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1. Introduction

By a graph G = (V,E), we mean a finite, undirected and connected graph with neither loops nor parallel edges. The order

and size of G are denoted by n and m respectively. For graph theoretic terminology, we refer to Chartrand and Lesniak [4].

The concept of energy of a graph was introduced by I. Gutman [9] in the year 1978. Let A = (aij) be the adjacency matrix

of a graph G = (V,E). The eigenvalues λ1, λ2, · · · , λn of A, assumed in non increasing order, are the eigenvalues of the

graph G. Since, A is real and symmetric, the eigenvalues of G are real and
n∑

i=1

λi = 0. The energy E(G) of G is defined to

be the sum of the absolute values of the eigenvalues of G. That is E(G) =
n∑

i=1

|λi|.

For more details on the theory of graph energy we refer to ([6, 7, 10, 11]). The upper and lower bounds for energy of a graph

G and its basic properties can be found in ([14, 15]). The topic graph energy is a part of Spectral Graph Theory which

deals with the eigenvalues of various matrices associated with graphs namely adjacency matrix, Incidence matrix, Laplacian

Matrix etc. Spectral graph theory has applications in chemistry in the study of molecular orbital theory of conjugated

molecules ([8, 12]). For various matrices associated with graphs, we refer to [1].

Adiga et al. [3] and Rajesh Kanna et al. [16] have defined, the minimum covering energy EC(G) and the minimum

dominating energy ED(G) respectively for a graph G and computed them for several families of graphs. Various upper and

lower bounds are also established. In this paper, we initaite a similar study for the minimum resolving set of a graph.

The distance d(u, v) between two vertices u and v in G is the length of a shortest u-v path in G. By an ordered set of

vertices we mean a set W = {w1, w2, · · · , wk} on which the ordering (w1, w2, · · · , wk) has been imposed. For an ordered

subset W = {w1, w2, · · · , wk} of V , we refer to the k-vector (ordered k-tuple) r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) as

∗ E-mail: varughesemathewmtc@gmail.com
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the (metric) representation of v with respect to W . The set W is called a resolving set for G if r(u|W ) = r(v|W ) implies

that u = v for all u, v ∈ V (G). Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set

{r(v|W ) : v ∈ V } consists of n distinct k-vectors. A resolving set of minimum cardinality for a graph G is called a basis for

G and the metric dimension of G is defined to be the cardinality of a basis of G and is denoted by dim(G). A vertex x ∈ V

is said to resolve a pair of vertices {u, v} in G if d(u, x) 6= d(v, x). It is well known that for a connected graph G with n

vertices, 1 ≤ dim(G) ≤ n− 1.

The idea of resolving sets has appeared in the literature previously. In [17] and later in [18], Slater introduced the concept of

a resolving set for a connected graph G under the term locating set. He referred to a minimum resolving set as a reference

set for G. He called the cardinality of a minimum resolving set (reference set) the location number of G. Independently,

Harary and Melter [13], discovered these concepts as well but used the term metric dimension. For a survey of results in

metric dimension, we refer to Chartrand and Ping [5].

2. The Minimum Resolving Energy

Definition 2.1. Let G = (V,E) be a connected graph of order n, with V = {v1, v2, · · · , vn}. Let R ⊂ V be a minimum

resolving set of G. Then |R| = dim(G), the metric dimension of G. The minimum resolving matrix of G is the n× n matrix

defined by AR(G) = (aij), where

aij =


1 if vivj ∈ E

1 if i = j and vi ∈ R

0 otherwise.

AR(G) is a real and symmetric matrix. Also note that trace of AR(G) = dim(G).

Definition 2.2. The characteristic polynomial of AR(G) is defined by fn(G,λ) = det(λI − AR(G)), and we call it the

minimum resolving polynomial of A corresponding to R. Eigenvalues of AR(G) are called minimum resolving eigenvalues

w.r.t R. They are real numbers and we can arrange them in non-increasing order say λ1 ≥ λ2 ≥ · · ·λn. The minimum

resolving energy of G is defined as ER(G) =
n∑

i=1

|λi|.

