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For a simple graph G, the edge graceful irregular s-labeling is a mapping f: VJE — {1,2,3, ..., s} such that if for any
two distinct edges e and g, wt (e) # wt (g), wt (wv) = |f (u) + f (v) — f (uv)|. The edge graceful irregularity strength of
G, denoted by egs (G) is the smallest k for which G has an edge graceful irregular s-labeling. In this paper we determine
the exact value of an edge graceful irregularity strength of graphs, namely gear, helm, closed helm and flower graph.
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1. Introduction

In this paper, we consider only finite simple undirected graphs with order p and size q. For graph theoretic notation we

follow [4, 6]. A labeling of a graph G is a mapping that carries a set of graph elements, usually integers. Many kinds of

labeling have been studied and an excellent survey of graph labeling can be found in [3]. Motivated by irregular assignments,

irregularity strength of graphs was introduced by Chartrand et al., [1] and papers [2, 5, 8]. Ahmad, Al-Mushayt and Baca [7]

defined the notion of an edge irregular k-labeling of a graph G to be labeling of the vertices of G, ¢ : V (G) — {1,..., k}such

that, the edge weights wg (uv) = ¢ (u) + ¢ (v) are distinct for every edges. The minimum k for which the graph G has an

edge irregular k-labeling is called an edge irregularity strength of G.

From an edge irregularity strength of G, we have found an edge graceful irregularity strength of graphs. For a simple graph

G, the edge graceful irregular s-labeling is a mapping f: VJE — {1,2,3,...,s} such that if for any two distinct edges e

and g, wt(e) # wt(g), wt (wv) = |f (u) + f (v) — f (uv)|. The edge graceful irregularity strength of G, denoted by egs (G)

is the smallest k£ for which G has an edge graceful irregular s-labeling.

In this paper, we study an edge graceful irregular labeling and determine a value of the edge graceful irregularity strength

for classes of wheel related graph, such as gear,helm, closed helm and flower graph.

2. Main Results

Theorem 2.1. For any graph G of size q, the lower bound for egs (G) = [%W

* E-mail: durgamath108@Qgmail.com



http://ijmaa.in/

Edge Graceful Irregularity Strength of Wheel Related Graphs

Definition 2.2. A Gear graph G, is a wheel graph with a vertex added between each pair of adjacent vertices of the outer

cycle.
Theorem 2.3. An edge graceful irreqularity strength of gear graph G, n > 3 is [37"-‘

Proof. Let

V(Gn) = {u}U{uZH <i< R}U{’UZH <i<n} and

E(Gn) = {uw]l <i < n}U{uiviH <i< n}U{viui+1|1 <i<n-— 1}U{vnu1}.

Then from Theorem 2.1, egs (Gn) > [22].
To prove the upper bound.
We define a function f: V (G,)J E (Grn) — {1, 2,..., (37"]} as follows.

fu)=1
f@ﬂz_n;1_+a 1<i<n
f(v) = 3”;1J7 1<i<n
Flw)=|"E2 1<is<n
f(uivi) =n+1, 1<i<n
f(ivigr) =1, 1<i<n-1
f(vpur) =1

From the above labeling we get,

wt (uwi) = |f (u) + f (ui) = f (uwi)]

- [ e 5]

=i—1,1<i<n

wt (wivi) = | f (wi) + f (vi) — f (uivi)]

R

—nti-1,1<i<n
wt (vinir1) = |f (vi) + f (wit1) — f (vinit1)]

3n+1 n—1 .
= 1-1

=2n+14, 1 <i<n-1
wt (vnun) = |f (vn) + f (1) = f (onr)]
3n+1 n—1
=[] [

=2n

The above labeling shows that, egs (Gn) < [2]. Combining this with the lower bound, we get, egs (Gn) = [22].
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Figure 1. egs(Gg) =12
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Definition 2.4. The helm graph H, is the graph obtained from the wheel graph by adding a pendent edge at each vertex of
the cycle.

Theorem 2.5. An edge graceful irreqularity strength of Helm graph H,, n > 3 is [37"]

Proof.  Let

V (Hy) = {u} [ J{wll <i<n}{J{wil1 <i<n} and

E(Hy) = {uw|1 <i <n}|J{wiwira |1 <i <n— 1} {unua} (J{wsvi1 <i <n}.

Then from theorem 1, egs (Hn) > [3*].

