International Journal of Mathematics And its Applications

Universal Minimal Resolving Functions in Graphs

Varughese Mathew ${ }^{1, *}$ and S. Arumugam ${ }^{2,3,4}$
1 Department of Mathematics, Mar Thoma College Tiruvalla, Kerala, India.
2 National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam University, Tamil Nadu, India.
3 Adjunct Professor, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India.
4 Adjunct Professor, Ball State University, Muncie, USA.

Abstract

A vertex x in a connected graph $G=(V, E)$ is said to resolve a pair $\{u, v\}$ of vertices of G if the distance from u to x is not equal to the distance from v to x. For the pair $\{u, v\}$ of vertices of G the collection of all resolving vertices is denoted by $R\{u, v\}$ and is called the resolving neighborhood for the pair $\{u, v\}$. A real valued function $g: V \rightarrow[0,1]$ is a resolving function $(R F)$ of G if $g(R\{u, v\}) \geq 1$ for all distinct pair $u, v \in V$. A resolving function g is minimal (MRF) if any function $f: V \rightarrow[0,1]$ such that $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V$ is nota resolving function of G. A minimal resolving function $(M R F)$ is called a universal minimal resolving function $(U M R F)$ if its convex combination with every other $M R F$ is again an $M R F$. Minimal resolving functions are related to the fractional metric dimension of graphs. In this paper, we initiate a study of universal minimal resolving functions of a connected graph G.

MSC:
 05 C 12.

Keywords: Metric dimension, Fractional metric dimension, Resolving set, Resolving function, Universal minimal resolving function. (C) JS Publication.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected and connected graph with neither loops nor parallel edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology, we refer to Chartrand and Lesniak [5]. The distance $d(u, v)$ between two vertices u and v in G is the length of a shortest $u-v$ path in G. By an ordered set of vertices we mean a set $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ on which the ordering $\left(w_{1}, w_{2}, \cdots, w_{k}\right)$ has been imposed. For an ordered subset $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of V, we refer to the k-vector (ordered k-tuple) $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$ as the (metric) representation of v with respect to W. The set W is called a resolving set for G if $r(u \mid W)=r(v \mid W)$ implies that $u=v$ for all $u, v \in V(G)$. Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set $\{r(v \mid W): v \in V\}$ consists of n distinct k-vectors. A resolving set of minimum cardinality for a graph G is called a basis for G and the metric dimension of G is defined to be the cardinality of a basis of G and is denoted by $\operatorname{dim}(G)$. A resolving set W of G is a minimal resolving set if no proper subset of W is a resolving set.

A vertex $x \in V$ is said to resolve a pair of vertices $\{u, v\}$ in G if $d(u, x) \neq d(v, x)$. Let V_{p} denote the collection of all $\binom{n}{2}$ pairs of vertices of G. Fehr et al. [9] have defined the Resolving graph $R(G)$ of a connected graph $G=(V, E)$ as a bipartite graph with bipartition $\left(V, V_{p}\right)$ where a vertex $x \in V$ is joined to a pair $\{u, v\} \in V_{p}$ if and only if x resolves $\{u, v\}$

[^0]in G. Then the minimum cardinality of a subset S of V such that $N(S)=V_{p}$ in $R(G)$ is the metric dimension of G, where $N(u)=\{v \in V \mid u v \in E(G)$.

The idea of resolving sets has appeared in the literature previously. In [16] and later in [17], Slater introduced the concept of a resolving set for a connected graph G under the term locating set. He referred to a minimum resolving set as a reference set for G. He called the cardinality of a minimum resolving set (reference set) the location number of G. Independently, Harary and Melter [10], discovered these concepts as well but used the term metric dimension.

Applications of resolving sets arise in various areas including coin weighing problem [15], drug discovery [4], robot navigation [11], network discovery and verification [3], connected joins in graphs [14] and strategies for the mastermind game [7]. For a survey of results in metric dimension, we refer to Chartrand and Ping [6]. Chartrand et al. [4] formulated the problem of finding the metric dimension of a graph as an integer programming problem. Fehr et al. [9], used this idea to formulate the fractional version of metric dimension as follows.