The minimum resolving energy of a graph G may not be unique and it depends on the resolving set of G. Consider the

following graph.

ss

s s
s

Graph G

v1 v2

v3v4

v5

Example 2.3. The metric dimension of the above graph G is 2 and all resolving sets in G of cardinality 2 are R1 = {v1, v2},

R2 = {v1, v3}, R3 = {v1, v4}, R4 = {v2, v3} and R5 = {v3, v4}.
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(i). R1 = {v1, v2}

AR1(G) =



1 0 0 1 1

0 1 1 0 1

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0


Its characteristic equation is λ5 − 2λ4 − 6λ3 + 4λ2 + 8λ = 0. Minimum resolving eigenvalues w.r.t R1 are λ1 ≈ 3.2361, λ2 ≈

−1.4142, λ3 ≈ 1.4142, λ4 ≈ −1.2361 and λ5 = 0. So the minimum resolving energy ER1(G) =
5∑
i

λi ≈ 7.3006.

(ii). R2 = {v1, v3}

AR2(G) =



1 0 0 1 1

0 0 1 0 1

0 1 1 1 1

1 0 1 0 1

1 1 1 1 0


Its characteristic equation is λ5 − 2λ4 − 6λ3 + 3λ2 + 7λ+ 1 = 0. Minimum resolving eigenvalues w.r.t R2 are λ1 = −1, λ2 ≈

−0.15644, λ3 ≈ 3.33297, λ4 ≈ 1.29940 and λ5 = −1.47593. So the minimum resolving energy ER2(G) =
5∑
i

λi ≈ 7.26474. For

R4 = {v2, v3}, the charactersitic equation is same as that of AR2 and so ER4(G) ≈ 7.26474.

(iii). For R3 = {v1, v4}, the characteristic equation of AR3(G) is λ5 − 2λ4 − 6λ3 + 3λ2 + 6λ − 1 = 0. Minimum resolving

eigenvalues w.r.t R3 are λ1 ≈ −0.15829, λ2 ≈ −1.35190, λ3 ≈ 1.09405, λ4 ≈ −1.26823 and λ5 = 3.36777. So the minimum

resolving energy ER3(G) ≈ 7.24024.

(iv). For R5 = {v3, v4}, the characteristic equation of AR5(G) is λ5−2λ4−6λ3+2λ2+5λ = 0. Minimum resolving eigenvalues

w.r.t R5 are λ1 = 0, λ2 = −1, λ3 = 1, λ4 ≈ 3.4495 and λ5 = −1.4495. So the minimum resolving energy ER5(G) ≈ 6.899.

Now we give the minimum resolving energy of some standard graphs.

Theorem 2.4. For the path Pn, 1 ≤ n ≤ 9, the minimum resolving energy are given in the following table

Pn ER(Pn) ≈

1 1

2 2.2361

3 3.4939

4 4.7588

5 6.0267

6 7.296

7 8.5668

8 9.8379

9 11.1095

Proof. Let the path Pn on n vertices be Pn = (v1, v2, · · · vn). For a connected graph G, it is well known that the metric

dimension dim(G) = 1 if and only if G is a path. Also the resolving sets of Pn with cardinality one are the end vertices

{v1} and {vn}. Let R = {v1}. When n = 1, clearly ER(P1) = 1. When n = 2, the characteristic equation for AR(G) is

λ2 − λ− 1 = 0 and minimum resolving eigenvalues are λ1 ≈ 1.61803 and λ2 ≈ 0.61803. Thus the minimum resolving energy

ER(P2) ≈ 2.2361.

When n = 3, the characteristic equation for AR(G) is λ3 − λ2 − 2λ + 1 = 0 and minimum resolving eigenvalues are

λ1 ≈ 0.44504, λ2 ≈ 1.24697 and λ3 ≈ 1.80193. Thus the minimum resolving energy ER(P3) ≈ 3.4939.
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When n = 4, the characteristic equation for AR(G) is λ4 − λ3 − 3λ2 + 2λ + 1 = 0 and minimum resolving eigenvalues are

λ1 = 1, λ2 ≈ −0.34729, λ3 ≈ −1.53208 and λ4 ≈ 1.87938. Thus the minimum resolving energy ER(P4) ≈ 4.7588.

When n = 5, the characteristic equation for AR(G) is λ5 − λ4 − 4λ3 + 3λ2 + 3λ− 1 = 0 and minimum resolving eigenvalues

are λ1 ≈ 0.28462, λ2 ≈ −1.68250, λ3 ≈ 1.91898, λ4 ≈ −0.83083 and λ5 ≈ 1.30972. Thus the minimum resolving energy

ER(P5) ≈ 6.0267.

When n = 6, the characteristic equation for AR(G) is λ6 − λ5 − 5λ4 + 4λ3 + 6λ2 − 3λ − 1 = 0 and minimum resolving

eigenvalues are λ1 ≈ −0.24107, λ2 ≈ 0.70920, λ3 ≈ −1.77091, λ4 ≈ 1.94188, λ5 ≈ −1.13612 and λ6 ≈ 1.49702. Thus the

minimum resolving energy ER(P6) ≈ 7.296.