To prove the upper bound.
We define a function f: V (H,)JE (Hn) — {1,2,...,[%*]} as follows.

fu)=1
f(ul)_n+B'J, 1<i<n
f(vl)—n—&—[é—‘, 1<i<n
f(uui)=n+2—g-‘, 1<i<n
f(uuip) =n+1, 1<i<n-—1
f ) = |52
f(wivi) =1, 1<i<n

From the above labeling, we get,

—i—1,1<i<n
wt (uitiit1) = |f (us) + f (wig1) — f (wittiv1))]

n+ BJ +n+ V;lJ —(n—i—l)’
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n4i—1,1<i<n-—1
wt (unur) = |f (un) + f (u1) = f (unu1)|
ol -]

=2n+i, 1<i<n-—1

wt (uivi) = |f (wi) + f (vi) — f (wivi)|

oo

= —1+i, 1<i<n

N =

The above labeling shows that , egs (Hn) < [2]. Combining this with the lower bound, we get, egs (Hn) = [3*].
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Figure 2. egs(Hg) =12
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Definition 2.6. A closed helm CH,, is the graph obtained by taking a helm graph and adding edges between the pendent

vertices.
Theorem 2.7. An edge graceful irregularity strength of Closed Helm graph CH,, n > 3 is 2n.

Proof. Let

V(CHy) = {u} | J{wll <i<n}| J{wv[l <i<n} and
E(CHy) = {uwi|1 < i < n}|J{uwsmin|1 <i <n— 1} {vivina |1 <i <n = 13 {unw} | {onon} | {uavsl1 < < n}
Then from Theorem 2.1, egs (CHy) > 2n.

To prove the upper bound.
We define a function f: V (CH,) U FE (CH,) — {1,2,...,2n} as follows.

f(u)=2n

f(w) =n+i, 1<i<n
f(vi) =4, 1<i<n
f(uus) =1, 1<i<n

f (wiuig1) = f(vivig1) =244, 1<i<n-—-1

.f (unul) = f (’UnU1) =2
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f(uivi) =144, 1<i<n

From the above labeling, we get,

wt (uwi) = [f (w) + f (wi) = f (vus)|

=2n+n+i—1|
=3n+i—-1,1<i<n

wt (uitir1) = |f (wi) + f (wir1) = f (wiiga)]|
=n+i+n+i+1l—(2+1)
=2n—-1+i, 1<i<n-1

wt (unur) = |f (un) + f (u1) = f (upwr)|
=n+n+n+1-2
=3n—1

wt (vivitr) = |f (vi) + f (Vig1) = f (viviga)]
=li+i+1—(2+1)]
=i—1,1<i<n-1

wt (vnv1) = [f (vn) + [ (v1) = f (vav1)
=[n+1-2
=n—1

wt (uivi) = [ f (wi) + f (vi) — f (wivs)|
=n+i+i—(1+1i)

=n+i—1,1<i<n.

The above labeling shows that, egs (CH,) < 2n. Combining this with the lower bound, we get, egs (CHy) = 2n.
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Definition 2.8. A flower graph Fl, is the graph obtained from a helm graph by joining each pendent vertex to the central
vertex of the helm graph.
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Theorem 2.9. An edge graceful irregularity strength of Flower graph Fl,, n > 3 is 2n.

Proof.  Let

V (Fl) = {u} ({1 <i <n}J{wilt <i<n} and

E(Fln) = {ww|l <i <n}|J{wsuia|l < i <n— 1} {unu} (J{woil <0 <n}J{wwil <i <n}.

Then from Theorem 2.1, egs (Fl,,) > 2n.
To prove the upper bound.
We define a function f: V (Fl,) JE (Fl,) — {1,2,...,2n} as follows.

fu)=2n
f(us) =n+1, 1<i<n
f(v) =1, 1<i<n
I (uu;) =1, 1<i<n
f (wivig) = 2+ 14, 1<i<n-1
funur) =2
f(uvs) =n+2, 1<i<n

flww)=n+2—-14, 1<i<n

From the above labeling, we get,

wt (wug) = |f (w) + f (us) = f (wus)]
=2n+n+i—1|
=3n+:—-1, 1<:<n
wt (wiviv1) = |f (wi) + f (wiv1) — f (witiga)]
=[n+itntitl—(2410)]
—n—14i, 1<i<n-—1
wi (unu1) = |f (un) + f (u1) = f (unua)]
=n+n+n+1-2]
=3n-1
wi (ugvi) = [f (wi) + f (vi) = f (wivi)]|
—lnti+1-(n+2)
—i—1,1<i<n
wt (uvi) = |f (u) + f (vi) = f (uvi)]
21— (nt2—1)

=n+i—1,1<i<n.

The above labeling shows that , egs (Fl,,) < 2n. Combining this with the lower bound, we get, egs (Fl,) = 2n.
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Figure 4. egs(Fis) = 16
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