Estimating the Approximate Solutions of the Fornberg-Whitham and Oskolkov-Benjamin-Bona-Mahony Equations

R. Gokilam ${ }^{1, *}$ and R. Thanamani ${ }^{1}$
1 Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India.

Abstract

In this paper we study the initial value problems of Fornberg-Whitham(FW) and Oskolkov-Benjamin-BonaMahony (OBBM) equations which are locally wellposed in the Sobolev space H^{s} for $s>\frac{3}{2}$. we define the approximate solutions of FW and OBBM equations and compute the errors. Then we estimate the H^{σ}-norm of this errors.

Keywords: Sobolev space, Approximate solutions, Well-posedness, Non-local form.
(C) JS Publication.

1. Introduction

The Fornberg-Whitham(FW) equation introduced as a model to study breaking of non-linear dispersive water waves. In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves. We consider the initial value problem for the Fornberg-Whitham equation

$$
\begin{align*}
u_{x x t}-u_{t}+\frac{9}{2} u_{x} u_{x x}+\frac{3}{2} u u_{x x x}-\frac{3}{2} u u_{x}+u_{x} & =0 \tag{1}\\
u(x, 0) & =u_{0}(x), x \in T, t \in \Re
\end{align*}
$$

where $u(x, t)$ is the fluid velocity, t is the time and x is the spatial co-ordinate. The FW equation was written by Fornberg and Whitham in 1978 as a model for breaking waves. The FW equation can be (and is more conveniently) written in the following non-local form

$$
\begin{equation*}
u_{t}+\frac{3}{2} u u_{x}=\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x} u \tag{2}
\end{equation*}
$$

The non-local form can be obtained from FW equation as follows,

$$
\begin{aligned}
u_{x x t}-u_{t}+\frac{9}{2} u_{x} u_{x x}+\frac{3}{2} u u_{x x x}-\frac{3}{2} u u_{x}+u_{x} & =0 \\
u_{t}+\frac{3}{2} u u_{x}-u_{t x x}-\frac{3}{2}\left[u u_{x x x}+3 u_{x} u_{x x}\right] & =\partial_{x} u
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
u_{t}+\frac{3}{2} u u_{x}-u_{t x x}-\frac{3}{2} \frac{\partial}{\partial_{x}}\left[\frac{\partial}{\partial_{x}}\left(u u_{x}\right)\right] & =\partial_{x} u \\
\left(1-\frac{\partial^{2}}{\partial_{x}^{2}}\right)\left(u_{t}+\frac{3}{2} u u_{x}\right) & =\partial_{x} u
\end{aligned}
$$
\]

Multiply bothsides by $\left(1-\partial_{x}^{2}\right)^{-1}$, we get

$$
u_{t}+\frac{3}{2} u u_{x}=\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x} u
$$

Next, We consider the initial value problem (i.v.p) of the Oskolkov-Benjamin-Bona-Mahony Equation

$$
\begin{align*}
u_{t}-u_{x}-u_{x x t}+u u_{x} & =0 \tag{3}\\
u(x, 0) & =u_{0}(x), x \in T, t \in \Re
\end{align*}
$$

The OBBM equation derived from the water wave model. Non-local form of the OBBM Equation can be written as,

$$
\begin{equation*}
u_{t}+u u_{x}=\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}\left(u-u_{x}^{2}-u u_{x x}\right) \tag{4}
\end{equation*}
$$

The non-local form can be obtained from OBBM equation as follows. Adding and subtracting the terms $u u_{x x x}$ and $3 u_{x} u_{x x}$, we get

$$
\begin{aligned}
u_{t}-u_{x}-u_{x x t}+u u_{x}+u u_{x x x}-u u_{x x x}+3 u_{x} u_{x x}-3 u_{x} u_{x x} & =0 \\
\left(1-\partial_{x}^{2}\right)\left(u_{t}+u u_{x}\right) & =u_{x}-3 u_{x} u_{x x}-u u_{x x x} \\
u_{t}+u u_{x} & =\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}\left(u-u_{x}^{2}-u u_{x x}\right)
\end{aligned}
$$

Written this way, the FW and OBBM equations are become a special case in the family of nonlinear wave equations of the form

$$
u_{t}+a u u_{x}=L(u)
$$

This work studies the initial value problems of FW and OBBM equations. The paper is structured as follows. In section 1 we give the introduction and preliminaries. In section 2 we define approximate solutions and compute the error, while in section 3 we estimate the H^{σ}-norm of this error.