When n = 7, the characteristic equation for AR(G) is λ7−λ6− 6λ5 + 5λ4 + 10λ3− 6λ2− 4λ+ 1 = 0 and minimum resolving

eigenvalues are λ1 = 1, λ2 ≈ 0.20905, λ3 ≈ 1.61803, λ4 ≈ −1.33826, λ5 ≈ −0.61803, λ6 ≈ −1.82709 and λ7 ≈ 1.95629. Thus

the minimum resolving energy ER(P7) ≈ 8.5668.

When n = 8, the characteristic equation for AR(G) is λ8 − λ7 − 7λ6 + 6λ5 + 15λ4 − 10λ3 − 10λ2 + 4λ+ 1 = 0 and minimum

resolving eigenvalues are λ1 ≈ −0.18453, λ2 ≈ 1.20526, λ3 ≈ 1.96594, λ4 ≈ 1.70043, λ5 ≈ −1.86494, λ6 ≈ 0.54732, λ7 ≈

−0.89147 and λ8 ≈ −1.47801. Thus the minimum resolving energy ER(P8) ≈ 9.8379. When n = 9, the characteristic

equation for AR(G) is λ9 − λ8 − 8λ7 + 7λ6 + 21λ5 − 15λ4 − 20λ3 + 10λ2 + 5λ − 1 = 0 and minimum resolving eigenvalues

are λ1 ≈ 0.16515, λ2 ≈ −1.09389, λ3 ≈ −1.89163, λ4 ≈ 1.97272, λ5 ≈ −1.57828, λ6 ≈ 1.75894, λ7 ≈ −0.49097, λ8 ≈ 0.80339

and λ9 ≈ 1.35456. Thus the minimum resolving energy ER(P9) ≈ 11.1095.

Theorem 2.5. For the cycle Cn, 3 ≤ n ≤ 9, the minimum resolving energy are given in the following table

Cn ER(Cn) ≈

3 3.4642

4 5.2361

5 7.1231

6 8.2527

7 8.9664

8 10.4834

9 12.0563

Proof. Let the cycle Cn on n vertices be Cn = (v1, v2, · · · vn, v1), n ≥ 3. The metric dimension dim(Cn) = 2 and any two

adjacent vertices is a minimum resolving set of Cn. So take R = {v1, v2}.

When n = 3, the characteristic equation for AR(G) is λ3−2λ2−2λ = 0 and minimum resolving eigenvalues are λ1 = 0, λ2 ≈

2.7321 and λ3 ≈ −0.7321. Thus the minimum resolving energy ER(C3) ≈ 3.4642.

When n = 4, the characteristic equation for AR(G) is λ4 − 2λ3 − 3λ2 + 4λ− 1 = 0 and minimum resolving eigenvalues are

λ1 ≈ 0.381966, λ2 ≈ 0.618033, λ3 ≈ 1.618033 and λ4 ≈ 2.6180339. Thus the minimum resolving energy ER(C4) ≈ 5.2361.

When n = 5, the characteristic equation for AR(G) is λ5− 2λ4− 4λ3 + 6λ2 + 3λ− 4 = 0 and minimum resolving eigenvalues

are λ1 = −1, λ2 = 1, λ3 = 1, λ4 ≈ 2.5615528 and λ5 ≈ −1.5615528. Thus the minimum resolving energy ER(C5) ≈ 7.1231.

When n = 6, the characteristic equation for AR(G) is λ6 − 2λ5 − 5λ4 + 8λ3 + 6λ2 − 6λ − 3 = 0 and minimum resolving

eigenvalues are λ1 ≈ −0.44504, λ2 ≈ 2.53208, λ3 ≈ −1.80193, λ4 ≈ 1.34729, λ5 ≈ −0.87938 and λ6 ≈ 1.24627. Thus the

minimum resolving energy ER(C6) ≈ 8.2527.