Suppose $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $V_{p}=\left\{s_{1}, s_{2}, \cdots, s_{\binom{n}{2}}\right\}$. Let $A=\left(a_{i j}\right)$ be the $\binom{n}{2} \times n$ matrix with $a_{i j}=1$ if $s_{i} v_{j} \in E(R(G))$ and 0 otherwise, where $1 \leq i \leq\binom{ n}{2}$ and $1 \leq j \leq n$. The integer programming formulation of the metric dimension is given by Minimize $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$

Subject to $A \bar{x} \geq \overline{1}$ where $\bar{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}, x_{i} \in\{0,1\}$ and $\overline{1}$ is the $\binom{n}{2} \times 1$ column vector all of whose entries are 1 . The optimal solution of the linear programming relaxation of the above I.P, where we replace $x_{i} \in\{0,1\}$ by $0 \leq x_{i} \leq 1$, gives the fractional metric dimension of G, which we denote by $\operatorname{dim}_{f}(G)$. The credity of obtaining basic results on fractional metric dimension of graphs goes to Arumugam and Mathew ([1, 2]).

For a detailed study of fractional graph theory and fractionalization of various graph parameters, we refer to Scheinerman and Ullman [13].

In this paper we develop a theory for universal minimal resolving functions analogous to minimal dominating functions [8] of a graph.

2. Basic Results

Definition $2.1([1])$. Let $G=(V, E)$ be a connected graph of order n. A function $f: V \rightarrow[0,1]$ is called a resolving function (RF) of G if $f(R\{u, v\}) \geq 1$ for any two distinct vertices $u, v \in V$, where $f(R\{u, v\})=\sum_{x \in R\{u, v\}} f(x)$. A resolving function g of a graph G is minimal (MRF) if any function $f: V \rightarrow[0,1]$ such that $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V$ is not a resolving function of G.
$M R F s$ generalise the concept of minimal resolving sets of vertices, since the integer valued (i.e. 0 or 1) $M R F s$ are precisely the characteristic functions of the minimal resolving sets of a graph. Mathew and Arumugam [12], initiated a study of minimal resolving functions of a connected graph G and defined the Resolving convexity graph $C_{R}(G)$. We need the follwing definitions and theorems.

Theorem 2.2 ([12]). Let f be a resolving function of a connected graph $G=(V, E)$. Then f is a minimal resolving function of G if and only if whenever $f(x)>0$ there exists $\{u, v\} \in V_{P}$ such that $x \in R\{u, v\}$ and $f(R\{u, v\})=1$.

Definition 2.3 ([12]). Let f be a RF of a graph G. The boundary set \mathcal{B}_{f} and the positive set \mathcal{P}_{f} of f are defined by $\mathcal{B}_{f}=\left\{\{u, v\} \in V_{p}: f(R\{u, v\})=1\right\}$ and $\mathcal{P}_{f}=\{u \in V(G): f(u)>0\}$.

Definition 2.4 ([12]). Let $x \in V$ and $D \subseteq V_{P}$. We say that x resolves D, if there exists a pair $\{u, v\} \in D$ of such that $d(u, x) \neq d(v, x)$ and write $x_{-\rightarrow} D$. Let $S \subseteq V(G)$ and $D \subseteq V_{p}$. We say S resolves D if $x_{\vec{r}} D$ for all $x \in S$ and write $S_{\vec{r}} D$.

Theorem 2.5 ([12]). A resolving function f of a graph G is a minimal resolving function if and only if $\mathcal{P}_{f \rightarrow r} \mathcal{B}_{f}$.
Example 2.6. For the cycle $C_{5}=\left(u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}\right)$, the different $R\{u, v\}$ sets are $R\left\{u_{1}, u_{2}\right\}=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\}, R\left\{u_{1}, u_{3}\right\}=$ $\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}, R\left\{u_{1}, u_{4}\right\}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, R\left\{u_{1}, u_{5}\right\}=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}, R\left\{u_{2}, u_{5}\right\}=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Define $f: V\left(C_{5}\right) \rightarrow$ $[0,1]$ defined by $f\left(u_{1}\right)=0.8, f\left(u_{2}\right)=0.25, f\left(u_{3}\right)=0.75$ and $f\left(u_{4}\right)=0=f\left(u_{5}\right)$. Then f is a resolving function of C_{5}. Here, $\mathcal{P}_{f}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\mathcal{B}_{f}=\left\{\left\{u_{2}, u_{5}\right\}\right\}$. Also \mathcal{P}_{f} does not resolve \mathcal{B}_{f}, since $d\left(u_{1}, u_{2}\right)=d\left(u_{1}, u_{5}\right)=1$. Hence f is not an $M R F$ of G.

