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Abstract: A vertex x in a connected graph G = (V,E) is said to resolve a pair {u, v} of vertices of G if the distance from u to

x is not equal to the distance from v to x. For the pair {u, v} of vertices of G the collection of all resolving vertices is
denoted by R{u, v} and is called the resolving neighborhood for the pair {u, v}. A real valued function g : V → [0, 1] is

a resolving function (RF ) of G if g(R{u, v}) ≥ 1 for all distinct pair u, v ∈ V . A resolving function g is minimal (MRF )

if any function f : V → [0, 1] such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V is nota resolving function of G. A
minimal resolving function (MRF ) is called a universal minimal resolving function (UMRF ) if its convex combination

with every other MRF is again an MRF . Minimal resolving functions are related to the fractional metric dimension of

graphs. In this paper, we initiate a study of universal minimal resolving functions of a connected graph G.
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1. Introduction

By a graph G = (V,E), we mean a finite, undirected and connected graph with neither loops nor parallel edges. The order

and size of G are denoted by n and m respectively. For graph theoretic terminology, we refer to Chartrand and Lesniak [5].

The distance d(u, v) between two vertices u and v in G is the length of a shortest u-v path in G. By an ordered set of

vertices we mean a set W = {w1, w2, · · · , wk} on which the ordering (w1, w2, · · · , wk) has been imposed. For an ordered

subset W = {w1, w2, · · · , wk} of V , we refer to the k-vector (ordered k-tuple) r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) as

the (metric) representation of v with respect to W . The set W is called a resolving set for G if r(u|W ) = r(v|W ) implies

that u = v for all u, v ∈ V (G). Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set

{r(v|W ) : v ∈ V } consists of n distinct k-vectors. A resolving set of minimum cardinality for a graph G is called a basis for

G and the metric dimension of G is defined to be the cardinality of a basis of G and is denoted by dim(G). A resolving set

W of G is a minimal resolving set if no proper subset of W is a resolving set.

A vertex x ∈ V is said to resolve a pair of vertices {u, v} in G if d(u, x) 6= d(v, x). Let Vp denote the collection of all(
n
2

)
pairs of vertices of G. Fehr et al. [9] have defined the Resolving graph R(G) of a connected graph G = (V,E) as a

bipartite graph with bipartition (V, Vp) where a vertex x ∈ V is joined to a pair {u, v} ∈ Vp if and only if x resolves {u, v}
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in G. Then the minimum cardinality of a subset S of V such that N(S) = Vp in R(G) is the metric dimension of G, where

N(u) = {v ∈ V |uv ∈ E(G).

The idea of resolving sets has appeared in the literature previously. In [16] and later in [17], Slater introduced the concept of

a resolving set for a connected graph G under the term locating set. He referred to a minimum resolving set as a reference

set for G. He called the cardinality of a minimum resolving set (reference set) the location number of G. Independently,

Harary and Melter [10], discovered these concepts as well but used the term metric dimension.

Applications of resolving sets arise in various areas including coin weighing problem [15], drug discovery [4], robot navigation

[11], network discovery and verification [3], connected joins in graphs [14] and strategies for the mastermind game [7]. For

a survey of results in metric dimension, we refer to Chartrand and Ping [6]. Chartrand et al. [4] formulated the problem of

finding the metric dimension of a graph as an integer programming problem. Fehr et al. [9], used this idea to formulate the

fractional version of metric dimension as follows.

Suppose V = {v1, v2, · · · , vn} and Vp = {s1, s2, · · · , s(n2)}. Let A = (aij) be the
(
n
2

)
×n matrix with aij = 1 if sivj ∈ E(R(G))

and 0 otherwise, where 1 ≤ i ≤
(
n
2

)
and 1 ≤ j ≤ n. The integer programming formulation of the metric dimension is given

by Minimize f(x1, x2, · · · , xn) = x1 + x2 + · · ·+ xn

Subject to Ax ≥ 1 where x = (x1, x2, · · · , xn)T , xi ∈ {0, 1} and 1 is the
(
n
2

)
× 1 column vector all of whose entries are 1.

The optimal solution of the linear programming relaxation of the above I.P, where we replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1,

gives the fractional metric dimension of G, which we denote by dimf (G). The credity of obtaining basic results on fractional

metric dimension of graphs goes to Arumugam and Mathew ([1, 2]).

