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1. Introduction

Stefen Banach Proved a fixed-point theorem in 1922, which ensures under appropriate conditions, the existence and unique-

ness of a fixed point. This result is called Banach Fixed point theorem or Banach contraction Principle. Many authors

like A.T. Bharucha- Reid and V.M. Sehgal [1] and T.L.Hicks [2] have extended , generalized and improved the Banach

contraction. Using B-contraction and C- contraction established so many fixed-point results in Probabilistic Metric space.

K. Menger [3] introduced the notion of a probabilistic metric space in 1942 and since then the theory of probabilistic metric

spaces has been developed in many directions, especially in nonlinear analysis and applications. The idea of Menger was

to use distribution functions instead of nonnegative real numbers as values of the metric. B. Schweizer and A. Sklar [5]

studied this concept and gave some fundamental results on this space. The important development of fixed point theory in

PM space was due to Sehgal and Bharucha and Hicks. The sub division of this paper as follows: In section 2, some related

notions and concept in probabilistic Metric space, and probabilistic contractions are recalled. In section 3, Some results in

PM space in single maps are stated as main results.

2. Preliminary Notes

Definition 2.1. Metric space is a pair (S, d), where S is a non-empty set and d is a distance function or metric of the space

defined by d : S × S → [0,∞), satisfies the following conditions:

(1). d (p, q) = 0 if p = q (Indiscrinibles)

(2). d (p, q) > 0 if p 6= q (Positivity)
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(3). d (p, q) = d (q, p) ,∀ p, q ∈ S (Symmetry)

(4). d (p, r) ≤ d (p, q) + d (q, r) ,∀ p, q, r ∈ S (Triangle Inequality)

Example 2.2. Let X be a non-empty set. For x, y ∈ X, we define

d (x, y) =

 0 if x = y

1 if x 6= y

Then, d is discrete metric and the space (X, d) is discrete metric space.

Definition 2.3 ([4]). Let f : X → X be a map. Then, an element x ∈ X is said to be fixed point of f if f (x) = x.

Geometrically, the fixed point of a function f(x) are the point of intersection of the curve y = f(x) and the line y = x.

Example 2.4. Let y = f (x) = x3 − 4x2 + x+ 6 = 0, cubic equation. Then, it can be transferred to as

x = f (x) =
x3 + 6

4x− 1

Here, f (−1) = −1, f (2) = 2 & f (3) = 3. So, by definition x = −1, x = 2 and x = 3 are fixed points of f .

Definition 2.5 ([4]). Let (X, d) be a metric space and let f : X → X be a mapping. Then, f is called contraction if there

exists a fixed constant h ∈ [0, 1), such that

d (f (x) , f (y)) ≤ hd (x, y) , ∀ x, y ∈ X

Example 2.6. Let f [0, 2]→ [0, 2] be defined by,

f (x) =

 0 x ∈ [0, 1]

1 x ∈ (1, 2]

Then, f2 (x) = 0 for all x ∈ [0, 2]. So, f2 is a contraction on [0, 2]. But f is not continuous and thus not a contraction

map.

Definition 2.7 ([4]). For the set R of real numbers, a function F : R→ [0, 1] is called a distribution function if

(1). F is non-decreasing,

(2). F is left continuous, and

(3). inf
x∈R

F (x) = 0 and sup
x∈R

F (x) = 1.

If X is a non-empty set, F : X ×X → ∆ is called probabilistic distance on X and F (x, y) is usually denoted by Fxy. We

will denote by ∆ the family of all distribution function on (−∞,∞) and ∆+ on [0,∞).

Example 2.8. Let H is a maximal element for ∆+ then, distribution function H is defined by

H (x) =

 0, if x ≤ 0,

1, if x > 0.
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Figure 1. Distribution Function

Definition 2.9 ([5]). A probabilistic metric space (brief, PM-space) is an order pair (X,F ) where X is a non-empty set and

F is a function defined by F : X×X → ∆+ (the set of all distribution functions) that is F associates a distribution function

F (p, q) with every pair (p, q) of points in X. The distribution function F (p, q) is denoted by Fp,q, whence the symbol Fp,q(x)

will represent the value of Fp,q at x ∈ R. And the function Fp,q, p, q ∈ X are assumed to satisfy following conditions:

(1). Fp,q (0) = 0;

(2). Fp,q = Fq,p,

(3). Fp,q (x) = 1, for every x > 0⇔ p = q.

