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Abstract: In this paper we study the initial value problems of Fornberg-Whitham(FW) and Oskolkov-Benjamin-Bona-
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1. Introduction

The Fornberg-Whitham(FW) equation introduced as a model to study breaking of non-linear dispersive water waves. In
mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves. We consider the initial

value problem for the Fornberg-Whitham equation

9 3 3
rxt — FUzUze 5 Tz T o T T = 1
Uzt ut—|—2uu —|—2uu 2uu +u 0 (1)

u(z,0) =uo(z),z €T, t €R

where u(z,t) is the fluid velocity, ¢ is the time and x is the spatial co-ordinate. The FW equation was written by Fornberg
and Whitham in 1978 as a model for breaking waves. The FW equation can be (and is more conveniently) written in the

following non-local form
3 _ 2y—1
ug + FUls = (1-0;) Ozu (2)

The non-local form can be obtained from FW equation as follows,

Ugzt — U —l—guu + —uu —§uu +u, =0
xxt t 2 x Uz 2 TTIT 2 x x
3 3
ut + éuuz — Utzx — i[uumzz + 3uzumz] = OzUu
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Multiply bothsides by (1 — 92)™", we get

uy + guux =(1-92) "0,u
Next, We consider the initial value problem (i.v.p) of the Oskolkov-Benjamin-Bona-Mahony Equation

Ut — Uy — Ugzt + Uy = 0 (3)

u(z,0) = uo(z),z €T, t € R
The OBBM equation derived from the water wave model. Non-local form of the OBBM Equation can be written as,
we + uty = (1 —02) " 0p(u — U2 — Uttzy) (4)

The non-local form can be obtained from OBBM equation as follows. Adding and subtracting the terms utzy, and 3uz gy,

we get

Ut — Uz — Uzt + UlUg + UUzzr — Uz + 3uzuzz - 3uzuzz = 0
2
(1 —02)(ut + uuz) = Uz — SUgUpy — Ulses

U + uug = (1 — 85)_18x(u —ul = Ulgy )

Written this way, the FW and OBBM equations are become a special case in the family of nonlinear wave equations of the

form

ut + auuy = L(u)

This work studies the initial value problems of FW and OBBM equations. The paper is structured as follows. In section 1
we give the introduction and preliminaries. In section 2 we define approximate solutions and compute the error, while in

section 3 we estimate the H° -norm of this error.

1.1. Preliminaries

Lemma 1.1. Letoc € R. If N € ZT and X >> 1 then
lcos(Ax — a)||gory = A7, aeR
The above relation is also true if cos(Ax — &) is replaced by sin(Ax — «). Finally, for any s > 0 we have

X ()| o (1) = JwA ™ + A cos(Ax — wt) || o (1)

Il X (17 (T) < A7+ A7

where A >> 1.
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Definition 1.2. For any s € R the operator D° = (1 — 8250)% is defined by

—

Dsf(g) = (1+€%)2 f(€),

where f is the Fourier transform

The inverse relation is given by

Then, for f € H°(T) we have

= S+ eyl
ez
1D 2

1 1Ire ¢y

2. Approximate FW and OBBM Solutions

We shall consider approximate solutions of the form
u Mz, t) = wA " 4+ A cos(Ax — wt) (5)

Where w is bounded subset of & and ) is in the set of positive integers ZT. Next, we compute the error of the approximate

solution of (4). Differentiating (4) with respect to t,

S 0+ A" °(=sin(Az — wt))(—w)

O = wA “sin(Az — wt) (6)
Differentiating (4) with respect to x,

0pu® = 04 A" °(—sin(hz — wt))(N)
= =M\ "sin(Ax — wt)

0pu® = A" "Tlsin(Az — wt) (7)
Approximate FW Solutions: Substituting (6) and (7) into the Burgers part of the FW equation, we get

o + giL“’A@;ﬂL“”A = wA fsin(Ax — wt) + %[w)\_l + A cos(Ax — wt)][-A" T sin(Ax — wt)]
= wA *sin(Ar — wt) — gwA_ssin()\x — wt) — g)\_%“cos()\x — wt)sin(Ar — wt)
= %w)fssin()\x —wt) — %AﬁsﬂsinZ()\x — wt)

= i+

Next, we compute the error resulting from applying the non-local perturbation part of the FW equation to the approximate

solution. That is, we form the quantity (1 — 82)~'9,u*"*. We shall write this term by using the operator D*.

[—(1 = 82) " opu? = [-D 20, (wA ™" 4+ A cos(Ax — wt)]
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= DA " Msin(\x — wt)

=
To summarize the error F' of the approximate solution (5) is,

F = ™ + guw’)‘amu“’)‘ — D 29,u"? (8)

Fy 4+ Fy + F3 9)

Where F; are defined as above.