Theorem 2.7. Let S be a minimal resolving set of a connected graph $G=(V, E)$. Then $f=\chi_{S}$ is a minimal resolving function of G.

Proof. Clearly, $f=\chi_{S}$ is a resolving function of G. Suppose f is not minimal. Then P_{f} does not resolve B_{f}. That is, S does not resolve B_{f} since $P_{f}=S$. This implies, there exist $y \in S$ such that $d(u, y)=d(v, y)$ for all $\{u, v\} \in B_{f} \ldots \ldots(1)$. But S is minimal and $y \in S$ implies, there exists $\{x, w\} \in V_{p}$ such that $R\{x, w\} \cap S=\{y\}$. Hence $f(R\{x, w\})=1$ and thus $\{x, w\} \in B_{f}$ and $d(x, y) \neq d(w, y)$, which is a contradiction to (1). Hence $f=\chi_{S}$ is a minimal resolving function of G.

Definition 2.8 ([8]). Let f and g be RFs of G and let $0<\lambda<1$. Then $h_{\lambda}=\lambda f+(1-\lambda) g$ is called a convex combination of f and g.

Theorem 2.9 ([12]). A convex combination of two resolving functions of a graph G is again a resolving function of G.
Remark 2.10 ([12]). A convex combination of two MRFs of a graph G need not be an MRF of G.
For example, consider the cycle $G=C_{5}=\left(u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}\right)$, the different $R\{u, v\}$ sets are $R\left\{u_{1}, u_{2}\right\}=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\}$, $R\left\{u_{1}, u_{3}\right\}=\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}, R\left\{u_{1}, u_{4}\right\}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, R\left\{u_{1}, u_{5}\right\}=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}, R\left\{u_{2}, u_{5}\right\}=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$. The function $f: V(G) \rightarrow[0,1]$ defined by $f\left(u_{1}\right)=1=f\left(u_{2}\right)$ and $f\left(u_{3}\right)=0=f\left(u_{4}\right)=f\left(u_{5}\right)$ is a MRF of G. Also, the function $g: V(G) \rightarrow[0,1]$ defined by $g\left(u_{1}\right)=0=g\left(u_{2}\right)=g\left(u_{3}\right)$ and $g\left(u_{4}\right)=1=g\left(u_{5}\right)$ is a MRF of G. Let $h=\frac{1}{2} f+\frac{1}{2} g$. Then $h\left(u_{1}\right)=\frac{1}{2}, h\left(u_{2}\right)=\frac{1}{2}, h\left(u_{3}\right)=0, h\left(u_{4}\right)=\frac{1}{2}$,and $h\left(u_{5}\right)=\frac{1}{2}$. So, h is a resolving function. But $\mathcal{P}_{h}=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$ and $\mathcal{B}_{h}=\phi$. Clearly, \mathcal{P}_{h} does not resolve \mathcal{B}_{h}. Hence, h is not minimal. Note that in this example $\mathcal{P}_{h}=\mathcal{P}_{f} \cup \mathcal{P}_{g}$ and $\mathcal{B}_{h}=\mathcal{B}_{f} \cap \mathcal{B}_{g}$.
The following theorem gives a necessary and sufficient condition for the convex combination of two minimal resolving functions to be minimal.

Theorem 2.11 ([12]). Let $G=(V, E)$ be a connected graph. Let f and g be two MRFs of G. Then any convex combination of f and g is again a $M R F$ of G if and only if $\mathcal{P}_{f} \cup \mathcal{P}_{g} \rightarrow \mathcal{B}_{f} \cap \mathcal{B}_{g}$

3. Main Section

Cockayne et al. [8] introduced the concept of universal dominating functions of a graph and investigated the existence of such functions. We now introduce the analogous concept of universal minimal resolving function.

Let \mathcal{F}_{R} denote the set of all minimal resolving functions of a graph G. We define a binary relation \mathcal{R} on the set \mathcal{F}_{R} as follows: For $f, g \in \mathcal{F}_{R}, f \mathcal{R} g$ if and only if $h_{\lambda}=\lambda f+(1-\lambda) g$ is an $M R F$ of G for all $\lambda \in(0,1)$.
By Theorem 2.9, for all $\lambda \in(0,1)$, the convex combination $\lambda f+(1-\lambda) g$ of resolving functions f, g of G, is also a resolving function. However a convex combination of two minimal resolving functions need not be minimal (Remark 2.10). This fact led to the concept of a universal minimal resolving function. The study of universal MRFs has an answer to the following interpolation problem.