(4). For every p, q, r ∈ X and for every

x, y > 0, Fp,q (x) = 1, Fq,r (y) = 1⇒ Fp,r (x+ y) = 1

The interpretation of Fp,q (x) as the probability that the distance from p to q is less than x, it is clear that PM condition

(3), (1) and (2) are straight forward generalizations of the corresponding metric space conditions (1), (2) and (3). The PM

condition (4) is a ’minimal’ generalization of the triangle inequality of metric space condition (4). If it is certain that the

distance of p and q is less than x, and like wise certain that the distance of q and r is less than y, then it is certain that the

distance of p and r is less than x + y. The PM condition (iv) is always satisfied in metric spaces, where it reduces to the

ordinary triangle inequality.

Definition 2.10 ([6]). A mapping T : [0, 1]× [0, 1]→ [0, 1] is called a triangular norm (shortly t-norm) if for all a, b, c, d,∈

[0, 1] the following conditions are satisfied:

(1). T (a, 1) = a for every a ∈ [0, 1], (Neutral Element 1)

(2). T (a, b) = T (b, a) for every a, b ∈ [0, 1], (Commutativity)

(3). T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d (Monotonicity)

(4). T (a, T (b, c)) = T (T (a, b) , c))(a, b, c ∈ [0, 1]) (Associativity).

Example 2.11. Example of t-norms T (a, b) = max {(a+ b)− 1, 0} and T (a, b) = min{a, b}. The four basic standard

t-norms are:
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(1). The minimum t-norm, TM , is defined by TM (x, y) = min{x, y},

(2). The product t-norm, Tp, is defined by Tp (x, y) = x, y,

(3). The Lukasiewicz t-norm, TL, is defined by TL (x, y) = max{x+ y − 1, 0},

(4). The weakest t-norm, the drastic product, TD, is defined by

TD (x, y) =

 min(x, y) if max (x, y) = 1, and

0 otherwise

With references to the point wise ordering, we have the following inequalities TD < TL < TP < TM .

Definition 2.12 ([5]). A Menger probabilistic metric space (briefly, Menger PM-space) is a triple (S, F, T ), where (S, F )

is a probabilistic metric space, T is a triangular norm and also satisfies the following conditions, for all x, y, z ∈ X and

t, s > 0, (v)Fxy (t+ s) ≥ T (Fxz (t) , Fzy (s)). This is the extension of triangle inequality. This inequality is called Menger’s

triangle inequality.

Example 2.13. Let X = R, a ∗ b = min (a, b) ∀ a, b ∈ (0, 1) and

fu,w (x) =

 H(x) for u 6= v

1 for u = v

where

H (x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x > 0

then (X,F, ∗) is Menger Space.

Definition 2.14 ([4]). Let (X,F, T ) be a Menger Space and T be a continuous t-norm

(1). A sequence {xn} in X is said to be converge to a point x in X (written xn → x) iff for every ε > 0 and λ ∈ (0, 1), there

exists an integer N such that Fxn,x (ε) > 1− λ for all n ≥ N .

(2). A sequence {xn} in X is called a Cauchy if for every ε > 0 and λ ∈ (0, 1), there exists an integer N such that

Fxn,xm (ε) > 1− λ for all n,m ≥ N .

(3). A Menger space in which every Cauchy sequence is convergent is said to be Complete Menger Space.

2.1. Banach Contraction Condition in Metric Space

The most basic fixed-point theorem in analysis known as the Banach Contraction Principle (BCP). It is due to S. Banach

and appeared in his Ph.D. thesis (1920, published in 1922). The BCP was first stated and proved by Banach for the

Contraction maps in setting of complete normed linear spaces. At about the same time the concept of an abstract metric

space was introduced by Hausdorff for the set valued mappings, which then provided the general framework for the principle

for contraction mappings in a complete metric space. The BCP can be applied to mappings which are differentiable, or

more generally, Lipschitz continuous.

Theorem 2.15. Let (X, d) be a complete metric space, then each contraction map f : X → X has a unique fixed point.
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Example 2.16. T : R → R, T (x) = x
2

+ 3, x ∈ R. Obviously T is a Banach contraction and Fix(T ) = {6} where Fix(T )

denotes the fixed point of the mapping T .

The following definition of a contraction mapping was suggested and studied by V.M. Seghal and A.T. Bharucha-Reid in

1972, which is very natural probabilistic version of the notion of Banach contraction in metric space.