For a detailed study of fractional graph theory and fractionalization of various graph parameters, we refer to Scheinerman

and Ullman [13].

In this paper we develop a theory for universal minimal resolving functions analogous to minimal dominating functions [8]

of a graph.

2. Basic Results

Definition 2.1 ([1]). Let G = (V,E) be a connected graph of order n. A function f : V → [0, 1] is called a resolving function

(RF) of G if f(R{u, v}) ≥ 1 for any two distinct vertices u, v ∈ V , where f(R{u, v}) =
∑

x∈R{u,v}
f(x). A resolving function

g of a graph G is minimal (MRF) if any function f : V → [0, 1] such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V is

not a resolving function of G.

MRFs generalise the concept of minimal resolving sets of vertices, since the integer valued (i.e. 0 or 1) MRFs are precisely

the characteristic functions of the minimal resolving sets of a graph. Mathew and Arumugam [12], initiated a study of

minimal resolving functions of a connected graph G and defined the Resolving convexity graph CR(G). We need the follwing

definitions and theorems.

Theorem 2.2 ([12]). Let f be a resolving function of a connected graph G = (V,E). Then f is a minimal resolving function

of G if and only if whenever f(x) > 0 there exists {u, v} ∈ VP such that x ∈ R{u, v} and f(R{u, v}) = 1.

Definition 2.3 ([12]). Let f be a RF of a graph G. The boundary set Bf and the positive set Pf of f are defined by

Bf = {{u, v} ∈ Vp : f(R{u, v}) = 1} and Pf = {u ∈ V (G) : f(u) > 0}.

Definition 2.4 ([12]). Let x ∈ V and D ⊆ VP . We say that x resolves D, if there exists a pair {u, v} ∈ D of such that

d(u, x) 6= d(v, x) and write x−→
r
D. Let S ⊆ V (G) and D ⊆ Vp. We say S resolves D if x−→

r
D for all x ∈ S and write S−→

r
D.

232



V. Mathew and S. Arumugam

Theorem 2.5 ([12]). A resolving function f of a graph G is a minimal resolving function if and only if Pf−→r Bf .

Example 2.6. For the cycle C5 = (u1u2u3u4u5u1), the different R{u, v} sets are R{u1, u2} = {u1, u2, u3, u5}, R{u1, u3} =

{u1, u3, u4, u5}, R{u1, u4} = {u1, u2, u3, u4}, R{u1, u5} = {u1, u2, u4, u5}, R{u2, u5} = {u2, u3, u4, u5}. Define f : V (C5)→

[0, 1] defined by f(u1) = 0.8, f(u2) = 0.25, f(u3) = 0.75 and f(u4) = 0 = f(u5). Then f is a resolving function of C5. Here,

Pf = {u1, u2, u3} and Bf = {{u2, u5}}. Also Pf does not resolve Bf , since d(u1, u2) = d(u1, u5) = 1. Hence f is not an

MRF of G.

Theorem 2.7. Let S be a minimal resolving set of a connected graph G = (V,E). Then f = χS is a minimal resolving

function of G.

Proof. Clearly, f = χS is a resolving function of G. Suppose f is not minimal. Then Pf does not resolve Bf . That is,

S does not resolve Bf since Pf = S. This implies, there exist y ∈ S such that d(u, y) = d(v, y) for all {u, v} ∈ Bf ......(1).

But S is minimal and y ∈ S implies, there exists {x,w} ∈ Vp such that R{x,w} ∩ S = {y}. Hence f(R{x,w}) = 1 and thus

{x,w} ∈ Bf and d(x, y) 6= d(w, y), which is a contradiction to (1). Hence f = χS is a minimal resolving function of G.

Definition 2.8 ([8]). Let f and g be RFs of G and let 0 < λ < 1. Then hλ = λf + (1− λ)g is called a convex combination

of f and g.

Theorem 2.9 ([12]). A convex combination of two resolving functions of a graph G is again a resolving function of G.

Remark 2.10 ([12]). A convex combination of two MRFs of a graph G need not be an MRF of G.

