
Int. J. Math. And Appl., 7(4)(2019), 63–70

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Estimating the Approximate Solutions of the

Fornberg-Whitham and Oskolkov-Benjamin-Bona-Mahony

Equations

R. Gokilam1,∗ and R. Thanamani1

1 Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India.

Abstract: In this paper we study the initial value problems of Fornberg-Whitham(FW) and Oskolkov-Benjamin-Bona-

Mahony(OBBM) equations which are locally wellposed in the Sobolev space Hs for s > 3
2

. we define the approximate

solutions of FW and OBBM equations and compute the errors. Then we estimate the Hσ -norm of this errors.
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1. Introduction

The Fornberg-Whitham(FW) equation introduced as a model to study breaking of non-linear dispersive water waves. In

mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves. We consider the initial

value problem for the Fornberg-Whitham equation

uxxt − ut +
9

2
uxuxx +

3

2
uuxxx −

3

2
uux + ux = 0 (1)

u(x, 0) = u0(x), x ∈ T, t ∈ <

where u(x, t) is the fluid velocity, t is the time and x is the spatial co-ordinate. The FW equation was written by Fornberg

and Whitham in 1978 as a model for breaking waves. The FW equation can be (and is more conveniently) written in the

following non-local form

ut +
3

2
uux = (1− ∂2

x)−1∂xu (2)

The non-local form can be obtained from FW equation as follows,

uxxt − ut +
9

2
uxuxx +

3

2
uuxxx −

3

2
uux + ux = 0

ut +
3

2
uux − utxx −

3

2
[uuxxx + 3uxuxx] = ∂xu
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ut +
3

2
uux − utxx −

3

2

∂

∂x

[
∂

∂x
(uux)

]
= ∂xu(

1− ∂2

∂2
x

)(
ut +

3

2
uux

)
= ∂xu

Multiply bothsides by (1− ∂2
x)−1, we get

ut +
3

2
uux = (1− ∂2

x)−1∂xu

Next, We consider the initial value problem (i.v.p) of the Oskolkov-Benjamin-Bona-Mahony Equation

ut − ux − uxxt + uux = 0 (3)

u(x, 0) = u0(x), x ∈ T, t ∈ <

The OBBM equation derived from the water wave model. Non-local form of the OBBM Equation can be written as,

ut + uux = (1− ∂2
x)−1∂x(u− u2

x − uuxx) (4)

The non-local form can be obtained from OBBM equation as follows. Adding and subtracting the terms uuxxx and 3uxuxx,

we get

ut − ux − uxxt + uux + uuxxx − uuxxx + 3uxuxx − 3uxuxx = 0

(1− ∂2
x)(ut + uux) = ux − 3uxuxx − uuxxx

ut + uux = (1− ∂2
x)−1∂x(u− u2

x − uuxx)

Written this way, the FW and OBBM equations are become a special case in the family of nonlinear wave equations of the

form

ut + auux = L(u)

This work studies the initial value problems of FW and OBBM equations. The paper is structured as follows. In section 1

we give the introduction and preliminaries. In section 2 we define approximate solutions and compute the error, while in

section 3 we estimate the Hσ -norm of this error.

1.1. Preliminaries

Lemma 1.1. Let σ ∈ <. If λ ∈ Z+ and λ >> 1 then

‖cos(λx− α)‖Hσ(T ) ≈ λσ, α ∈ <

The above relation is also true if cos(λx− α) is replaced by sin(λx− α). Finally, for any s ≥ 0 we have

‖uω,λ(t)‖Hσ(T ) = ‖ωλ−1 + λ−scos(λx− ωt)‖Hσ(T )

‖uω,λ(t)‖σH(T ) ≤ λ−1 + λ−s+σ

where λ >> 1.
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Definition 1.2. For any s ∈ < the operator Ds = (1− ∂2x)
s
2 is defined by

D̂sf(ξ) = (1 + ξ2)
s
2 f̂(ξ),

where f̂ is the Fourier transform

f̂(ξ) =

∫
T

e−ixξf(x)dx

The inverse relation is given by

f(x) =
1

2π

∑
ξ∈Z

f̂(ξ)eixξ

Then, for f ∈ Hs(T ) we have

‖f‖2Hs(T ) =
1

2π

∑
ξ∈Z

(1 + ξ2)s|f̂(ξ)|2

= ‖D2f |2L2(T )

