

International Journal of *Mathematics And its Applications*

On N-Metric Equivalence of Operators

Wanjala	Victor ^{1,*} ,	R.	K.	$Obogi^1$	and M.	О.	Okova ¹

1 Department of Mathematics, Kisii University, Box 408-40200, Kisii, Kenya.

Abstract: In this paper, we introduce a new equivalence relation, the class of n-metrically equivalent operators and examine some of the properties they get to enjoy. We also study their relation to other classes of operators like quasinormal, k-quasinormal and metrically equivalent operators.

Keywords: n-metric equivalence, metric equivalence, quasinormal and k-quasinormal operators. © JS Publication.

1. Introduction

We consider the properties of certain classes of operators. Some of the concerned properties of n-normal operators have been covered in [2] and a lot of research has been done on both quasi-normal operators in [1] and [5] and k-quasi-normal operators in [3].

2. Preliminaries

Definition 2.1. Two operators $S \in B(H)$ and $T \in B(H)$ are said to be n-metrically equivalent, denoted by $S \sim_{n-m} T$, provided $S^*S^n = T^*T^n$ for any positive integer $n \in \mathbb{N}$.

Theorem 2.2 ([4]). If T is a normal operator and $S \in B(H)$ is unitarily equivalent to T, then S is normal.

3. Main Results

Theorem 3.1. If S is an n-normal operator and $T \in B(H)$ is unitarily equivalent to S, then T is an n-normal.

Proof. Since $T = U^*SU$ with U being unitary and S n-normal, we have:

$$T^{*}T^{n} = U^{*}S^{*}UU^{*}S^{n}U$$
$$= U^{*}S^{*}S^{n}U$$
$$= U^{*}S^{n}S^{*}U$$
$$= T^{n}U^{*}S^{*}U$$

E-mail: wanjalavictor421@gmail.com

 $= T^n U^* U T^*$ $= T^n T^*$

Which proves the claim.

Proof. The proof follows from Theorem 3.1.

Proposition 3.3. Let S and T be n-metrically equivalent, then S^* and T^* are co-n-metrically equivalent.

Corollary 3.2. An operator $T \in B(H)$ is an n-normal if and only if T and T^* are n-metrically equivalent.

Proof. Since S and T are n-metrically equivalent, we have;

 $S^*S^n = T^*T^n, \text{ taking adjoint on both sides we obtain;}$ = $(S^*S^n)^* = (T^*T^n)^*$ = $(S^*)^*(S^n)^* = (T^*)^*(T^n)^*$ = $S(S^n)^* = T(T^n)^*.$

Hence S^* and T^* are co-n-metrically equivalent.

Proposition 3.4. If S and T are p-metrically equivalent, then S and T are p + 2-metrically equivalent operators and hence S and T are n-metrically equivalent for every $n \ge p$.

Proof. Since S and T are p-metrically equivalent, we have;

$$S^*S^p = T^*T^p \tag{k'}$$

Pre-multiplying and post-multiplying (k') by S on the left hand side and by T on the right hand side;

$$SS^*S^p S = TT^*T^p T$$
$$SS^*S^{p+1} = TT^*T^{p+1}$$
$$S^*S^{p+2} = T^*T^{p+2}$$

Hence S and T are p + 2 metrically equivalent operators.

4. Relationship Between n-metric Equivalence and Other Classes of Operators

Proposition 4.1. If S and T are unitarily k + 1-metrically equivalent operators, then S and T are n-metrically equivalent for $n \ge k$, and if S is k-quasinormal, then T is k-quasinormal.

Proof. Since S and T are unitarily k + 1-metrically equivalent, we have; $S^*S^{k+1} = UT^*T^{k+1}U^*$; and by Proposition 3.4, S and T are n-metrically equivalent since they are k + 1-metrically equivalent. Now $S^*S^{k+1} = UT^*T^{k+1}U^*$ gives us;

$$S^*S^{k+1} = S^*SS^k = UT^*TT^kU^*$$
(1)

$$=S^k S^* S = UT^k T^* TU^*$$
⁽²⁾

From (1) and (2) we have;

$$UT^{k}T^{*}TU^{*} = UT^{*}TT^{k}U^{*}$$
$$T^{k}T^{*}T = T^{*}TT^{k}$$
$$T^{k}(T^{*}T) = (T^{*}T)T^{k};$$

hence T is k-quasinormal.

Theorem 4.2. If S and T are unitarily 2-metrically equivalent operators and S is quasinormal, then T is quasinormal. Proof.

$$S^*S^2 = UT^*T^2U^*$$
$$= UT^*T^2U^* = T^*T^2$$
$$= UT^*TTU^* = T^*TT$$
$$= (T^*T)T = (T^*T)T$$
$$= T(T^*T) = (T^*T)T$$

hence the proof.

Theorem 4.3. If S and T are unitarily 2-metrically equivalent operators then they are metrically equivalent provided they are idempotent.

Proof. Since S and T are 2-metrically equivalent operators, we have; $S^*S^2 = T^*T^2$; and since S and T are idempotent, we have that; $S^2 = S$ and $T^2 = T$ giving us; $S^*S = T^*T$.

Acknowledgement

I would like to thank Dr. Sabasi Omaoro for his useful comments, remarks and suggestions.

References

- [1] A. Bala, A note on quasi normal operator, University of Delhi, June (1976).
- [2] S. A. Alzuraiqi, On n-normal operators, General math. Notes, 1(2)(2010), 61-73.
- [3] D. Senthilkumar, P. Masheswari Naik and R. Santhi, k-quasi-normal operators, International Journal of Mathematics and Computation, 15(2)(2012), 0974-5718.
- [4] B. M. Nzimbi, G. P. Pokhariyal and S. K. Moindi, A note on Metric Equivalence of some operators, Far East Journal of Mathematical Sciences, 75(2)(2013), 301-318.
- [5] K. L. Shaakir and Marai Saad, Quasi-normal operator of order n, Tikrit Journal of Pure Sciences, 20(4)(2015), 167-169.