The weight of a function f is $|f|=f(V)=\sum_{u \in V} f(u)$. Let f and g be minimal resolving functions of G with weights $|f|=\alpha$ and $|g|=\beta$. Suppose $t \in(\alpha, \beta)$. Does G have a minimal resolving function h with $|h|=t$?. The answer is affirmative if G has a universal $M R F$.

Definition 3.1. A universal minimal resolving function (UMRF) is an MRF f whose convex combinations with any other $M R F$ is also minimal, or equivalently $f \mathcal{R} g$ for all $g \in \mathcal{F}_{R}$. That is, an $M R F g$ is universal if $f \mathcal{R} g \in \mathcal{F}_{R}$ for all $f \in \mathcal{F}_{R}$.

Proposition 3.2. If an MRF g of a graph $G=(V, E)$ satisfies $\mathcal{B}_{g}=V_{p}$ and for all MRFs f of $G, V_{\vec{r}} \mathcal{B}_{f}$ then g is an universal MRF of G.

Proof. For any $M R F f$, we have $\mathcal{B}_{g} \cap \mathcal{B}_{f}=V_{p} \cap \mathcal{B}_{f}=\mathcal{B}_{f}$. Also, we have $\mathcal{P}_{f} \cup \mathcal{P}_{g} \subseteq V$. Thus $V_{\vec{r}} \mathcal{B}_{f}$ implies $\mathcal{P}_{f} \cup \mathcal{P}_{g} \rightarrow \mathcal{B}_{f} \cap \mathcal{B}_{g}$ and hence by Theorem 2.11, g is a universal $M R F$.

Using the above proposition, we prove the existence of universal MRFs for certain classes of graphs.
Theorem 3.3. The path $P_{n}, n \geq 3$ has a universal MRF.

Proof. Let $P_{n}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Clearly $u_{1}, u_{n} \in R\{u, v\}$ for all $u, v \in V\left(P_{n}\right)$. Also for any $u, v \in V\left(P_{n}\right)$ we have

$$
R\{u, v\}= \begin{cases}V\left(P_{n}\right) & \text { if } d(u, v) \text { is odd } \\ V\left(P_{n}\right)-\left\{u_{r}\right\} & \text { if } d(u, v) \text { is even }\end{cases}
$$

where u_{r} is the central vertex of the $u-v$ path if $d(u, v)$ is even. Hence the function $g: V\left(P_{n}\right) \rightarrow[0,1]$ defined by $g\left(u_{1}\right)=$ $\frac{1}{2}=g\left(u_{n}\right)$ and $g(v)=0$ for all $v \in V-\left\{u_{1}, u_{n}\right\}$, is an $M R F$ of P_{n} with $\mathcal{B}_{g}=V_{p}$. We now claim that $V\left(P_{n}\right)_{r} \mathcal{B}_{f}$, for all $M R F f$. Suppose not. Then there exists an MRFf and a vertex $x \in V\left(P_{n}\right)$ such that x does not resolve \mathcal{B}_{f}. By Theorem 2.5, we have $\mathcal{P}_{f \rightarrow} \mathcal{B}_{f}$ and hence $f(x)=0$. Let $\{u, v\} \in \mathcal{B}_{f}$. Then $f(R\{u, v\})=1$ and $x \notin R\{u, v\}$. Let y be a vertex adjacent to x. Then $R\{x, y\}=V\left(P_{n}\right)$ and hence $f(R\{x, y\})=f(R\{u, v\})+f(x)=1$. Thus $\{x, y\} \in \mathcal{B}_{f}$ and $x_{\vec{r}} \mathcal{B}_{f}$, which is a contradiction. Thus for all MRFf,V(P $)_{\rightarrow} \rightarrow \mathcal{B}_{f}$ and hence by Proposition 3.2, P_{n} has a universal MRF.

Theorem 3.4. Any odd cycle C_{n} has a universal MRF.