For example, consider the cycle G = C5 = (u1u2u3u4u5u1), the different R{u, v} sets are R{u1, u2} = {u1, u2, u3, u5},

R{u1, u3} = {u1, u3, u4, u5}, R{u1, u4} = {u1, u2, u3, u4}, R{u1, u5} = {u1, u2, u4, u5}, R{u2, u5} = {u2, u3, u4, u5}. The

function f : V (G)→ [0, 1] defined by f(u1) = 1 = f(u2) and f(u3) = 0 = f(u4) = f(u5) is a MRF of G. Also, the function

g : V (G) → [0, 1] defined by g(u1) = 0 = g(u2) = g(u3) and g(u4) = 1 = g(u5) is a MRF of G. Let h = 1
2
f + 1

2
g. Then

h(u1) = 1
2
, h(u2) = 1

2
, h(u3) = 0, h(u4) = 1

2
,and h(u5) = 1

2
. So, h is a resolving function. But Ph = {u1, u2, u4, u5}

and Bh = φ. Clearly, Ph does not resolve Bh. Hence, h is not minimal. Note that in this example Ph = Pf ∪ Pg and

Bh = Bf ∩ Bg.

The following theorem gives a necessary and sufficient condition for the convex combination of two minimal resolving

functions to be minimal.

Theorem 2.11 ([12]). Let G = (V,E) be a connected graph. Let f and g be two MRFs of G. Then any convex combination

of f and g is again a MRF of G if and only if Pf ∪ Pg−→r Bf ∩ Bg

3. Main Section

Cockayne et al. [8] introduced the concept of universal dominating functions of a graph and investigated the existence of

such functions. We now introduce the analogous concept of universal minimal resolving function.

Let FR denote the set of all minimal resolving functions of a graph G. We define a binary relation R on the set FR as

follows: For f, g ∈ FR, fRg if and only if hλ = λf + (1− λ)g is an MRF of G for all λ ∈ (0, 1).

By Theorem 2.9, for all λ ∈ (0, 1), the convex combination λf + (1− λ)g of resolving functions f, g of G, is also a resolving

function. However a convex combination of two minimal resolving functions need not be minimal (Remark 2.10). This fact

led to the concept of a universal minimal resolving function. The study of universal MRFs has an answer to the following

interpolation problem.
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The weight of a function f is |f | = f(V ) =
∑
u∈V

f(u). Let f and g be minimal resolving functions of G with weights |f | = α

and |g| = β. Suppose t ∈ (α, β). Does G have a minimal resolving function h with |h| = t ?. The answer is affirmative if G

has a universal MRF .

Definition 3.1. A universal minimal resolving function (UMRF) is an MRF f whose convex combinations with any other

MRF is also minimal, or equivalently fRg for all g ∈ FR. That is, an MRF g is universal if fRg ∈ FR for all f ∈ FR.

Proposition 3.2. If an MRF g of a graph G = (V,E) satisfies Bg = Vp and for all MRFs f of G, V−→
r
Bf then g is an

universal MRF of G.

Proof. For any MRF f, we have Bg∩Bf = Vp∩Bf = Bf . Also, we have Pf∪Pg ⊆ V. Thus V−→
r
Bf implies Pf∪Pg−→r Bf∩Bg

and hence by Theorem 2.11, g is a universal MRF.

Using the above proposition, we prove the existence of universal MRFs for certain classes of graphs.

Theorem 3.3. The path Pn, n ≥ 3 has a universal MRF.

Proof. Let Pn = (u1, u2, . . . , un). Clearly u1, un ∈ R{u, v} for all u, v ∈ V (Pn). Also for any u, v ∈ V (Pn) we have

R{u, v} =

 V (Pn) if d(u, v) is odd

V (Pn)− {ur} if d(u, v) is even,

where ur is the central vertex of the u-v path if d(u, v) is even. Hence the function g : V (Pn) → [0, 1] defined by g(u1) =

1
2

= g(un) and g(v) = 0 for all v ∈ V − {u1, un}, is an MRF of Pn with Bg = Vp. We now claim that V (Pn)−→
r
Bf , for all

MRF f. Suppose not. Then there exists an MRF f and a vertex x ∈ V (Pn) such that x does not resolve Bf . By Theorem

2.5, we have Pf−→r Bf and hence f(x) = 0. Let {u, v} ∈ Bf . Then f(R{u, v}) = 1 and x /∈ R{u, v}. Let y be a vertex adjacent

to x. Then R{x, y} = V (Pn) and hence f(R{x, y}) = f(R{u, v}) + f(x) = 1. Thus {x, y} ∈ Bf and x−→
r
Bf , which is a

contradiction. Thus for all MRF f, V (Pn)−→
r
Bf and hence by Proposition 3.2, Pn has a universal MRF.