When n = 7, the characteristic equation for AR(G) is λ7− 2λ6− 6λ5 + 10λ4 + 10λ3− 12λ2− 4λ = 0 and minimum resolving

eigenvalues are λ1 = 0, λ2 ≈ −0.28733, λ3 ≈ 1.55240, λ4 ≈ −1.78165, λ5 ≈ 2.51657, λ6 ≈ 1.41421 and λ7 ≈ −1.41421. Thus

the minimum resolving energy ER(C7) ≈ 8.9664.
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When n = 8, the characteristic equation for AR(G) is λ8−2λ7−7λ6 +12λ5 +15λ4−20λ3−10λ2 +8λ−1 = 0 and minimum

resolving eigenvalues are λ1 = −1, λ2 ≈ 0.17421, λ3 ≈ 0.34729, λ4 ≈ 2.50848, λ5 ≈ −1.87938, λ6 ≈ 1.67964, λ7 ≈ −1.36233

and λ8 ≈ 1.53208. Thus the minimum resolving energy ER(C8) ≈ 10.4834.

When n = 9, the characteristic equation for AR(G) is λ9 − 2λ8 − 8λ7 + 14λ6 + 21λ5 − 30λ4 − 20λ3 + 20λ2 + 5λ − 4 = 0

and minimum resolving eigenvalues are λ1 ≈ 0.61803, λ2 ≈ −1.86993, λ3 ≈ 2.50430, λ4 ≈ −1.61803, λ5 ≈ 1.76213, λ6 ≈

−0.92215, λ7 ≈ 0.52565, λ8 ≈ −0.61803 and λ9 ≈ 1.61803. Thus the minimum resolving energy ER(C9) ≈ 12.0563.

Theorem 2.6. For the complete graph Kn, n ≥ 2, the minimum resolving energy ER(Kn) =
√
n2 + 2n− 3.

Proof. Let V (Kn) = {v1, v2, · · · , vn}. The metric dimension dim(Kn) = n − 1. So any subset of (n − 1) vertices is a

minimum resolving set of Kn. Take R = {v1, v2, · · · , vn−1}. The resolving matrix of A for R is (aij), where aij = 1∀i, j, i 6=

n, j 6= n, ann = 0. That is,

AR(Kn) =



1 1 1 . . . 1 1

1 1 1 . . . 1 1

1 1 1 . . . 1 1

. . . . . .

. . . . . .

1 1 1 . . . 1 0


n×n

The characteristic polynomial is ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 . . . −1 −1

−1 λ− 1 −1 . . . −1 −1

−1 −1 λ− 1 . . . −1 −1

. . . . . .

. . . . . .

−1 −1 −1 . . . −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The characteristic equation is λn−2(λ2 − (n − 1)λ − (n − 1)) = 0. The minimum resolving eigenvalues are λ = 0[(n − 2)

times], λ =
(n−1)±

√
n2+2n−3

2
[ one time each ]. The minimum resolving energy is

ER(Kn) = |0|(n− 2) +

∣∣∣∣ (n− 1) +
√
n2 + 2n− 3

2

∣∣∣∣+

∣∣∣∣ (n− 1)−
√
n2 + 2n− 3

2

∣∣∣∣ =
√
n2 + 2n− 3.

Theorem 2.7. For the complete bipartite graph Kn,n, n ≥ 2, the minimum resolving energy ER(Kn,n)

is equal to 3(n− 1) +
√
n2 − 2n+ 5.

Proof. Let the bipartition of Kn,n be V = (X,Y ), where X = {v1, v2, · · · , vn} and Y = {u1, u2, · · · , un}. We know

that the metric dimension of a complete bipartite graph G with n vertices is (n − 2), and so dim(Kn,n) = n + n −

2 = 2n − 2. Clearly the union of any (n − 1) vertices from each bipartite sets is a ninimum resolving set of Kn,n. Let

R = {v1, v2, · · · , vn−1, u1, u2, · · · , un−1}. Then R is a minimum resolving set of Kn,n. Now the minimum resolving matrix is
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AR(Kn,n) =



1 0 .. 0 0 1 1 .. 1 1

0 1 .. 0 0 1 1 .. 1 1

. . .. . . . . .. . .

0 0 .. 1 0 1 1 .. 1 1

0 0 .. 0 0 1 1 .. 1 1

1 1 .. 1 1 1 0 .. 0 0

1 1 .. 1 1 0 1 .. 0 0

. . .. . . . . .. . .

1 1 .. 1 1 0 0 .. 1 0

1 1 .. 1 1 0 0 .. 0 0


2n×2n

The characteristic polynomial is ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 0 .. 0 0 −1 −1 .. −1 −1

0 λ− 1 .. 0 0 −1 −1 .. −1 −1

. . .. . . . . .. . .

0 0 .. λ− 1 0 −1 −1 .. −1 −1

0 0 .. 0 λ −1 −1 .. −1 −1

−1 −1 .. −1 −1 λ− 1 0 .. 0 0

−1 −1 .. −1 −1 0 λ− 1 .. 0 0

. . .. . . . . .. . .