Proof. Let $C_{n}=\left(u_{1} u_{2} u_{3} \ldots u_{n} u_{1}\right)$ where n is odd. Clearly for any $u, v \in V\left(C_{n}\right)$ we have $R\{u, v\}=V\left(C_{n}\right)-\left\{u_{r}\right\}$ where u_{r} is the central vertex of the $u-v$ section of C_{n} having even length and hence $|R\{u, v\}|=n-1$. Hence the function $g: V\left(C_{n}\right) \rightarrow[0,1]$ defined by $g(v)=\frac{1}{n-1}$ for all $v \in V\left(C_{n}\right)$ is an $M R F$ of C_{n} with $\mathcal{B}_{g}=V_{p}$.
We now claim that $V\left(C_{n}\right) \underset{r}{\rightarrow} \mathcal{B}_{f}$, for all MRF f. Suppose not. Then there exists an MRF f and a vertex $x \in V\left(C_{n}\right)$ such that x does not resolve \mathcal{B}_{f}. By Theorem 2.5, we have $\mathcal{P}_{f \rightarrow r} \mathcal{B}_{f}$ and hence $f(x)=0$. Let $\{u, v\} \in \mathcal{B}_{f}$. Then $f(R\{u, v\})=1$ and $x \notin R\{u, v\}$. Let $u_{r} \in R\{u, v\}$ be such that $f\left(u_{r}\right)=\epsilon>0$. Then $x \in R\left\{u_{r-1}, u_{r+1}\right\}$ and $u_{r} \notin R\left\{u_{r-1}, u_{r+1}\right\}$ and hence $R\left\{u_{r-1}, u_{r+1}\right\}=R\{u, v\} \cup\{x\}-\left\{u_{r}\right\}$. Now $f\left(R\left\{u_{r-1}, u_{r+1}\right\}\right)=f(R\{u, v\})+f(x)-f\left(u_{r}\right)=1-\epsilon<1$, which is a contradiction. Thus for all MRFf,V(Cn) $\underset{r}{ } \mathcal{B}_{f}$ and hence by Proposition 3.2, C_{n} has a universal MRF.

Theorem 3.5. For $n \geq 3$, the complete graph $G=K_{n}$ has a universal MRF.
Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Clearly $R\{u, v\}=\{u, v\}$ for all $u, v \in V(G)$ and hence the function $g(u)=\frac{1}{2}$ for all $u \in V(G)$ is an $M R F$ of G with $\mathcal{B}_{g}=V_{p}$.
We now claim that $V(G) \underset{r}{\rightarrow} \mathcal{B}_{f}$, for all MRF f. Suppose not. Then there exists an $M R F f$ and a vertex $x \in V(G)$ such that x does not resolve \mathcal{B}_{f}. By Theorem 2.5, we have $\mathcal{P}_{f \rightarrow}{ }_{r} \mathcal{B}_{f}$ and hence $f(x)=0$. Let $\{u, v\} \in \mathcal{B}_{f}$. Then $f(R\{u, v\})=1$ and $x \notin R\{u, v\}$. Thus $f(u)+f(v)=1$. Let $f(u)=\lambda$ and $f(v)=1-\lambda$ where $0<\lambda \leq 1$. If $0<\lambda<1$, then
$f(R\{u, x\})=f(\{u, x\})=f(u)+f(x)=\lambda+0<1$, which is a contradiction. Similarly if $\lambda=1$, then $f(R\{v, x\})=$ $f(\{v, x\})=f(v)+f(x)=0+0<1$, which is again a contradiction. Thus for all MRF $f, V(G)_{\rightarrow} \mathcal{B}_{f}$ and hence by Proposition 3.2, G has a universal $M R F$.

Proposition 3.6. Let g be an MRF of a connected graph $G=(V, E)$. If there exists some $v \in V(G)$ such that v does not resolve B_{g}, then g is not a universal MRF of G.

Proof. Let S be any minimal resolving set of G containing v and consider $f=\chi_{S}$, the characteristic function of S. Since $v \in S$, we have $v \in P_{f}$ and so $v \in P_{f} \cup P_{g}$. Also, we have $\mathcal{B}_{f} \cap \mathcal{B}_{g} \subseteq \mathcal{B}_{g}$. Since $v \in P_{f} \cup P_{g}$ and v does not resolve B_{g}, we get $P_{f} \cup P_{g}$ does not resolve $\mathcal{B}_{f} \cap \mathcal{B}_{g}$ and hence g is not a universal MRF of G.

Corollary 3.7. If g is a universal $M R F$ of a connected graph $G=(V, E)$, then $V_{-\vec{r}} B_{g}$.
Proof. Suppose V does not resolve \mathcal{B}_{g}. Then there exists some $v \in V(G)$ such that v does not resolve \mathcal{B}_{g} and so g is not a universal $M R F$, which is a contradiction. Hence $V_{\vec{r}} B_{g}$.

