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Abstract: This paper deals with the method of resolving two relvent problems of Rees matrix semigroups, the ideal extension problem
and the structure of sandwich set of idempotents. To resolve the first problem let us consider the ideal extension of Rees

matrix semigroup over the multiplicative group U(n). The study is done using the Rees matrix semigroup containing

only the zero element and a semigroup which has more than one element. The idempotents of Rees matrix semigroup is
studied using Biordered set and finally we arrive at a conclusion about the structure of sandwich set of idempotents.
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1. Introduction

The semigroup theory gains importance now a days not only from the mathematical point of view where it is investigated

as an abstract algebraic structure but also from the theoretical computer science point of view where it has tremendous

applications in significant areas like Automata, Neural networks etc. Rees matrix semigroup is a special class of semigroup

introduced by David Rees in 1940, which has fundamental importance in semigroup theory because they are used to classify

certain class of simple semigroups. In this paper the concept of ideal extension of semigroup introduced by Clifford [1] has

been studied in Rees matrix semigroups over the multiplicative group U(n). In the last section, we studied the idempotents

of a rees matrix semigroup using Biordered sets. In 1970 K.S.S Namboorippad [4] introduced the concept of a Biordered set,

which is very useful to explain the structure of idempotents in a semigroup. He identified that collection of all idempotents

in a semigroup forms a Biordered set.

2. Preliminaries

The results derived out of this sequel makes use of the definitions mentioned below. We follow the notations and definitions

as in [2] and [3]. A semigroup is a set S together with an associative binary operation on S. An element e ∈ S such that

e.e = e is called an idempotent and the set of all idempotents in S will be denoted by E(S). An element z of S is said to be

a zero element if xz = zx = z for all x ∈ S. If G is group, G0 = G ∪ {0} is a semigroup. Semigroup formed in this way is

called a 0-group, or a group with zero. A non-empty subset I of S is called left ideal if SI ⊆ I a right ideal if IS ⊆ I, and
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an ideal if it is both a left and a right ideal. An element a in a semigroup S is said to be regular if there exist an element x

in S such that axa = a, if every element of S is regular then S is a regular semigroup.

Definition 2.1. Let S be a semigroup and I be an ideal in S. Define a congruence relation ρ on S as a ρ b ⇐⇒ a = b or

a, b ∈ I. Then ρ is called as the Rees congruence modulo I on S. We denote this as S/I or S/ρ and call this as the Rees

factor semigroup S modulo I. Let S be a semigroup and I be an ideal in S. Thus a set, S/I may be identified with S \ I

with an element θ (zero element) adjoined.

Definition 2.2. Let G be a group with identity element e, and let I,Λ be non-empty sets. Let P = (pλi) be Λ× I matrices

with entries in the 0-group G0 = G ∪ {0} and suppose that P is regular, in the sense that no row or column of P consists

entirely of zeros. The Rees matrix semigroup S = M0(G, I,Λ, P ) is the set of all triples of the form (I × G × Λ) with a

zero element 0 adjoined to S. In matrix terminology any element (i, g, λ) be the matrix with g in (i, λ)th position and zero

elsewhere.

If P contains no zero entry, then there are no proper divisors of zero in M0(G, I,Λ, P ). The semigroup M0(G, I,Λ, P )\{0} is

called the Rees I×Λ matrix semigroup without zero over the group G with sandwich matrix P , and denote by M(G, I,Λ, P ).

The multiplication on a Rees matrix semigroup is defined by

(i, a, λ)(j, b, µ) =


(i, apλjb, µ) if pλj 6= 0

0 if pλj = 0

(i, a, λ)0 = 0(i, a, λ) = 00 = 0

where (i, a, λ),(j, b, µ) ∈M0(G, I,Λ, P ).

Remark 2.3 ([3]). A non-zero element (i, a, λ) of a Rees matrix semigroup is an idempotent iff pλi 6= 0 and a = p−1
λi .

Proof. Let (i, a, λ) be a non-zero idempotent element in a Rees matrix semigroup. Then (i, a, λ)(i, a, λ) = (i, a, λ). But

the multiplication in Rees matrix semigroup implies (i, apλia, λ) = (i, a, λ), that is apλia = a. Which happends only if

pλi 6= 0 and a = p−1
λi .

