m^{2} \times m^{2}$ matrix and rank $N=\operatorname{rank}\left(N N^{*}\right)$, it sufficient to show that $\operatorname{det}\left(N N^{*}\right) \neq 0$. Unfortunately, the size of H may be big [4]. In this paper we will combine this method with results of Shemesh and Spencer, Rivlin, Aslaksen and Sletsjoe to get some simple results for $m=2$ or 3 .

Lemma 2.1. Let $\left\{B_{1}, \ldots, B_{t}\right\}$ be a set of matrices in N_{m} where $m=2$ or 3. The b_{i} 's generate N_{m} if and only if they do not have a common eigenvector

We can therefore use the following theorem due to Shemesh [5].

[^0]Theorem 2.2. Two $m \times m$ matrices, B and H, have a common eigenvector if and only if

$$
\sum_{u, v=1}^{m-1}\left[B^{u}, H^{v}\right]^{*}\left[B^{u}, H^{v}\right]
$$

is singular.

Adding scalar matrices to the B_{i} 's does not change the subalgebra they generate, so we some-times assume that our matrices lie in $W_{M}=\left\{N \in N_{m} \mid\right.$ trace $\left.N=0\right\}$. We also sometimes identify matrices in N_{m} with vectors in $A_{m^{2}}$, and if $M_{1}, \ldots, M_{m^{2}} \in N_{m}$, then $\operatorname{det}\left(M_{1}, \ldots, M_{m^{2}}\right)$ denotes the determinant of the $m^{2} \times m^{2}$ matrix whose $\mathrm{j}^{\text {th }}$ column is M_{j}, written as $\left(M_{j 1}, \ldots, M_{j m}\right)^{t}$, where $M_{j k}$ is the $\mathrm{k}^{\text {th }}$ row of M_{j} for $k=1,2, \ldots, n$. We write the scalar matrix $a I$ as a. When we say that a set of matrices generate N_{m}, we are talking about N_{m} as an algebra, while when we say that a set of matrices form a basis of N_{m}, we are talking about N_{m} as a vector space.

3. The 2×2 Case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3×3 case. Notice that the proof gives us an explicit basis for N_{2}.

Theorem 3.1. Let $B, H \in N_{2}$. B and H generate N_{2} if and only if $[B, H]$ is invertible.
Proof. We know that in matrix $B H=-H B$, then a direct computation shows that

$$
\operatorname{det}(I, B, H, B H)=-\operatorname{det}(I, B, H, H B)=\operatorname{det}[B, H] .
$$

Hence

$$
\begin{equation*}
\operatorname{det}(I, B, H,[B, H])=2 \operatorname{det}[B, H] \tag{1}
\end{equation*}
$$

But if $I, B, H,[B, H]$ are linearly independent, then the dimension of G as a vector space is 4 , so B and H generate N_{2}. We call $[N, M, T]=[N,[M, T]]$ a double commutator. The characteristic polynomial of A can be written as

$$
\lambda^{2}-(\text { trace } B) \lambda+\left((\text { trace } B)^{2}-\text { trace } B^{2}\right) / 2 \text {. }
$$

It follows that the discriminant of the characteristic polynomial of A can be written as discriminant $(B)=2$ trace $B^{2}-$ $(\text { trace } B)^{2}$.

Lemma 3.2. Let $B, H, G \in N_{2}$ and suppose that no two of them generate N_{2}. Then B, H, G generate N_{2} if and only if the double commutator $[B, H, G]=[B,[H, G]]$ is invertible.

Proof. A direct computation shows that

$$
\begin{equation*}
\operatorname{det}(I, B, H, G)^{2}=-\operatorname{det}[B,[H, G]]-\operatorname{discriminant}(B) \operatorname{det}[H, G] \tag{2}
\end{equation*}
$$

But if I, B, H, G are linearly independent, then B, H and G generate N_{2}.

Notice that the above proof gives us an explicit basis for N_{2}. We can now give a complete solution for the case $m=2$.
Theorem 3.3. The matrices $B_{1}, \ldots, B_{t} \in N_{2}$ generate N_{2} if and only if at least one of the commutators $\left[B_{i}, B_{j}\right]$ or double commutators $\left[B_{i}, B_{j}, B_{k}\right]=\left[B_{i},\left[B_{j}, B_{k}\right]\right]$ is invertible.

Proof. If $t>4$, the matrices are linearly dependent, so we can assume that $t \leq 4$. Suppose that $B_{1}, B_{2}, B_{3}, B_{4}$ generate N_{2}, but that no proper subset of them generates N_{2}. Then the four matrices are linearly independent, and we can write the identity I as a linear combination of them. If the coefficient of B_{4} in this expression is nonzero, then B_{1}, B_{2}, B_{3}, I span and therefore generate N_{2}, so B_{1}, B_{2}, B_{3} generate N_{2}. Thus, if B_{1}, \ldots, B_{t} generate N_{2}, we can always find a subset of three of these matrices that generate N_{2}.