Proposition 3.8. Let $G=(V, E)$ be a graph. If there exists $\{u, v\} \in V_{p}$ such that for each $x \in R\{u, v\}$ there exists an $M R F f_{x}$ such that x does not resolve $\mathcal{B}_{f_{x}}$, then G does not have a universal $M R F$.

Proof. Let $\{u, v\} \in V_{p}$ satisfies the hypotheses of the proposition. f_{x} is an $M R F$ implies $\mathcal{P}_{f_{x} \rightarrow} \rightarrow \mathcal{B}_{f_{x}}$. Suppose g is a universal $M R F$ of G. Then $\mathcal{P}_{g} \cup \mathcal{P}_{f_{x} \rightarrow} \mathcal{B}_{g} \cap \mathcal{B}_{f_{x}}$. We have $\mathcal{B}_{g} \cap \mathcal{B}_{f_{x}} \subseteq \mathcal{B}_{f_{x}}$ and hence x does not resolve $\mathcal{B}_{g} \cap \mathcal{B}_{f_{x}}$. Then $g(x)=0$. For, suppose $g(x)>0$. Then $x \in \mathcal{P}_{g} \cup \mathcal{P}_{f_{x}}$ and thus $x_{r} \mathcal{B}_{g} \cap \mathcal{B}_{f_{x}} \subseteq \mathcal{B}_{f_{x}}$, which is a contradiction. Since x is arbitrary we get $g(x)=0$ for all $x \in R\{u, v\}$. Hence $g(R\{u, v\})=0<1$, which is a contradiction. Therefore, G does not have a universal $M R F$.

Proposition 3.9 ([12]). Let f be an MRF of a connected graph $G=(V, E)$. Let $\{u, v\},\{x, y\} \in V_{p}$ with $\{u, v\} \in \mathcal{B}_{f}$ and $R\{x, y\} \subset R\{u, v\}$. Then
(i). $\{x, y\} \in \mathcal{B}_{f}$ and
(ii). $f(w)=0$ for all $w \in R\{u, v\}-R\{x, y\}$.

Proof.

(i). Since $\{u, v\} \in \mathcal{B}_{f}$, we have $f(R\{u, v\})=1$. Now f is an $M R F$ of G and thus $1 \leq f(R\{x, y\}) \leq f(R\{u, v\})=1$ so that $f(R\{x, y\})=1$ and hence $\{x, y\} \in \mathcal{B}_{f}$.
(ii). Since $\{u, v\},\{x, y\} \in \mathcal{B}_{f}$, we have $\sum_{z \in R\{u, v\}} f(z)=1=\sum_{z \in R\{x, y\}} f(z)$ so that $f(w)=0$ for all $w \in R\{u, v\}-R\{x, y\}$.

Definition 3.10. Let $G=(V, E)$ be any connected graph. A pair $\{u, v\} \in V_{p}$ is said to absorb another pair $\{y, w\} \in V_{p}$ and $\{y, w\}$ is said to absorbed by $\{u, v\}$ if $R\{y, w\} \subset R\{u, v\}$, where \subset denotes strict inclusion. In this case, $\{u, v\}$ is called an absorbing pair of vertices and $\{y, w\}$ an absorbed pair. Let $\mathcal{A}_{G}=\left\{\{u, v\} \in V_{p}:\{u, v\}\right.$ is an absorbing pair $\}$ and $\Omega_{G}=\left\{\{y, w\} \in V_{p}:\{y, w\}\right.$ is an absorbed pair $\}$. If there is no confusion regarding the graph G, we omit the subscript G and simply write \mathcal{A} and Ω.

Example 3.11.

(1). For the bistar $G=B(2,2)$ we have $\mathcal{A}=\left\{\left\{u_{1}, u\right\},\left\{u_{2}, u\right\},\left\{u_{1}, v_{1}\right\},\left\{u_{1}, v_{2}\right\},\left\{u_{2}, v_{1}\right\},\left\{u_{2}, v_{2}\right\},\{u, v\},\left\{v, v_{1}\right\},\left\{v, v_{2}\right\}\right.$, $\left.\left\{u_{1}, v\right\},\left\{u_{2}, v\right\},\left\{u, v_{1}\right\},\left\{u, v_{2}\right\}\right\}$ and $\Omega=\left\{\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{u_{1}, v\right\},\left\{u_{2}, v\right\},\left\{u, v_{1}\right\},\left\{u, v_{2}\right\}\right\}$ where u and v are the non-pendant vertices of G, u_{1}, u_{2} and v_{1}, v_{2} are the pendant vertices adjacent to u and v respectively. In this case $\mathcal{A} \cap \Omega \neq \emptyset$.
(2). For the path $P_{4}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ we have $\mathcal{A}=\left\{\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{1}, u_{4}\right\}\right\}$ and $\Omega=\left\{\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{4}\right\}\right\}$ and in this case $\mathcal{A} \cap \Omega=\emptyset$.
(3). For the complete graph $G=K_{n}, n \geq 3$, we have $\mathcal{A}=\emptyset$ and $\Omega=\emptyset$.