Conversly let pλi 6= 0 and a = p−1
λi . Then

(i, a, λ)(i, a, λ) = (i, apλia, λ) = (i, a, λ)

.

Definition 2.4 ([2]). Let S be a non-empty semigroup and Q be a semigroup with zero disjoint from S. An ideal extension

of S by Q is a semigroup E such that S is an ideal of E and the rees quotient E/S is isomorphic to Q. Such a semigroup

doesn’t always exist. If it does, E is as a set, disjoint union of S and Q∗ = Q \ 0. Constructing the operation ∗ on E is from

semigroup S and Q, is the ideal extension problem.

In an ideal extension E of S by Q there exist five types of products.

• products x ∗ y with x, y ∈ S; then x ∗ y = xy ∈ S.

• products a ∗ x with x ∈ S, a ∈ Q∗; then a ∗ x ∈ S.

• products x ∗ a with x ∈ S, a ∈ Q∗; then x ∗ a ∈ S.
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• products a ∗ b with a, b ∈ Q∗, ab = 0 in Q; then a ∗ b ∈ S

• products a ∗ b with a, b ∈ Q∗, ab 6= 0 in Q; then a ∗ b = ab ∈ Q∗.

We must determine all these products in order to solve the ideal extension problem.

2.1. Biordered Sets

Definition 2.5. A partial algebra E is a set together with a partial binary operation on E. On E we define

ωr = {(e, f) : fe = e}; ωl = {(e, f) : ef = e}

and

R = (ωr) ∩ (ωr)−1,L = (ωl) ∩ (ωl)−1, ω = ωr ∩ ωl.

We denote e ωr f for fe = e and e ωl f for ef = e.

Definition 2.6. Let E be the partial algebra. Then E is a biordered set if the following axioms and their duals hold:

(1). ωr and ωl are quasi orders on E and DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

(2). f ∈ ωr(e) =⇒ fRfe ω e

(3). g ωl f and f, g ∈ ωr(e) =⇒ ge ωl fe

(4). g ωr fωre =⇒ gf = (ge)f

(5). g ωl f and f, g ∈ωr (e) =⇒ (fg)e = (fe)(ge)

Definition 2.7. Let M(e, f) denote quasi ordered set (ωl(e) ∩ ωr(f), <) where < is defined by

g < h⇐⇒ egωreh and gfωlhf

Then the set

S(e, f) = {h ∈M(e, f) : g < h ∀g ∈M(e, f)}

is called sandwich set of e and f .

(6). f, g ∈ ωr(e) =⇒ S(f, g)e = S(fe, ge).

The biordered set E is said to be regular if S(e, f) 6= φ for every e, f ∈ E.

Example 2.8. The idempotents of a semigroup E(S) is a Biordered set with the partial algebra consisting of the set E = E(S)

and the multiplication restricted to

DE = {(e, f) ∈ E × E | ef = e or ef = f or fe = e or fe = f}

Thus the product of two idempotents is defined in the partial algebra if and only if one is a right or left zero of the other.
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3. Ideal Extension of a Rees matrix Semigroup

In this section we study the ideal extension for a Rees matrix semigroup over the multiplicative group U(n) by two different

semigroups. Here U(n) denotes the set with numbers which are less than n and relatively prime to n. Clearly U(n) is a

group with respect to ×n.

Theorem 3.1. Let S = M(G, I,Λ, P ) be the Rees matrix semigroup over the multiplicative group U(n) and |I| = |Λ| = k

for any positive integer k. Also let Q be another Rees matrix semigroup which contains only the zero element of S. Then

the ideal extension of S by Q is the semigroup E under the operation ∗ which is same as operation defined on S.

Proof. Let

E =





a 0 . . . . . . 0

0 0 . . . . . . 0

...
...

...
... 0

0 0 . . . 0 0

0 0 . . . 0 0


,



0 a . . . . . . 0

0 0 . . . . . . 0

...
...

...
... 0

0 0 . . . 0 0

0 0 . . . 0 0


, . . . ,



0 0 . . . . . . 0

0 0 . . . . . . 0

...
...