Theorem 3.4. Any odd cycle Cn has a universal MRF.

Proof. Let Cn = (u1u2u3 . . . unu1) where n is odd. Clearly for any u, v ∈ V (Cn) we have R{u, v} = V (Cn) − {ur}

where ur is the central vertex of the u-v section of Cn having even length and hence |R{u, v}| = n− 1. Hence the function

g : V (Cn)→ [0, 1] defined by g(v) = 1
n−1

for all v ∈ V (Cn) is an MRF of Cn with Bg = Vp.

We now claim that V (Cn)−→
r
Bf , for all MRF f. Suppose not. Then there exists an MRF f and a vertex x ∈ V (Cn) such

that x does not resolve Bf . By Theorem 2.5, we have Pf−→r Bf and hence f(x) = 0. Let {u, v} ∈ Bf . Then f(R{u, v}) = 1

and x /∈ R{u, v}. Let ur ∈ R{u, v} be such that f(ur) = ε > 0. Then x ∈ R{ur−1, ur+1} and ur /∈ R{ur−1, ur+1} and

hence R{ur−1, ur+1} = R{u, v} ∪ {x} − {ur}. Now f(R{ur−1, ur+1}) = f(R{u, v}) + f(x) − f(ur) = 1 − ε < 1, which is a

contradiction. Thus for all MRF f, V (Cn)−→
r
Bf and hence by Proposition 3.2, Cn has a universal MRF.

Theorem 3.5. For n ≥ 3, the complete graph G = Kn has a universal MRF.

Proof. Let V (G) = {u1, u2, . . . , un}. Clearly R{u, v} = {u, v} for all u, v ∈ V (G) and hence the function g(u) = 1
2

for all

u ∈ V (G) is an MRF of G with Bg = Vp.

We now claim that V (G)−→
r
Bf , for all MRF f. Suppose not. Then there exists an MRF f and a vertex x ∈ V (G) such

that x does not resolve Bf . By Theorem 2.5, we have Pf−→r Bf and hence f(x) = 0. Let {u, v} ∈ Bf . Then f(R{u, v}) = 1

and x /∈ R{u, v}. Thus f(u) + f(v) = 1. Let f(u) = λ and f(v) = 1 − λ where 0 < λ ≤ 1. If 0 < λ < 1, then
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f(R{u, x}) = f({u, x}) = f(u) + f(x) = λ + 0 < 1, which is a contradiction. Similarly if λ = 1, then f(R{v, x}) =

f({v, x}) = f(v) + f(x) = 0 + 0 < 1, which is again a contradiction. Thus for all MRF f, V (G)−→
r
Bf and hence by

Proposition 3.2, G has a universal MRF.

Proposition 3.6. Let g be an MRF of a connected graph G = (V,E). If there exists some v ∈ V (G) such that v does not

resolve Bg, then g is not a universal MRF of G.

Proof. Let S be any minimal resolving set of G containing v and consider f = χS , the characteristic function of S. Since

v ∈ S, we have v ∈ Pf and so v ∈ Pf ∪ Pg. Also, we have Bf ∩ Bg ⊆ Bg. Since v ∈ Pf ∪ Pg and v does not resolve Bg, we

get Pf ∪ Pg does not resolve Bf ∩ Bg and hence g is not a universal MRF of G.

Corollary 3.7. If g is a universal MRF of a connected graph G = (V,E), then V−→
r
Bg.

Proof. Suppose V does not resolve Bg. Then there exists some v ∈ V (G) such that v does not resolve Bg and so g is not

a universal MRF, which is a contradiction. Hence V−→
r
Bg.

Proposition 3.8. Let G = (V,E) be a graph. If there exists {u, v} ∈ Vp such that for each x ∈ R{u, v} there exists an

MRF fx such that x does not resolve Bfx , then G does not have a universal MRF.

