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1. Introduction

Propositional logic is represented algebraically by a Boolean algebra. The standard approach is due to Lindenbaum [3].

There are mainly two approaches to algebraize first order logic. They are due to Halmos [1] and Tarski [3]. Our approach is

nearer to Halmos but it is less abstract. It retains the form and content of logic. We confine ourselves to monadic and dyadic

logics. The algebraic descriptions are given in terms of Boolean algebras of unary and binary relations. The quantifiers are

described by operators in terms of infimum and supremum.

2. Monadic Logic

Consider the complete Boolean algebra B = ({0, 1} ,∧,∨,′ , 0, 1) with order 0 ≤ 1. Assume that X is a nonempty set.

R1 (X) = {α : α ⊆ X}, the set of all unary relations on X. A unary relation α on X can be identified with a function

α : X → B. Thus R1 (X) = BX = {α|α : X → B}.

Define the operations ∧,∨,′ , 0, 1 on R1 (X) pointwise as follows.

(α ∧ β) (x) = α (x) ∧ β(x), (α ∨ β) (x) = α (x) ∨ β(x), α′ (x) = (α (x))′, 0 (x) = 0, and 1 (x) = 1. The order α ≤ β, if

α (x) ≤ β(x) for any x ∈ X where α, β ∈ R1 (X). Thus

Theorem 2.1 ([2]). (R1 (X) ,∧,∨,′ , 0, 1) is a complete Boolean algebra.

The quantifier operators ∀ and ∃ on R1 (X) are defined in terms of infimum and supremum as follows:

(∀x)α (x) = infx {α (x) : x ∈ X} and (∃x)α (x) = supx {α (x) : x ∈ X}. Briefly, (∀x)α (x) = infxα(x) and (∃x)α (x) =

supxα(x). By completeness (Theorem 2.1) (∀x)α (x) and (∃x)α (x) exist. By properties of order of our Boolean algebra we

get the following.
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Lemma 2.1.

(i). infxα(x) and supxα(x) are unique.

(ii). infxα (a) = supxα (a) = α(a), where a is a constant.

(iii). infxα (x) ≤ α(x) ≤ supx α (x) for any x ∈ X.

(iv). if α(x) ≤ c for any x ∈ X, then supxα(x) ≤ c, where c is a constant.

(v). if c ≤ α(x) for any x ∈ X, then c ≤ infxα(x), where c is a constant.

(vi). if α (x) ≤ β(x) for any x ∈ X, then

(1). supxα(x) ≤ supxβ(x) and

(2). infxβ (x) ≤ infxα (x).

By using Lemma 2.2 and the properties of Boolean algebra we prove the following form of DeMorgan theorem.

Theorem 2.2.

(i). (infx α (x))′ = supxα
′ (x).

(ii). (supx α (x))′ = infxα
′(x).

Proof.

(i). infxα (x) ≤ α (x). Then (α(x))′ ≤ (infx α (x))′. Therefore α′(x) ≤ (infx α (x))′. Thus supx α
′(x) ≤ (infx α (x))′.

On the other hand α′ (x) ≤ supxα
′ (x). Then (supx α

′ (x))′ ≤ α(x). Therefore (supx α
′ (x))′ ≤ infx α(x). Thus

(infx α (x))′ ≤ supx α
′ (x). Thus (infx α (x))′ = supx α

′ (x).

(ii). Apply part (i) to α′ (x). (infx α
′ (x))′ = supx α

′′
(x) = supx α (x). Therefore (supx α (x))′ = infx α

′(x).

By using Lemma 2.2 and Theorem 2.3 we prove the following.

Theorem 2.3. For any α, β ∈ R1 (X) the following hold.

(i). supx (α (x) ∨ β (x)) = supx α (x) ∨ supx β (x).

(ii). infx (α (x) ∧ β (x)) = infx α (x) ∧ infx β (x).

(iii). supx(α(x) ∧ β(x)) ≤ supx α(x) ∧ supx βx.

(iv). infx α (x) ∨ infx β (x) ≤ infx (α (x) ∨ β (x)).

Proof.

(i). α (x) ≤ α (x)∨β (x) and β(x) ≤ α (x)∨β (x). Therefore supx α (x) ≤ supx(α (x)∨β (x)) and supx β (x) ≤ supx(α (x)∨

β (x)). Then supx α (x)∨supx β (x) ≤ supx(α (x)∨β (x)). On the other hand α(x) ≤ supx α (x) and β(x) ≤ supx β (x).

Therefore α (x)∨β(x) ≤ supx α(x)∨supx β(x). Therefore supx(α (x)∨β (x)) ≤ supx α(x)∨supx β(x). Thus the equality

holds.

(ii). Apply (i) to α′ (x) and β′ (x). supx(α′ (x)∨β′ (x)) = supx α
′ (x)∨ supx β

′ (x). By taking the complement of both sides

and using DeMorgan rules we have, infx(α(x) ∧ β(x)) = infx α(x) ∧ infx β(x).
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(iii). α(x) ≤ supx α (x) and β(x) ≤ supx β (x). Then α (x)∧ β (x) ≤ supx α (x)∧ supx β (x). Therefore supx(α(x)∧ β(x)) ≤

supx α(x) ∧ supx β(x).

(iv). Apply (iii) to α′ (x) and β′ (x) as in (ii).