4. Two 3×3 Matrices

In the case of two 3×3 matrices, we have the following well-known theorem.
Theorem 4.1. Let $B, H \in N_{3}$. If $[B, H]$ is invertible, then B and H generate N_{3}.
For $N \in N_{3}$, we define $L(N)$ to be the linear term in the characteristic polynomial of N. Hence $L(N)=\left((\text { trace } N)^{2}-\right.$ trace $\left.N^{2}\right) / 2$, which is equal to the sum of the three principal minors of degree two of N. Notice that $L(N)$ is invariant under conjugation, and that if $[B, H]$ is singular, then $[B, H]$ is nilpotent if and only if $L([B, H])=0$. The following theorem shows that if $[B, H]$ is invertible and $L([B, H]) \neq 0$, then we can give an explicit basis for N_{3}.

Theorem 4.2. Let $B, H \in N_{3}$. Then

$$
\begin{equation*}
\operatorname{det}\left(I, B, B^{2}, H, H^{2}, B H, H B,[B,[B, H]],[H,[H, B]]\right)=9 \operatorname{det}[B, H] L([B, H]), \tag{3}
\end{equation*}
$$

so if $\operatorname{det}[B, H] \neq 0$ and $L([B, H]) \neq 0$, then $\left\{I, B, B^{2}, H, H^{2}, B H, H B,[B,[B, H]],[H,[H, B]]\right\}$ form a basis for N_{3}.
The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2). We can also use Shemesh's Theorem to characterize pairs of generators for N_{3}.

Theorem 4.3. The two 3×3 matrices B and H generate N_{3} if and only if both

$$
\sum_{u, v=1}^{m-1}\left[B^{u}, H^{v}\right]^{*}\left[B^{u}, H^{v}\right] \quad \text { and } \sum_{u, v=1}^{m-1}\left[B^{u}, H^{v}\right]\left[B^{u}, H^{v}\right]^{*}
$$

are invertible.

5. Three or More 3×3 Matrices

We start with the following theorem due to Laffey [6].
Theorem 5.1. Let K be a set of generators for N_{3}. If K has more than four elements, then N_{3} can be generated by a proper subset of K.

It is therefore sufficient to consider the cases $t=3$ or 4 . Following the approach outlined earlier, we start by finding a linear spanning set. Using the polarized Cayley-Hamilton Theorem, Spencer and Rivlin [1, 2] deduced the following theorem.

Theorem 5.2. Let $B, H, G \in N_{3}$. Define

$$
\begin{aligned}
K(B) & =\left\{B, B^{2}\right\} \\
S(B, H) & =\left\{H, B^{2} H, B H^{2}, B^{2} H^{2}, B^{2} H B, B^{2} H^{2} A\right\} \\
K\left(B_{1}, B_{2}\right) & =S\left(B_{1}, B_{2}\right) \cup S\left(B_{2}, B_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
S(B, H, G) & =\left\{B H G, B^{2} H G, H B^{2} G, H G B^{2}, B^{2} H^{2} G, G B^{2} H^{2}, B H G B^{2}\right\} \\
K\left(B_{1}, B_{2}, B_{3}\right) & =\bigcup_{\alpha \in K_{3}} T\left(B_{\sigma}(1), B_{\sigma}(2), B_{\sigma}(3)\right) .
\end{aligned}
$$

1. The sub algebra generated by B and H is spanned by $I \cup K(B) \cup K(H) \cup K(B, H)$.
2. The sub algebra generated by B, H and G is spanned by $I \cup K(B) \cup K(H) \cup K(B, H) \cup K(B, H, G)$.

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that N_{m} can be generated by words of length $\left[m^{2}+2\right] / 3$. For N_{3} this gives words of length 4 . The general bound has been improved by Pappacena [4]. We next give a version of Shemesh's Theorem for three 3×3 matrices.

Theorem 5.3. The matrices $B, H, G \in N_{3}$ have a common eigenvector if and only the matrix

$$
N(B, H, G)=\sum_{\substack{N \in K(B), M \in K(H)}}[N, M]^{*}[N, M]+\sum_{\substack{N \in K(B), M \in K(G)}}[N, M]^{*}[N, M]+\sum_{\substack{N \in K(H), M \in K(G)}}[N, M]^{*}[N, M]+\sum_{\substack{N \in K(B, H), M \in K(G)}}[N, M]^{*}[N, M]
$$

is singular.