Proof. Let {u, v} ∈ Vp satisfies the hypotheses of the proposition. fx is an MRF implies Pfx−→r Bfx . Suppose g is a

universal MRF of G. Then Pg ∪ Pfx−→r Bg ∩ Bfx . We have Bg ∩ Bfx ⊆ Bfx and hence x does not resolve Bg ∩ Bfx . Then

g(x) = 0. For, suppose g(x) > 0. Then x ∈ Pg ∪ Pfx and thus x−→
r
Bg ∩ Bfx ⊆ Bfx , which is a contradiction. Since x is

arbitrary we get g(x) = 0 for all x ∈ R{u, v}. Hence g(R{u, v}) = 0 < 1, which is a contradiction. Therefore, G does not

have a universal MRF.

Proposition 3.9 ([12]). Let f be an MRF of a connected graph G = (V,E). Let {u, v}, {x, y} ∈ Vp with {u, v} ∈ Bf and

R{x, y} ⊂ R{u, v}. Then

(i). {x, y} ∈ Bf and

(ii). f(w) = 0 for all w ∈ R{u, v} −R{x, y}.

Proof.

(i). Since {u, v} ∈ Bf , we have f(R{u, v}) = 1. Now f is an MRF of G and thus 1 ≤ f(R{x, y}) ≤ f(R{u, v}) = 1 so

that f(R{x, y}) = 1 and hence {x, y} ∈ Bf .

(ii). Since {u, v}, {x, y} ∈ Bf , we have
∑

z∈R{u,v}
f(z) = 1 =

∑
z∈R{x,y}

f(z) so that f(w) = 0 for all w ∈ R{u, v}−R{x, y}.

Definition 3.10. Let G = (V,E) be any connected graph. A pair {u, v} ∈ Vp is said to absorb another pair {y, w} ∈ Vp

and {y, w} is said to absorbed by {u, v} if R{y, w} ⊂ R{u, v}, where ⊂ denotes strict inclusion. In this case, {u, v} is

called an absorbing pair of vertices and {y, w} an absorbed pair. Let AG = {{u, v} ∈ Vp : {u, v} is an absorbing pair} and

ΩG = {{y, w} ∈ Vp : {y, w} is an absorbed pair}. If there is no confusion regarding the graph G, we omit the subscript G and

simply write A and Ω.

Example 3.11.

(1). For the bistar G = B(2, 2) we have A = {{u1, u}, {u2, u}, {u1, v1}, {u1, v2}, {u2, v1}, {u2, v2}, {u, v}, {v, v1}, {v, v2},

{u1, v}, {u2, v}, {u, v1}, {u, v2}} and Ω = {{u1, u2}, {v1, v2}, {u1, v}, {u2, v}, {u, v1}, {u, v2}} where u and v are the

non-pendant vertices of G, u1, u2 and v1, v2 are the pendant vertices adjacent to u and v respectively. In this case

A ∩ Ω 6= ∅.
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(2). For the path P4 = (u1, u2, u3, u4) we have A = {{u1, u2}, {u2, u3}, {u3, u4}, {u1, u4}} and Ω = {{u1, u3}, {u2, u4}}

and in this case A ∩ Ω = ∅.

(3). For the complete graph G = Kn, n ≥ 3, we have A = ∅ and Ω = ∅.

Note that A and Ω need not be disjoint. In the next proposition, we show that if A is non-empty then Ω is not contained

in A.

Proposition 3.12. For any connected graph G = (V,E) with A 6= ∅ and for any pair {u, v} ∈ A, there exists a pair

{x, y} ∈ Ω−A such that R{x, y} ⊂ R{u, v}.

Proof. Let {u, v} ∈ A. Then there exists {x1, y1} ∈ Vp such that R{x1, y1} ⊂ R{u, v}. Clearly {x1, y1} ∈ Ω. If {x1, y1} /∈ A,

then the proof is complete. If {x1, y1} ∈ A, choose {x2, y2} ∈ Vp such that R{x2, y2} ⊂ R{x1, y1} ⊂ R{u, v}. By repeating

this procedure we obtain a sequence {u, v}, {x1, y1}, {x2, y2}, . . . , {xt, yt} in Vp with R{xt, yt} ⊂ · · · ⊂ R{x1, y1} ⊂ R{u, v},

and since G is finite, the process terminates with a pair {x, y} such that {x, y} /∈ A.

Definition 3.13. Let f be an MRF of a connected graph G = (V,E). A vertex w ∈ V is defined to be f-sharp, if

Bf ∩R{w} ⊆ A. Also, w is said to be sharp if w is f-sharp for some MRF f of G.