Note that \mathcal{A} and Ω need not be disjoint. In the next proposition, we show that if \mathcal{A} is non-empty then Ω is not contained in \mathcal{A}.

Proposition 3.12. For any connected graph $G=(V, E)$ with $\mathcal{A} \neq \emptyset$ and for any pair $\{u, v\} \in \mathcal{A}$, there exists a pair $\{x, y\} \in \Omega-\mathcal{A}$ such that $R\{x, y\} \subset R\{u, v\}$.

Proof. Let $\{u, v\} \in \mathcal{A}$. Then there exists $\left\{x_{1}, y_{1}\right\} \in V_{p}$ such that $R\left\{x_{1}, y_{1}\right\} \subset R\{u, v\}$. Clearly $\left\{x_{1}, y_{1}\right\} \in \Omega$. If $\left\{x_{1}, y_{1}\right\} \notin \mathcal{A}$, then the proof is complete. If $\left\{x_{1}, y_{1}\right\} \in \mathcal{A}$, choose $\left\{x_{2}, y_{2}\right\} \in V_{p}$ such that $R\left\{x_{2}, y_{2}\right\} \subset R\left\{x_{1}, y_{1}\right\} \subset R\{u, v\}$. By repeating this procedure we obtain a sequence $\{u, v\},\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{t}, y_{t}\right\}$ in V_{p} with $R\left\{x_{t}, y_{t}\right\} \subset \cdots \subset R\left\{x_{1}, y_{1}\right\} \subset R\{u, v\}$, and since G is finite, the process terminates with a pair $\{x, y\}$ such that $\{x, y\} \notin \mathcal{A}$.

Definition 3.13. Let f be an $M R F$ of a connected graph $G=(V, E)$. A vertex $w \in V$ is defined to be f-sharp, if $\mathcal{B}_{f} \cap R\{w\} \subseteq \mathcal{A}$. Also, w is said to be sharp if w is f-sharp for some $M R F f$ of G.

Lemma 3.14. Let $G=(V, E)$ be any connected graph with $\mathcal{A} \neq \emptyset$. Let f be an $M R F$ of G and let w be any f-sharp vertex of G. Then
(i). there exists a pair $\{x, y\} \in \Omega-\mathcal{A}$ such that $w \notin R\{x, y\}$ and
(ii). $f(w)=0$.

Proof.

(i). Since w is f-sharp, $\mathcal{B}_{f} \cap R\{w\} \subseteq \mathcal{A}$. Let $\{u, v\} \in \mathcal{B}_{f} \cap R\{w\}$ with $R\{x, y\} \subset R\{u$, $v\}$. Since $\{u, v\} \in \mathcal{B}_{f}$, by (i) of Proposition 3.9, we have $\{x, y\} \in \mathcal{B}_{f}$. Suppose $w \in R\{x, y\}$. Then $\{x, y\} \in R\{w\}$ and so $\{x, y\} \in \mathcal{B}_{f} \cap R\{w\} \subseteq \mathcal{A}$, which is a contradiction, since $\{x, y\} \in \Omega-\mathcal{A}$. Hence $w \notin R\{x, y\}$.
(ii). We have $w \notin R\{x, y\}, w \in R\{u, v\}, R\{x, y\} \subseteq R\{u, v\}$ and $\{u, v\} \in \mathcal{B}_{f}$. Hence it follows from (ii) of Proposition 3.9 that $f(w)=0$.

Theorem 3.15. Let g be an $M R F$ of a connected graph $G=(V, E)$ with $\mathcal{A} \neq \emptyset$. If
(i). $V_{p}-\mathcal{A} \subseteq \mathcal{B}_{g}$ and
(ii). $g(w)=0$ for each sharp vertex w of G,
then g is a universal $M R F$ of G.