...
... 0

0 0 . . . 0 0

0 0 . . . 0 a




where a ∈ U(n). Then E = S ∪Q∗. Since Q has only the zero element of S, Q∗ = φ. Then E is the set S = M(G, I,Λ, P )

itself. Define an operation ∗ on E as follows

(i, a, λ) ∗ (j, b, µ) = (i, apλjb, µ)

where (i, a, λ), (j, b, µ) ∈ M(G, I,Λ, P ). Clearly ∗ is a well-defined operation on E. Since S is a semigroup under this

operation, E is also a semigroup with the same operation. Since E is same as the semigroup S, S is an ideal of E. Also

the product of any two elements in S is same as the product in E. The remaining four products in E trivially holds since

Q∗ = φ. Now it remains to establish an isomorphism from E/S to Q. But the only possible map is to assign S to the zero

element in Q. Clearly this map is an isomorphism. Hence E is an ideal extension of S by Q.

Theorem 3.2. Let S = M(G, I,Λ, P ) be the Rees matrix semigroup over the multiplicative group U(n) with |I| = |Λ| = 2

and Q =


 0 0

0 0

 ,
 1 0

0 1

 ,
 0 1

1 0


 be a semigroup under matrix multiplication. Then an ideal extension of S by Q is

the semigroup E under the operation ∗ defined as follows. For A,B ∈ E,

A ∗B =


APB if A,B ∈ S,where P is the regular matrix over U(n)

APB otherwise, where P is the identity matrix

(1)

Proof. Let E =


 a 0

0 0

 ,
 0 a

0 0

 ,
 0 0

a 0

 ,
 0 0

0 a

 ,
 1 0

0 1

 ,
 0 1

1 0


, where a ∈ U(n). Then clearly E = S∪Q∗,

where S and Q∗ are disjoint and Q∗ = Q \ {0}. Define an operation ∗ on E as follows. For A,B ∈ E,

A ∗B =


APB if A,B ∈ S,where P is the regular matrix over U(n)

APB otherwise, where P is the identity matrix

Clearly the operation ∗ is well-defined on E and ∗ is an associative binary operation on E. Then E is a semigroup under

the operation ∗. Now we show that E is an ideal extension of S by Q. In order to prove this, we first verify that S is an
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ideal of E. Let p ∈ S and q ∈ E. Then there are two possibilities q ∈ S or q ∈ Q∗. Suppose p ∈ S and q ∈ Q∗. Then

p ∈


 a 0

0 0

 ,
 0 a

0 0

 ,
 0 0

a 0

 ,
 0 0

0 a


 ,

where a is an element in U(n). If q =

 1 0

0 1

 = e then pq = pe = p ∈ S. If q =

 0 1

1 0

, then pq ∈ S for all choices of P .

If p ∈ S and q ∈ S. Since S is a Rees matrix semigroup using closure propety of S pq ∈ S. Hence SE ⊆ S.

Similarly we can show that ES ⊆ S. Therefore S is an ideal of E. Consider the Rees quotient E/S. Then

E/S = {S} ∪


 1 0

0 1

 ,
 0 1

1 0


 =

S,
 1 0

0 1

 ,
 0 1

1 0


 ,

where S is the zero element of E/S. Define a map φ from E/S to Q by

φ(A) =



 0 0

0 0

 if A = S

A otherwise

Then φ(A ∗B) =

 0 0

0 0

, if either A or B is in S or both A = B = S and φ(A).φ(B) is equal to

 0 0

0 0

 in either cases.

Otherwise

φ(A ∗B) = A ∗B = AB and φ(A).φ(B) = AB

Hence the map φ preserves the operation as defined in (1). In order to show φ is one-one, let φ(A) = φ(B)

Case 1: If φ(A) = φ(B) =

 0 0

0 0

 , then from the definition of φ this is possible only if A = S and B = S. Therefore

A = B.