1.1. Preliminaries

Lemma 1.1. Let $\sigma \in \Re$. If $\lambda \in Z^{+}$and $\lambda \gg 1$ then

$$
\|\cos (\lambda x-\alpha)\|_{H^{\sigma}(T)} \approx \lambda^{\sigma}, \quad \alpha \in \Re
$$

The above relation is also true if $\cos (\lambda x-\alpha)$ is replaced by $\sin (\lambda x-\alpha)$. Finally, for any $s \geq 0$ we have

$$
\begin{aligned}
\left\|u^{\omega, \lambda}(t)\right\|_{H^{\sigma}(T)} & =\left\|\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t)\right\|_{H^{\sigma}(T)} \\
\left\|u^{\omega, \lambda}(t)\right\|_{H}^{\sigma}(T) & \leq \lambda^{-1}+\lambda^{-s+\sigma}
\end{aligned}
$$

where $\lambda \gg 1$.

Definition 1.2. For any $s \in \Re$ the operator $D^{s}=\left(1-\partial^{2} x\right)^{\frac{s}{2}}$ is defined by

$$
\widehat{D^{s}} f(\xi)=\left(1+\xi^{2}\right)^{\frac{s}{2}} \hat{f}(\xi),
$$

where \hat{f} is the Fourier transform

$$
\hat{f}(\xi)=\int_{T} e^{-i x \xi} f(x) d x
$$

The inverse relation is given by

$$
f(x)=\frac{1}{2 \pi} \sum_{\xi \in Z} \hat{f}(\xi) e^{i x \xi}
$$

Then, for $f \in H^{s}(T)$ we have

$$
\begin{aligned}
\|f\|_{H^{s}(T)}^{2} & =\frac{1}{2 \pi} \sum_{\xi \in Z}\left(1+\xi^{2}\right)^{s}|\hat{f}(\xi)|^{2} \\
& =\|\left. D^{2} f\right|_{L^{2}(T)} ^{2}
\end{aligned}
$$

2. Approximate FW and OBBM Solutions

We shall consider approximate solutions of the form

$$
\begin{equation*}
u^{\omega, \lambda}(x, t)=\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t) \tag{5}
\end{equation*}
$$

Where ω is bounded subset of \Re and λ is in the set of positive integers Z^{+}. Next, we compute the error of the approximate solution of (4). Differentiating (4) with respect to t,

$$
\begin{align*}
& \partial_{t} u^{\omega, \lambda}=0+\lambda^{-s}(-\sin (\lambda x-\omega t))(-\omega) \\
& \partial_{t} u^{\omega, \lambda}=\omega \lambda^{-s} \sin (\lambda x-\omega t) \tag{6}
\end{align*}
$$

Differentiating (4) with respect to x ,

$$
\begin{align*}
\partial_{x} u^{\omega, \lambda} & =0+\lambda^{-s}(-\sin (\lambda x-\omega t))(\lambda) \\
& =-\lambda \lambda^{-s} \sin (\lambda x-\omega t) \\
\partial_{x} u^{\omega, \lambda} & =-\lambda^{-s+1} \sin (\lambda x-\omega t) \tag{7}
\end{align*}
$$

Approximate FW Solutions: Substituting (6) and (7) into the Burgers part of the FW equation, we get

$$
\begin{aligned}
\partial_{t} u^{\omega, \lambda}+\frac{3}{2} u^{\omega, \lambda} \partial_{x} u^{\omega, \lambda} & =\omega \lambda^{-s} \sin (\lambda x-\omega t)+\frac{3}{2}\left[\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t)\right]\left[-\lambda^{-s+1} \sin (\lambda x-\omega t)\right] \\
& =\omega \lambda^{-s} \sin (\lambda x-\omega t)-\frac{3}{2} \omega \lambda^{-s} \sin (\lambda x-\omega t)-\frac{3}{2} \lambda^{-2 s+1} \cos (\lambda x-\omega t) \sin (\lambda x-\omega t) \\
& =\frac{-1}{2} \omega \lambda^{-s} \sin (\lambda x-\omega t)-\frac{3}{4} \lambda^{-2 s+1} \sin 2(\lambda x-\omega t) \\
& =F_{1}+F_{2}
\end{aligned}
$$