Proof. Let f be any $M R F$ of G. Since g is also an $M R F$, we have $\mathcal{P}_{g \rightarrow r} \mathcal{B}_{g}$ and $\mathcal{P}_{f \rightarrow r} \mathcal{B}_{f}$. To show that g is universal, it is enough to show that $\mathcal{P}_{f} \cup \mathcal{P}_{g \rightarrow r} \mathcal{B}_{f} \cap \mathcal{B}_{g}$. Let $w \in \mathcal{P}_{f} \cup \mathcal{P}_{g}$. If w is f-sharp then $\mathcal{B}_{f} \cap R\{w\} \subseteq \mathcal{A}$ and hence by Lemma 3.14 , we have $f(w)=0$. Also, by $(i i)$, we have $g(w)=0$. This is a contradiction since $w \in \mathcal{P}_{f} \cup \mathcal{P}_{g}$. Hence w is not f-sharp. Thus there exists a pair $\{u, v\} \in \mathcal{B}_{f} \cap R\{w\}$ such that $\{u, v\} \notin \mathcal{A}$. By, (i), we have $\{u, v\} \in \mathcal{B}_{g}$ and so $\{u, v\} \in \mathcal{B}_{f} \cap \mathcal{B}_{g} \cap R\{w\}$. This implies that $\underset{r}{ } \mathcal{B}_{f} \cap \mathcal{B}_{g}$ (Since $w \in R\{u, v\}$). Thus $\mathcal{P}_{f} \cup \mathcal{P}_{g \rightarrow r} \mathcal{B}_{f} \cap \mathcal{B}_{g}$, which implies $f \mathcal{R} g$ and so g is universal $M R F$ of G.

Remark 3.16. Mathew and Arumugam [12], defined the Resolving convexity graph $C_{R}(G)$ of a connected graph G and obtained the same for some families of graphs. It was observed that the resolving convexity graph $C_{R}(G)$ of G is complete if and only if every $M R F$ of G is a universal MRF. Also G has no universal $M R F$ if and only if $C_{R}(G)$ has no full degree vertex.

The follwing are some problems for further investigation.

Problem 3.17. Characterize connected graphs G with $\mathcal{A}_{G} \neq \emptyset$, which admits universal MRFs.

Problem 3.18. Characterize connected graphs G with $\mathcal{A}_{G}=\emptyset$, which admits universal MRFs.

Problem 3.19. Which trees admit universal MRFs?

References

[1] S. Arumugam and Varughese Mathew, The fractional metric dimension of graphs, Discrete Math., 312(9)(2012), 15841590.
[2] S. Arumugam, Varughese Mathew and Jian Shen, On fractional metric dimension of graphs, Disc. Math. Algorithms and Appl., 5(2013), 1-8.
[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak and L. Ram, Network discovery and verification, IEEE J. on Selected Areas in Communications, 24(2006), 2168-2181.
[4] G. Chartrand, L. Eroh, M. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105(2000), 99-113.
[5] G. Chartrand and L. Lesniak, Graphs \& Digraphs, Fourth Edition, Chapman \& Hall/CRC, (2005).
[6] G. Chartrand and Ping Zhang, The theory and applications of resolvability in graphs: A Survey, Congressus Numerantium, 160(2003), 47-68.
[7] V. Chvátal, Mastermind, Combinatorica, 3(1983), 325-329.
[8] E. J. Cockayne, G. Fricke, S. T. Hedetniemi and C. M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combinatoria, 41(1995), 107-115.
[9] M. Fehr, Shonda Gosselin and Ortrud R. Oellermann, The metric dimension of cayley digraphs, Discrete Mathematics, 306(2006), 31-41.
[10] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2(1976), 191-195.
[11] S. Khuller, B. Raghavachari and A. Rosenfield, Landmarks in graphs, Disc. Appl. Math., 70(1996), 217-229.
[12] V. Mathew and S. Arumugam, Convexity of Minimal Resolving Functions in Graphs, Rational Discourse, 24(1)(2018), 8 pages.
[13] Scheinerman, E. R. and D. H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs, John wiley \& sons, New York, (1997).
[14] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2004), 383-393.
[15] H. Shapiro and S. Soderberg, A combinatory detection problem, Amer. Math. Monthly, 70(1963), 1066-1070.
[16] P. J. Slater, Leaves of trees, Congressus Numerantium, 14(1975), 549-559.
[17] P. J. Slater, Domination and location in acyclic graphs, Networks, 17(1987), 55-64.

[^0]: * E-mail: varughesemathewmtc@gmail.com