Lemma 3.14. Let G = (V,E) be any connected graph with A 6= ∅. Let f be an MRF of G and let w be any f-sharp vertex

of G. Then

(i). there exists a pair {x, y} ∈ Ω−A such that w /∈ R{x, y} and

(ii). f(w) = 0.

Proof.

(i). Since w is f -sharp, Bf ∩ R{w} ⊆ A. Let {u, v} ∈ Bf ∩ R{w} with R{x, y} ⊂ R{u, v}. Since {u, v} ∈ Bf , by (i) of

Proposition 3.9, we have {x, y} ∈ Bf . Suppose w ∈ R{x, y}. Then {x, y} ∈ R{w} and so {x, y} ∈ Bf ∩ R{w} ⊆ A,

which is a contradiction, since {x, y} ∈ Ω−A. Hence w /∈ R{x, y}.

(ii). We have w /∈ R{x, y}, w ∈ R{u, v}, R{x, y} ⊆ R{u, v} and {u, v} ∈ Bf . Hence it follows from (ii) of Proposition 3.9

that f(w) = 0.

Theorem 3.15. Let g be an MRF of a connected graph G = (V,E) with A 6= ∅. If

(i). Vp −A ⊆ Bg and

(ii). g(w) = 0 for each sharp vertex w of G,

then g is a universal MRF of G.

Proof. Let f be any MRF of G. Since g is also an MRF, we have Pg−→r Bg and Pf−→r Bf . To show that g is universal, it is

enough to show that Pf ∪ Pg−→r Bf ∩ Bg. Let w ∈ Pf ∪ Pg. If w is f -sharp then Bf ∩R{w} ⊆ A and hence by Lemma 3.14,

we have f(w) = 0. Also, by (ii), we have g(w) = 0. This is a contradiction since w ∈ Pf ∪Pg. Hence w is not f -sharp. Thus

there exists a pair {u, v} ∈ Bf ∩ R{w} such that {u, v} /∈ A. By, (i), we have {u, v} ∈ Bg and so {u, v} ∈ Bf ∩ Bg ∩ R{w}.

This implies that w−→
r
Bf ∩Bg (Since w ∈ R{u, v}). Thus Pf ∪Pg−→r Bf ∩Bg, which implies fRg and so g is universal MRF

of G.
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Remark 3.16. Mathew and Arumugam [12], defined the Resolving convexity graph CR(G) of a connected graph G and

obtained the same for some families of graphs. It was observed that the resolving convexity graph CR(G) of G is complete if

and only if every MRF of G is a universal MRF. Also G has no universal MRF if and only if CR(G) has no full degree

vertex.

The follwing are some problems for further investigation.

Problem 3.17. Characterize connected graphs G with AG 6= ∅, which admits universal MRFs.

Problem 3.18. Characterize connected graphs G with AG = ∅, which admits universal MRFs.

Problem 3.19. Which trees admit universal MRFs?

References

[1] S. Arumugam and Varughese Mathew, The fractional metric dimension of graphs, Discrete Math., 312(9)(2012), 1584-

1590.

[2] S. Arumugam, Varughese Mathew and Jian Shen, On fractional metric dimension of graphs, Disc. Math. Algorithms

and Appl., 5(2013), 1-8.

[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak and L. Ram, Network discovery and

verification, IEEE J. on Selected Areas in Communications, 24(2006), 2168-2181.

[4] G. Chartrand, L. Eroh, M. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph,

Discrete Appl. Math., 105(2000), 99-113.

[5] G. Chartrand and L. Lesniak, Graphs & Digraphs, Fourth Edition, Chapman & Hall/CRC, (2005).

[6] G. Chartrand and Ping Zhang, The theory and applications of resolvability in graphs: A Survey, Congressus Numeran-

tium, 160(2003), 47-68.
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[14] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2004), 383-393.

[15] H. Shapiro and S. Soderberg, A combinatory detection problem, Amer. Math. Monthly, 70(1963), 1066-1070.

[16] P. J. Slater, Leaves of trees, Congressus Numerantium, 14(1975), 549-559.

[17] P. J. Slater, Domination and location in acyclic graphs, Networks, 17(1987), 55-64.

237


	 Introduction
	Basic Results
	Main Section
	References