Case 2: If φ(A) and φ(B) are non-zero elements in Q. Then by the definition of φ it is clear that A = B. Hence in either

cases we get φ is one-one. Thus we get there is an isomorphism from E \S to Q. Also all the five products defined in an ideal

extension holds from the definition of ∗ on E. Therefore E =


 a 0

0 0

 ,
 0 a

0 0

 ,
 0 0

a 0

 ,
 0 0

0 a

 ,
 1 0

0 1

 ,
 0 1

1 0


,

is an ideal extension of S by Q.

Corollary 3.3. Let S = M(G, I,Λ, P ) be a Rees matrix semigroup over the multiplicative group U(n) with |I| = |Λ| = n

and Q =





0 0 . . . . . . 0

0 0 . . . . . . 0

...
...

...
... 0

0 0 . . . 0 0

0 0 . . . 0 0


,



1 0 . . . . . . 0

0 1 . . . . . . 0

...
...

...
... 0

0 0 . . . 1 0

0 0 . . . 0 1


,



0 0 . . . . . . 1

0 0 . . . 1 0

...
...

...
... 0

0 1 . . . 0 0

1 0 . . . 0 0




be a semigroup under matrix multiplication. Then an

ideal extension of S by Q is the semigroup E under the operation ∗ defined as follows.

For A,B ∈ E

A ∗B =


APB if A,B ∈ S,where P is the regular matrix over U(n)

APB otherwise, where P is the identity matrix
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4. Idempotents of a Rees Matrix Semigroup

In this section we study the idempotents of a Rees matrix semigroup and evaluate the Sandwich set of idempotents of a

Rees matrix semigroup.

Lemma 4.1. Let e = (i, a, λ) and f = (j, b, µ) be two non zero idempotents in a Rees matrix semigroup, then

(1). e ωr f if and only if j = i and pµi = b−1.

(2). e ωl f if and only if λ = µ and pλj = b−1.

Proof. Let e = (i, a, λ) and f = (j, b, µ) be two idempotents in a Rees matrix semigroup. Assume e ωr f, that is fe = e.

Then (j, b, µ)(i, a, λ) = (j, bpµia, λ). But by the definition (j, bpµia, λ) = (i, a, λ), that is j = i and bpµia = a. Since f is an

idempotent, pµj 6= 0 by Remark 2.2 and since j = i, pµi 6= 0. Thus bpµi = e and hence pµi = b−1. Conversely if j = i and

pµi = b−1 then e ωr f by the definition of the quasi order ωr.

Similarly let e ωl f that is ef = e. Then (i, a, λ)(j, b, µ) = (i, a, λ). So that (i, apλjb, µ) = (i, a, λ). Hence λ = µ and

apλjb = a. Since f is an idempotent pµj 6= 0. We have µ = λ, therefore pλj 6= 0 and so pλjb = e. Hence pλj = b−1.

Conversely if λ = µ and pλj = b−1 then e ωl f by the definition of quasi order ωl.

Theorem 4.2. Let S be a Rees matix semigroup M0(G, I,Λ, P ) for a regular matrix P over G. Then for a fixed λ and j the

sandwich set S(e, f) of idempotents e, f where e = (i, a, λ) and f = (j, b, µ) is given by S(e, f) = {(j, g, λ)} where g = p−1
λj .

Proof. Let e = (i, a, λ) and f = (j, b, µ) be two idempotents in a Rees matrix semigroup. Here each entry in the regular

matrix P is non-zero. Using Remark 2.2 corresponding to each entry in the regular matrix there exist only one idempotent

in E(S). From Lemma 3.2 we have e ωl f if and only if λ = µ and pλj = b−1. Hence ωl(e) contains idempotents of the form

(i, g, λ) for every i ∈ I and g = p−1
λi . Hence in particular (j, g, λ) ∈ ωl(e), where g = p−1

λj .

Similarly ωr(f) contains idempotents is of the form (j, g, µ) where µ ∈ Λ and g = p−1
µj . Therefore (j, g, λ) ∈ ωr(f) when

λ = µ and g = p−1
λj . Thus ωl(e) ∩ ωr(f) contains idempotents of the form(j, g, λ) where g = p−1

λj . Corresponding to (λ, j)th

entry in P there exist only one idempotent in ωl(e) ∩ ωr(f). Then M(e, f) contains only the element (j, g, λ) and hence

S(e, f) = {(j, g, λ)}
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