2. Approximate FW and OBBM Solutions

We shall consider approximate solutions of the form

uω,λ(x, t) = ωλ−1 + λ−scos(λx− ωt) (5)

Where ω is bounded subset of < and λ is in the set of positive integers Z+. Next, we compute the error of the approximate

solution of (4). Differentiating (4) with respect to t,

∂tu
ω,λ = 0 + λ−s(−sin(λx− ωt))(−ω)

∂tu
ω,λ = ωλ−ssin(λx− ωt) (6)

Differentiating (4) with respect to x,

∂xu
ω,λ = 0 + λ−s(−sin(λx− ωt))(λ)

= −λλ−ssin(λx− ωt)

∂xu
ω,λ = −λ−s+1sin(λx− ωt) (7)

Approximate FW Solutions: Substituting (6) and (7) into the Burgers part of the FW equation, we get

∂tu
ω,λ +

3

2
uω,λ∂xu

ω,λ = ωλ−ssin(λx− ωt) +
3

2
[ωλ−1 + λ−scos(λx− ωt)][−λ−s+1sin(λx− ωt)]

= ωλ−ssin(λx− ωt)− 3

2
ωλ−ssin(λx− ωt)− 3

2
λ−2s+1cos(λx− ωt)sin(λx− ωt)

=
−1

2
ωλ−ssin(λx− ωt)− 3

4
λ−2s+1sin2(λx− ωt)

= F1 + F2

Next, we compute the error resulting from applying the non-local perturbation part of the FW equation to the approximate

solution. That is, we form the quantity (1− ∂2
x)−1∂xu

ω,λ. We shall write this term by using the operator Ds.

[−(1− ∂2
x)−1]∂xu

ω,λ = [−D−2∂x(ωλ−1 + λ−scos(λx− ωt)]
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= D−2λ−s+1sin(λx− ωt)

= F3

To summarize the error F of the approximate solution (5) is,

F = ∂tu
ω,λ +

3

2
uω,λ∂xu

ω,λ −D−2∂xu
ω,λ (8)

= F1 + F2 + F3 (9)

Where Fj are defined as above.

Approximate OBBM Solutions: we substituting (6) and (7) into the’Burgers part of the OBBM equation we get,

∂tu
ω,λ + uω,λ∂xu

ω,λ = ωλ−ssin(λx− ωt) + [ωλ−1 + λ−scos(λx− ωt)][−λ−s+1sin(λx− ωt)]

= ωλ−ssin(λx− ωt)− ωλ−ssin(λx− ωt)− λ−2s+1cos(λx− ωt)sin(λx− ωt)

= λ−2s+1cos(λx− ωt)sin(λx− ωt)

∂tu
ω,λ + uω,λ∂xu

ω,λ = −1

2
λ−2s+1sin2(λx− ωt)

= F1

Next,we compute the error resulting from applying the non local perturbation part of the OBBM equation to the approximate

solution. That is we form the quantity

−(1− ∂2
x)−1∂x(u− u2

x − uuxx) = −D−2∂x(uω,λ − (uω,λx )2 − uω,λuω,λxx )

= −D−2∂x(uω,λ +D−2∂x(uω,λx )2 +D−2∂x(uω,λuω,λxx )

Now consider

−D−2∂x(uω,λ) = −D−2(−λ−S+1)sin(λx− ωt)

= D−2(λ−S+1)sin(λx− ωt)

= F2

Now consider

(∂x(uω,λ))2 = (−λ−S+1sin(λx− ωt))2

= λ−2S+2sin2(λx− ωt)

= λ−2S+2[
1

2
− 1

2
cos2(λx− ωt)]

∂x(∂x(uω,λ))2 = λ−2S+2[0− 1

2
(−sin2(λx− ωt))2λ]

= λ−2S+2λsin2(λx− ωt)

= λ−2S+3sin2(λx− ωt)