Thus we have the following:

Corollary 2.4. For any α, β ∈ R1 (X) the following hold.

(i). (∃x) (α (x) ∨ β (x)) = (∃x)α (x) ∨ (∃x)β(x)

(ii). (∀x) (α (x) ∧ β (x)) = (∀x)α (x) ∧ (∀x)β(x)

(iii). (∃x) (α (x) ∧ β (x)) ≤ (∃x)α (x) ∧ (∃x)β(x))

(iv). (∀x)α (x) ∨ (∀x)β (x) ≤ (∀x)(α(x) ∨ β(x))

The following example shows that the equalities in (iii) and (iv) do not hold.

Assume that X = {a, b} and α, β ∈ R1(X) are defined by α : a 7→ 1, b 7→ 0 and β : a 7→ 0, b 7→ 1. Then α ∨ β : a, b 7→ 1

and α ∧ β : a, b 7→ 0. Then the converse of (iii) becomes (∃x)α (x) ∧ (∃x)β(x)) ≤ (∃x) (α (x) ∧ β (x)) that is 1 ∧ 1 ≤ 0. It is

impossible.

Similarly, for the converse of part (iv).

3. Dyadic Logic

Again assume that X is a non-empty set. The set of all binary relations on X is R2 (X) = {α : α ⊆ X ×X}. R2 (X) ≡

BX×X = {α|α : X ×X → B}. Define the operations ∧,∨,′ , 0, 1 on R2 (X) pointwise. The order ≤ on R2 (X) is also defined

pointwise by α ≤ β if α (x, y) ≤ β(x, y) for any (x, y) ∈ X ×X, where α, β ∈ R2 (X). Then we have

Theorem 3.1. (R2 (X) ,∧,∨,′ , 0, 1) is a complete Boolean algebra.

The quantifying operators ∀ and ∃ on R2 (X) are defined by infimum and supremum respectively. The double (nested)

operators on R2 (X) are defined by iteration on two variables x and y. So (∀x) (∃y)α (x, y) is given as follows

(∀x) (∃y)α (x, y) ≡ (∀x) [(∃y)α (x, y)] ≡ inf
x

[sup
y
α(x, y)] ≡ inf

x
sup
y
α(x, y).

Theorem 3.2.

(i). supx supy α (x, y) = supy supx α(x, y).

(ii). supy infx α (x, y) ≤ infx supy α(x, y).

Proof.

(i). α(x, y) ≤ supx α(x, y) ≤ supy supx α(x, y). Then supy α(x, y) ≤ supy supx α(x, y). Therefore supx supy α(x, y) ≤

supy supx α(x, y). The converse is similar. Thus supx supy α (x, y) = supy supx α(x, y).

(ii). α(x, y) ≤ supy α(x, y). Then infx α(x, y) ≤ infx supy α(x, y). Therefore supy infx α (x, y) ≤ infx supy α(x, y).

Theorem 3.3.

(i). (∃x) (∃y)α (x, y) = (∃y) (∃x)α(x, y)
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(ii). (∀x) (∀y)α (x, y) = (∀y) (∀x)α(x, y)

(iii). (∃y) (∀x)α (x, y) ≤ (∀x) (∃y)α(x, y)

(iv). (∃x) (∀y)α (x, y) ≤ (∀y) (∃x)α(x, y)

Proof. (i) and (iii) are induced by Theorem 3.2. For (ii) apply part (i) to α′ (x, y). Then (∃x) (∃y)α′ (x, y) =

(∃y) (∃x)α′ (x, y). By using DeMorgan we get (∀x) (∀y)α (x, y) = (∀y) (∀x)α(x, y). Part (iv) is obtained by applying

part (iii) to α′ (x, y).

The following example shows that the equalities in (iii) and (iv) do not hold.

Let X = {a, b} and α ∈ R2(X) be defined by

If x 6= y, then α (x, y) = 1, otherwise α (x, y) = 0. For part (iii), (∀x) (∃y)α(x, y) = (∃y)α (a, y) ∧ (∃y)α (b, y) =

[α (a, a) ∨ α (a, b)] ∧ [α (b, a) ∨ α (b, b)] = 1 and (∃y) (∀x)α (x, y) = (∀x)α (x, a) ∨ (∀x)α (x, b) = [α (a, a) ∧ α (b, a)] ∨

[α (a, b) ∧ α (b, b)] = 0. Thus (∃y) (∀x)α (x, y) 6= (∀x) (∃ y)α(x, y).

Part (iv) is similar.

4. Deduction

Deduction in our algebraic systems is defined as follows {α1, α2, . . . , αn} ` β, if α1 ∧ α2 ∧ · · · ∧ αn ≤ β. The rules used are

the algebraic substitution and simplification.

For example {(∀x)(α (x) −→ α (s (x)) , α (a)} ` α(s (a)), where a is a constant and s : X −→ X is a function (term).

(∀x)(α (x) −→ α (s (x)) ≤ α (a) −→ α (s (a)) = α (a)′ ∨ α (s (a)). (∀x)(α (x) −→ α (s (x)) ∧ α (a) = (α (a) −→ α (s (a)) ∧

α (a) ≤ (α (a)′ ∨ α (s (a)) ∧ α (a) = α (s (a)) ∧ α (a) ≤ α (s (a)).
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