−1 −1 .. −1 −1 0 0 .. λ− 1 0

−1 −1 .. −1 −1 0 0 .. 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The characteristic equation is (λ − 1)2n−4(λ2 − (n + 1)λ + 1)(λ2 + (n − 1)λ − 1) = 0. The minimum resolving eigenvalues

are λ = 1 [(2n− 4) times], λ =
(n+1)±

√
n2+2n−3

2
[ one time each ], λ =

−(n−1)±
√

n2−2n+5

2
[ one time each ]. The minimum

resolving energy is

ER(Kn,n) = |1|(2n− 4) +

∣∣∣∣−(n− 1) +
√
n2 − 2n+ 5

2

∣∣∣∣+

∣∣∣∣−(n− 1)−
√
n2 − 2n+ 5

2

∣∣∣∣+

∣∣∣∣ (n+ 1) +
√
n2 + 2n− 3

2

∣∣∣∣
+

∣∣∣∣ (n+ 1)−
√
n2 + 2n− 3

2

∣∣∣∣
= (2n− 4) +

√
n2 − 2n+ 5 + (n+ 1) = 3(n− 1) +

√
n2 − 2n+ 5.

In the next theorem, we compute the sum of the minimum resolving eigenvalues of a graph G and also sum of its squares.

Theorem 2.8. Let G = (V,E) be a graph and R be any minimum resolving set of G. If λ1, λ2, · · · , λn are the eigenvalues

of the matrix AR(G), then
n∑
i

λi = dim(G) and
n∑
i

λ2
i = dim(G) + 2m(G).

Proof. We have |R| = dim(G). Consider the minimum resolving matrix AR(G). We know that the trace of a square

matrix equals the sum of the eigenvalues counted with multiplicities. Thus
n∑
i

λi =
n∑
i

aii = |R| and so
n∑
i

λi = dim(G).

Also we know that the sum of the squares of the eigenvalues of a square matrix A equals the trace of the matrix A2. Thus
n∑
i

λ2
i =

n∑
i

n∑
j

aijaji =
n∑
i

(aii)
2 +

∑
i 6=j

aijaji =
n∑
i

(aii)
2 + 2

∑
i<j

(aij)
2 = |R|+ 2|E|. That is,

n∑
i

λ2
i = dim(G) + 2m(G).
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In the next theorem, we show that largest minimum resolving eigenvalue of a graph G is always greater than or equal to

2m+dim(G)
n

.

Theorem 2.9. If λ1(G) is the largest minimum resolving eigenvalue of G, then λ1(G) ≥ 2m+dim(G)
n

.

Proof. For any square matrix A, by [1] we have λ1(A) = maxX 6=0{X
′
AX

X
′
X

: X is a vector}. Let J be the vector with all

entries are 1. Then clearly, λ1(A) ≥ J
′
AJ

J
′
J

= 2m+dim(G)
n

.

Rajesh Kanna et al. [16], has obtained bounds for the minimum dominating energy ED(G) of a graph. Similar bounds can

be obtained for ER(G). We state the following two theorems without proof.

Theorem 2.10. For the graph G = (V,E) with a minimum resolving set R, we have

√
(2m+ dim(G)) + n(n− 1)P

2
n ≤ ER(G) ≤

√
n(2m+ dim(G)).

Theorem 2.11. Let G = (V,E) be a graph. If (2m+ dim(G)) ≥ n, then

ER(G) ≤ 2m+ dim(G)

n
+

√
(n− 1)[(2m+ dim(G))− (

2m+ dim(G)

n
)2].

Bapat and Pati [2] proved that if the graph energy is a rational number then it is an even integer. In the following theorem,

we give a similar result for minimum resolving energy of a graph G.

Theorem 2.12. Let G = (V,E) be a graph and R be any minimum resolving set of G. If the minimum resolving energy

ER(G) is a rational number, then ER(G) ≡ dim(G) (mod 2).

Proof. Let λ1, λ2 · · · , λn be minimum resolving eigenvalues of G. Assume that λ1, λ2 · · · , λr, r < n are positive and the rest

are non-positive. Then
n∑

i=1

|λi| =
r∑

i=1

λi−
n∑

i=r+1

λi = 2
r∑

i=1

λi−
n∑

i=1

λi. That is, ER(G) = 2
r∑

i=1

λi−|R|. Thus ER(G) ≡ dim(G)

(mod 2).

Results on ER(G) for various other graphs G, graph products and other bounds are obtained and will be communicated

shortly.
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