Definition 2.17 ([1]). Let (X, F ) be a probabilistic metric space. A mapping T : X → X is a contraction mapping (or a

SB - Contraction mapping or B-contraction) on (X,F ) if and only if there is a k ∈ (0, 1) such that

FTp,Tq (t) ≥ Fp,q(t/k), (1)

where p, q ∈ X and t > 0. It is also known as probabilistic k-contraction.

The geometrical interpretation expression (1) is that the probability that the distance between the image points Fp, Fq

being less than kt, is at least equal to the probability that the distance between p, q that is less than t. T.L. Hicks in 1996,

defined the following C-contraction mapping in PM space.

Definition 2.18 ([2]). Let (X,T ) be a probabilistic metric space and T : X → X. The mapping T is called Hicks C-

contraction (or, C-contraction) if there exists k ∈ (0, 1) such that the following implication holds for every p, q ∈ X: and for

every t > 0

Tpq (t) > 1− t⇒ TT (p)T (q) (kt) > 1− kt.

D.Mihet in 2005, introduced the weak- hicks contraction in PM Space as follows:

Definition 2.19 ([7]). Let S be a nonempty set and F be a probabilistic distance on S. A mapping f : S → S is said to be

weak - Hicks contraction (w-H contraction) if there exists k ∈ (0, 1) such that, for all p, q ∈ S.

(w −H) : t ∈ (0, 1) , Fpq (t) > 1− t⇒ Ff(p)f(q) (kt) > 1− kt.

Example 2.20. Let X = [0,∞) and

Fxy (t) =
min(x, y)

max(x, y)
, ∀ t ∈ (0,∞) , ∀ x, y ∈ X, x 6= y.

It is known that (X,F, T ) is a complete Menger space under the triangular norm T = Tp > TL. Also, it can easily be seen

that the mapping g : X → X,

g (x) =

 0 if x = 0

1 if x > 0

is a w-H contraction for every k ∈ (0, 1).

As a generalization of the notion of a probabilistic B-contraction, we shall introduce the notion of a probabilistic (m,k)-B-

contraction where m ≥ 1 and k ∈ (0, 1).

Definition 2.21 ([6]). If (S, F ) is a PM - space, m ≥ 1 and k ∈ (0, 1), a function f : S → S is called probabilistic

(m,k)-B-contraction if for any p, q ∈ S there is an i with 1 ≤ i ≤ m such that for every t > 0,

Ffi,fiq

(
kit
)
≥ Fp,q (t) .

If m = 1 and k ∈ (0, 1) then a probabilistic (1− k)-B-contraction f is a probabilistic B-contraction.
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As a generalization of C-contraction, we have

Definition 2.22 ([6]). If (S, ϕ) is a PM-space, m ≥ 1 and k ∈ (0, 1), a function f : S → S is called a (m,k)-C-contraction

if for any p, q ∈ S there is an i with l ≤ i ≤ m such that for every t > 0.

Fp,q (t) > 1− t⇒ Ffip,fiq

(
kit
)
> 1− kit.

If m = 1 and k ∈ (0, 1) then a probabilistic (1, k)-C-contraction f is a probabilistic C-contraction.

Definition 2.23 ([2]). Let (S, F ) be a Probabilistic Metric Space, ϕ ∈ ∅ and k ∈ (0, 1) be given. A mapping f : S → S is

called a (ϕ− k)−B contraction on S if the following condition hold

x, y ∈ S, ε ∈ (0, 1) , λ ∈ (0, 1) , Fx,y (ε) > 1− λ⇒Ff(x),f(y) (kε) > 1− ϕ(λ).

Definition 2.24 ([8]). Let F be a probabilistic distance on S. A mapping f : S → S is called continuous if for every ε > 0

there exist δ > 0 such that Fu,v (δ) > 1− δ⇒Ffu,fv
(ε) > 1− ε.

3. Main Results

This section consists fixed point results in single maps in Probabilistic Metric Space. In 1972, V.M. Sehgal and A.T.

Bharucha-Reid extended the famous Banach Contraction Principle in Probabilistic Metric Space as follows:

Theorem 3.1 ([1]). Let (X,T,∆) be a complete Menger space, where ∆ is a continuous function satisfying ∆(x, x) ≥ x for

each x ∈ [0, 1], if T is any contraction mapping of X into itself, then there is unique p ∈ X such that Tp = p. Moreover,

Tnq → p for each q ∈ X.