Proof. Let G be the algebra generated by B, H, G. Set

$$
X=\bigcap_{\substack{N \in K(B), M \in K(H)}} \operatorname{ker}[N, M] \bigcap_{\substack{N \in K(B), M \in K(G)}} \operatorname{ker}[N, M] \bigcap_{\substack{N \in K(H), M \in K(G)}} \operatorname{ker}[N, M] \bigcap_{\substack{N \in K(B, H), M \in K(G)}} \operatorname{ker}[N, M]
$$

We claim that X is invariant under G. Let $x \in X$ and consider $G x$. We know from Theorem 5.1 that any element of G is a linear combination of terms of the form $t(B, H) G^{i} u(B, H) G^{j} v(B, H)$ with $t(B, H), u(B, H), v(B, H) \in I \cup K(B) \cup K(H) \cup$ $K(B, H)$. Since $x \in \operatorname{ker}[K(B, H), K(G)] \cap \operatorname{ker}[K(B), K(G)] \cap \operatorname{ker}[K(H), K(G)]$, we get

$$
\begin{aligned}
t(B, H) G^{i} u(B, H) G^{j} v(B, H) x & =t(B, H) G^{i} u(B, H) v(B, H) G^{j} x \\
& =t(B, H) G^{i+j} u(B, H) v(B, H) x \\
& =t(B, H) u(B, H) v(B, H) G^{i+j} x \\
& =G^{i+j} t(B, H) u(B, H) v(B, H) x
\end{aligned}
$$

In the same way we use the fact that $x \in[K(B), K(H)]$ to sort the terms of the form $t(B, H) u(B, H) v(B, H) x$, so that we finally get

$$
G_{x}=\left\{a_{i j k} G^{i} H^{j} B^{k} x \mid 0 \leq i, j, k \leq 2, a_{i j k} \in A\right\}
$$

Using the above technique, it follows easily that $G_{x} \subset X$ and that X is G invariant. Hence we can restrict G to X, but since the elements of G commute on X, they have a common eigenvector, and we can finish as in the proof of Theorem 2.2.

From this we deduce the following theorem.

Theorem 5.4. Let $B, H, G \in N_{3}$. Then B, H, G generate N_{3} if and only if both $N(B, H, G)$ and $N\left(B^{t}, H^{t}, G^{t}\right)$ are invertible. For the case of four matrices, we can prove the following theorem.

Theorem 5.5. The matrices $B_{1}, B_{2}, B_{3}, B_{4} \in N_{3}$ have a common eigenvector if and only the matrix

$$
\begin{aligned}
N\left(B_{1}, B_{2}, B_{3}, B_{4}\right) & =\sum_{\substack{i, j=1 \\
i<j}}^{4}\left(\sum_{\substack{N \in K\left(B_{i}\right) \\
M \in K\left(B_{j}\right)}}[N, M]^{*}[N, M]\right)+\sum_{\substack{i, j=1 \\
i<j}}^{3}\left(\sum_{\substack{N \in K\left(B_{i}, B_{j}\right) \\
M \in K\left(B_{4}\right)}}[N, M]^{*}[N, M]\right) \\
& +\sum_{\substack{N \in K\left(B_{1}, B_{2}\right) \\
M \in K\left(B_{3}\right)}}[N, M]^{*}[N, M]+\sum_{\substack{N \in K\left(B_{1}, B_{2}, B_{3}\right) \\
M \in K\left(B_{4}\right)}}[N, M]^{*}[N, M]
\end{aligned}
$$

is singular.

Proof. Similar to the proof of Theorem 5.3.

From this we deduce the following theorem.

Theorem 5.6. Let $B, H, G, J \in M_{3}$. Then B, H, G, J generate N_{3} if and only if both $N(B, H, G, J)$ and $N\left(B^{t}, H^{t}, G^{t}, J^{t}\right)$ are invertible.

References

[1] A. J. M. Spencer and R. S. Rivlin, The theory of matrix polynomials and its application to the mechanics of isotropic continua, Arch. Rational Mech. Anal., 2(1959), 309-336.
[2] A. J. M. Spencer and R. S. Rivlin, Further results in the theory of matrix polynomials, Arch. Rational Mech. Anal., 4(1959), 214-230.
[3] A. Paz, An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear and Multilinear Algebra, 15(1984), 161-170.
[4] C. J. Pappacena, An upper bound for the length of a finite-dimensional algebra, J. Algebra., 197(1997), 535-545.
[5] D. Shemesh, Common eigenvectors of two matrices, Linear Algebra Appl., 62(1984), 11-18.
[6] T. J. Laffey, Irredundant generating sets for matrix algebras, Linear Algebra Appl., 52(1983), 457-478.
[7] T. J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl., 84(1986), 123-138.

[^0]: * E-mail: rrammilansinghlig@gmail.com