Therefore

D−2∂x(∂x(uω,λ))2 = D−2λ−2S+3sin2(λx− ωt)
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= F3

Now consider D−2∂x(uω,λuω,λxx )

uω,λxx = −λ−s+1cos(λx− ωt)λ

= −λ−s+2cos(λx− ωt)

uω,λuω,λxx = [ωλ−1 + λ−scos(λx− ωt)][−λ−s+2cos(λx− ωt)]

= −ωλ−s+1cos(λx− ωt)− λ−2s+2

[
1

2
+

1

2
cos2(λx− ωt)

]

Since cos2θ = 1
2

+ 1
2
cos2θ

∂x(uω,λuω,λxx ) = −ωλ−s+1(−sin(λx− ωt)λ) + 0− λ−2s+2

(
1

2
(−sin2(λx− ωt)2λ)

)
∂x(uω,λuω,λxx ) = ωλ−s+2(sin(λx− ωt)) + λ−2s+3sin2(λx− ωt))

D−2∂x(uω,λuω,λxx ) = D−2ωλ−s+2sin(λx− ωt) +D−2λ−2s+3sin2(λx− ωt)

= F4 + F5

To summarize, the error F of the approximate solution (5) is

F = F1 + F2 + F3 + F4 + F5 (10)

Where Fj ’s are derived as above.

3. Estimating the Error of Approximate solutions of FW and OBBM
equations

Next we shall estimate the Hσ-norm of the error F in (9) and (10) by estimating separately the Hσ norm of each term Fj .

Estimating the Hσ-norm of error of FW equation:

Estimating the Hσ-norm of F1

‖F1(t)‖Hσ(T ) = ‖−1

2
ωλ−ssin(λx− ωt)‖Hσ(T )

=
1

2
ωλ−s‖sin(λx− ωt)‖Hσ(T )

≤ 1

2
ωλ−s+σ

since by Lemma 1.1, λ >> 1.

Estimating the Hσ-norm of F2

‖F2(t)‖Hσ(T ) = ‖ − 3

4
λ−2s+1sin2(λx− ωt)‖Hσ(T )

=
3

4
λ−2s+1‖sin2(λx− ωt)‖Hσ(T )

≤ 3

4
λ−2s+1+σ
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since by Lemma 1.1, λ >> 1.

Estimating the Hσ-norm of F3

‖F3(t)‖Hσ(T ) = ‖D−2λ−s+1sin(λx− ωt)‖Hσ(T )

= ‖λ−s+1sin(λx− ωt)‖Hσ−2(T )

≤ λ−s+1‖sin(λx− ωt)‖Hσ−2(T )

≤ λ−s+1λσ−2

= λ−s+σ−1

since by Lemma 1.1, λ >> 1. Putting the above estimates together gives the following Hσ-estimate for the error of the FW

approximate solution.

‖F‖Hσ(T ) ≤
1

2
ωλ−s+σ +

3

4
λ−2s+1+σ + λ−s+σ−1 (11)

Estimating the Hσ-norm of error of OBBM equation: Next we shall estimate the Hσ -norm of the error F in (6) by

estimating separately the Hσ norm of each term Fj .

Estimating the Hσ -norm of F1

‖F1(t)‖Hσ(T ) = ‖ − 1

2
λ−2s+1sin2(λx− ωt)‖Hσ(T )

=
1

2
λ−2s+1‖sin2(λx− ωt)‖Hσ(T )

≤ 1

2
λ−2s+1λσ

≤ λ−2s+σ+1

since by Lemma 1.1, λ >> 1.

Estimating the Hσ-norm of F2

‖ F2(t) ‖Hσ = ‖ D−2λ−s+1sin(λx− ωt) ‖Hσ

= λ−s+1 ‖ sin(λx− ωt) ‖Hσ−2

≤ λ−s+1+σ

Estimating the Hσ-norm of F3

‖ F3(t) ‖Hσ = ‖ D−2λ−2s+3sin2(λx− ωt) ‖Hσ

= λ−2s+3 ‖ D−2sin2(λx− ωt) ‖Hσ

= λ−2s+3 ‖ sin2(λx− ωt) ‖Hσ−2

≤ λ−2s+3+σ

since by Lemma 1.1, λ >> 1.