Theorem 3.2 ([4]). Let (X,F,∆) be a complete Menger space, ∆ a t-norm of H-type and f : X → X a probabilistic

q-contraction. Then there exists a unique Fixed point x ∈ X of the mapping f and x = lim
x→∞

fnp for every p ∈ X.

Theorem 3.3 ([2]). Let (X,T,min) be a complete Menger Probabilistic Metric Space. T : X → X be a contraction mapping

for every p, q ∈ X, k ∈ (0, 1) and for every t > 0

Tpq (t) > 1− t⇒ TT (p)T (q) (kt) > 1− kt

Then, T has a fixed point.

Theorem 3.4 ([9]). Let (X; d) be a complete metric space and T : X → X be a mapping satisfying the following condition:

There exists a constant k, 0 < k < 1, such that d(Tp, Tq) ≤ kd(p; q); p, q ∈ X. Then, T has a Fixed point p∗ ∈ X, and for

any p0 ∈ X; TnP0 → p∗.

Theorem 3.5 ([10]). The Mapping f : X → X is an H-contraction on the PM space ((X,F, τ) with τ ≥ τM if and only if

there is a γ ∈ (0, 1) such that β (fp, fq) ≤ γβ (p, q) ∀ p, q ∈ X.

Theorem 3.6 ([7]). Let (X,F, T ) be a complete Menger space with ∆ ≥ ∆ L or T is of Hadzic type and let us suppose that

f : X → X is a weak Hicks-contraction with the property that Fpf(p)(t) > 0 for some p ∈ X and some t ∈ (0; 1). Then f

has a Fixed point.
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Theorem 3.7 ([10]). Let (S, F, T ) be a complete Menger space such that Range (F ) ⊂ D+ and sup a < 1T (a; a) = 1. Then,

every C-contraction f on S has unique fixed point which is the limit of the sequence (fn(p))n ∈ N for every p ∈ S.

Theorem 3.8 ([6]). Let (S, F, T ) be a complete Menger space with t-norm T such that sup a < 1t(a, a) = 1 and let f : S → S

be a generalized C-contraction such that h(0) ∈ R. Then x = lim
n→∞

fnp is the unique fixed point of the mapping f for an

arbitrary p ∈ S.

Theorem 3.9 ([11]). Let (X,ϕ,min) be a complete Menger Space and f : S → S a probabilistic (m, k)-B-contraction

mapping, then f has a fixed point.

Lemma 3.10 ([11]). Let (S, ϕ,min) be a Menger space and f : S → S a probabilistic (m, k)-B-contraction. If x ∈ S is such

that fnp = p for some n ≥ 1, then fp = p.

Theorem 3.11 ([12]). Let (S, F, T ) be a complete Menger Space, T be a t-norm such that sup 0 ≤ t < 1, T (t, t) = 1 and

f : S → S a (ϕ− k)-B-contraction if lim
t→∞

Fx0fm
x0

(t) = 1 for some x0 ∈ S, m ∈ N , then there exist a unique fixed point

x = lim
n→∞

fn
x0

.

Theorem 3.12 ([12]). Let (S, F, T ) be a complete Menger Space, T be a t-norm such that sup 0 ≤ t < 1, T (t, t) = 1 and

f : S → S a (ϕ− k)-B-contraction if lim
t→∞

Fx0fm
x0

(t) = 1 for some p ∈ S, and j > 0, sup
x>j

xj(1− Fp,fp(x)) <∞ if t-norm T is

ϕ convergent, then there exist a unique fixed-point z of mapping f and z = lim
l→∞

f l
x0

.

4. Applications of Probabilistic Metric Space

Probabilistic metric space can apply to estimate the rate of convergence of probability density estimation and other function

like estimates of quantities, hazard rated etc. A PM Space appears to be well adapted for the investigation of physiological

thresholds and physical quantities particularly. Its importance in probabilistic functional analysis due to its extensive

applications in random differential as well as random integral. Probabilistic Metric Space permits the initial Formulation

a greater flexibility than offered by a deterministic approach. It also permits the inclusion of probabilistic features in the

equations, which may play an essential role in making the connection between operator equations and the real phenomena.

It also purports to describe to how the triangular norms in probabilistic metric spaces as well as how to represent many

valued equalities.
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