Approximate OBBM Solutions: we substituting (6) and (7) into the’Burgers part of the OBBM equation we get,

O + u0pu? = WA sin(Ar — wt) + [wA Tt + A Pcos(Ax — wt)][- AT T sin(Az — wt))

= WA sin(Ar — wt) — wA Csin(Ax — wt) — A>T eos( Az — wt)sin(Ax — wt)

= A2 eos( A — wt)sin(Az — wt)
1,._
o 4w dpu N = —5)\ 2t sin2( A — wt)
= F1

Next,we compute the error resulting from applying the non local perturbation part of the OBBM equation to the approximate

solution. That is we form the quantity

—(1=83) MO = —uwes) = —D 720, — (u)? —u )

—-D7%9, (u“”A + D729, (u‘g‘;’A)2 + D729, (uw”\u;g’g)‘)

Now consider

—D7?8,(u?) = =D (A" sin(\z — wt)
= D2\ sin(hz — wt)

= Fy
Now consider

(0 (u™M)? = (=AM sin(\z — wt))?
= A2 5in? (x — wt)
_ —2542 1 _ 1 _
= A [2 2cos2(>\x wt)]
0 (0 (U ™)) = A"25F2[0 — %(—sinQ()\m —wt))2)]
= A2 )\gin2(\x — wt)

= A2\ — wt)
Therefore

D720,(8:(u”M)? = DA sin2(\a — wt)
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I3
Now consider D29, (uw'/\u‘;ff)

u? = A" "Teos(Az — wi)A
A" os(Az — wt)

u ) = WA+ A P cos(Ax — wi)][-A T TP eos(Ax — wt))]

= —wA *Tleos( Az — wt) — A1 {% + %COSQ()\LE — wt)]

Since cos?0 = % + 500329

Op (U M) = —wA T T (—sin(Az — wi)A) + 0 — A7 22 <%(—sin2()\x - wt)?A))

&
B
=

£
>
g
ge
8y
Z
Il

WA P2 (sin(Az — wt)) + A2 PP sin2(A\z — wt))

)

b
&
e

&

~
<
8 €
Y
Il

D 2w Psin( Az — wt) + DA P sin2( Az — wt)

= s+ F5
To summarize, the error F of the approximate solution (5) is
F=F+F+F+F +Fs (10)

Where Fj’s are derived as above.

3. Estimating the Error of Approximate solutions of FW and OBBM
equations

Next we shall estimate the H?-norm of the error F' in (9) and (10) by estimating separately the H” norm of each term Fj}.

Estimating the H?-norm of error of FW equation:

Estimating the H’-norm of F}

-1 .
|Fy ()| oy = HTM)\ *sin(Ax — wt) || go (1)
T ..
= Ew)\ [Isin(Ax — wt)|| g (1)
S %w}f””
since by Lemma 1.1, A >> 1.
Estimating the H’-norm of F>
3 ert .
N2 oy = || — Z)\ 2 +1sm2()\an—cut)HHa(T)
3, —2s .
= 1/\ 2 +1||SZ7’L2()\{L’*W1€)HHU(T)
3 —2s+1+40
< S
— 4
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since by Lemma 1.1, A >> 1.

Estimating the H’-norm of Fj3

|F5 ()| ey = ID72A"*  sin(Az — wt) || go(r)

AT sin( Az — wt) | o2y

/\75+1

IN

lsin(Az — wt)|| go—2 (1)

)\—s+1)\a'—2

IN

)\—s+a—1

since by Lemma 1.1, A >> 1. Putting the above estimates together gives the following H“-estimate for the error of the FW

approximate solution.
1 —s+o 3 —2s+140 —s4+o—1
|Fllmecry < 50A~ "+ 2x 2 (1)

Estimating the H’-norm of error of OBBM equation: Next we shall estimate the H° -norm of the error F in (6) by
estimating separately the H° norm of each term Fj.

Estimating the H’ -norm of F

1 —2s+1
— A
-3

1 F1 () || e (1) sin2(Az — wt)|| go (1)

1.
= 5/\ 28+1||sin2()\x7wt)|\Ho(T)
1 —2s+1\0
< AT
- 2
< )\—28+U+1
since by Lemma 1.1, A >> 1.
Estimating the H°-norm of F»
| Ba(t) e = | DA sin(Ax — wt) || e
= XM || sin(\x — wt) || ro—2
< A75+l+o'
Estimating the H’-norm of Fj3
| Fo(t) e = 1| DA sin2(\z — wt) |le
= A 2P D %sin2(\a — wt) || me
= XN sin2(A\z — wt) || go—2
< )\—23+3+o
since by Lemma 1.1, A >> 1.
Estimating the H’-norm of Fy
| Fat) e = | DA™ sin(Aa — wt) [|e
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= WA\ || D 2sin( Az — wt) || o
= WA | sin(Ax — wt) || go—2

< LU/\75+2+0-

since by Lemma 1.1, A >> 1.

Estimating the H°-norm of Fjs

I Es(t) e = || D72A">3sin2(\e — wi) || ae

= AT D %sin2(\a — wt) || me

A2 sin2( A — wt) || go—2

)\—25+3+o'

IN

since by Lemma 1.1, A >> 1. Now putting the above estimates together gives the following H?-Estimate for the error of

the OBBM approximate solution.
H F(t) ”H‘"S )\72s+1+o' + A75+1+U + )\72s+3+o' +w)\75+2+o' + A72s+3+o' (12)

Hence, we derived the approximate solutions of FW and OBBM equations and compute the error of the approximate sloution

of FW and OBBM equation. Also we estimated the H° norm of the error.
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