Estimating the Hσ-norm of F4

‖ F4(t) ‖Hσ = ‖ D−2ωλ−s+2sin(λx− ωt) ‖Hσ
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= ωλ−s+2 ‖ D−2sin(λx− ωt) ‖Hσ

= ωλ−s+2 ‖ sin(λx− ωt) ‖Hσ−2

≤ ωλ−s+2+σ

since by Lemma 1.1, λ >> 1.

Estimating the Hσ-norm of F5

‖ F5(t) ‖Hσ = ‖ D−2λ−2s+3sin2(λx− ωt) ‖Hσ

= λ−2s+3 ‖ D−2sin2(λx− ωt) ‖Hσ

= λ−2s+3 ‖ sin2(λx− ωt) ‖Hσ−2

≤ λ−2s+3+σ

since by Lemma 1.1, λ >> 1. Now putting the above estimates together gives the following Hσ-Estimate for the error of

the OBBM approximate solution.

‖ F (t) ‖Hσ≤ λ−2s+1+σ + λ−s+1+σ + λ−2s+3+σ + ωλ−s+2+σ + λ−2s+3+σ (12)

Hence, we derived the approximate solutions of FW and OBBM equations and compute the error of the approximate sloution

of FW and OBBM equation. Also we estimated the Hσ norm of the error.

References

[1] J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23(2002),

1241-52.

[2] R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Int. Eqs., 14 (2001), 953-988.

[3] G. odriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46(2001), 309-327.

[4] A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Diff. Int. Eqs.,

22(2009), 201-224.

[5] A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Diff. Int. Eqs., 14(2001),

821-831.

[6] A. Himonas, Kenig and G. Misiolek, Non-uniform dependence for the periodic CH equation, Commun. Partial Diff.

Eqns., 35(2010), 1145-62.

[7] A. Himonas and G. Misiolek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrody-

namics, Commun. Math. Phys., 296(2010), 285-301.

[8] A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation DiscreteContin, Dyn. Syst., 31(2011),

469-88.

[9] C. Holliman, Non-uniform dependence and well-posedness for the periodic Hunter-Saxton equation, Diff. Int. Eqns.,

23(2010), 1159-94.

[10] W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the Novikov equation, Journal of Nonlinear Differential Equations

and Applications, 20(2013), 1157-1169.

[11] A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Discrete Continuous Dynamical Systems,

31(2011), 469-488.

69



Estimating the Approximate Solutions of the Fornberg-Whitham and Oskolkov-Benjamin-Bona-Mahony Equations

[12] A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation, Nonlinearity, 25(2012), 449-479.

[13] A. Himonas and C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation, Advanced Differential

Equations, 19(2014), 161-200.

[14] A. Yin, Well-posedness and blow-up phenomena for a class of nonlinear third-order partial differential equations, Houston

Journal of Mathematics, 31(2005), 961-972.

[15] A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 37(2005), 996-1026.

[16] Yongsheng Mi, Chunlai Mu and Pan Zheng, On the Cauchy problem of the modified Hunter-Saxton Equation, Discrete

and continuous dynamical systems series S, 9(6)(2016), 2047-2072.

[17] A. Himonas, G. Misio lek and G. Ponce, Non-uniform continuity in H1 of the solution map of the CH equation, Asian

J. Math., 11(2007), 141-150.

[18] C. Holiman, Non-uniform dependence and well-posedness for the periodic Hunter-Saxton equation, Diff. Int. Eq.,

23(2010), 1150-1194.

[19] O. Christov and S. Hakkaev, On the Cauchy problem for the periodic b-family of equations and of the non-uniform

continuity of Degasperis-Procesi equation, J. Math. Anal. Appl., 360(2009), 47-56.

[20] A. Himonas and D. Mantzavinos, The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation, Nonlinear Anal.,

95(2014), 499-529.

70


	Introduction
	Approximate FW and OBBM Solutions
	Estimating the Error of Approximate solutions of FW and OBBM equations
	References