Next, we compute the error resulting from applying the non-local perturbation part of the FW equation to the approximate solution. That is, we form the quantity $\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x} u^{\omega, \lambda}$. We shall write this term by using the operator D^{s}.

$$
\left[-\left(1-\partial_{x}^{2}\right)^{-1}\right] \partial_{x} u^{\omega, \lambda}=\left[-D^{-2} \partial_{x}\left(\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t)\right]\right.
$$

$$
\begin{aligned}
& =D^{-2} \lambda^{-s+1} \sin (\lambda x-\omega t) \\
& =F_{3}
\end{aligned}
$$

To summarize the error F of the approximate solution (5) is,

$$
\begin{align*}
F & =\partial_{t} u^{\omega, \lambda}+\frac{3}{2} u^{\omega, \lambda} \partial_{x} u^{\omega, \lambda}-D^{-2} \partial_{x} u^{\omega, \lambda} \tag{8}\\
& =F_{1}+F_{2}+F_{3} \tag{9}
\end{align*}
$$

Where F_{j} are defined as above.
Approximate OBBM Solutions: we substituting (6) and (7) into the'Burgers part of the OBBM equation we get,

$$
\begin{aligned}
\partial_{t} u^{\omega, \lambda}+u^{\omega, \lambda} \partial_{x} u^{\omega, \lambda} & =\omega \lambda^{-s} \sin (\lambda x-\omega t)+\left[\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t)\right]\left[-\lambda^{-s+1} \sin (\lambda x-\omega t)\right] \\
& =\omega \lambda^{-s} \sin (\lambda x-\omega t)-\omega \lambda^{-s} \sin (\lambda x-\omega t)-\lambda^{-2 s+1} \cos (\lambda x-\omega t) \sin (\lambda x-\omega t) \\
& =\lambda^{-2 s+1} \cos (\lambda x-\omega t) \sin (\lambda x-\omega t) \\
\partial_{t} u^{\omega, \lambda}+u^{\omega, \lambda} \partial_{x} u^{\omega, \lambda} & =-\frac{1}{2} \lambda^{-2 s+1} \sin 2(\lambda x-\omega t) \\
& =F_{1}
\end{aligned}
$$

Next, we compute the error resulting from applying the non local perturbation part of the OBBM equation to the approximate solution. That is we form the quantity

$$
\begin{aligned}
-\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}\left(u-u_{x}^{2}-u u_{x x}\right) & =-D^{-2} \partial_{x}\left(u^{\omega, \lambda}-\left(u_{x}^{\omega, \lambda}\right)^{2}-u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right) \\
& =-D^{-2} \partial_{x}\left(u^{\omega, \lambda}+D^{-2} \partial_{x}\left(u_{x}^{\omega, \lambda}\right)^{2}+D^{-2} \partial_{x}\left(u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right)\right.
\end{aligned}
$$

Now consider

$$
\begin{aligned}
-D^{-2} \partial_{x}\left(u^{\omega, \lambda}\right) & =-D^{-2}\left(-\lambda^{-S+1}\right) \sin (\lambda x-\omega t) \\
& =D^{-2}\left(\lambda^{-S+1}\right) \sin (\lambda x-\omega t) \\
& =F_{2}
\end{aligned}
$$

Now consider

$$
\begin{aligned}
\left(\partial_{x}\left(u^{\omega, \lambda}\right)\right)^{2} & =\left(-\lambda^{-S+1} \sin (\lambda x-\omega t)\right)^{2} \\
& =\lambda^{-2 S+2} \sin ^{2}(\lambda x-\omega t) \\
& =\lambda^{-2 S+2}\left[\frac{1}{2}-\frac{1}{2} \cos 2(\lambda x-\omega t)\right] \\
\partial_{x}\left(\partial_{x}\left(u^{\omega, \lambda}\right)\right)^{2} & =\lambda^{-2 S+2}\left[0-\frac{1}{2}(-\sin 2(\lambda x-\omega t)) 2 \lambda\right] \\
& =\lambda^{-2 S+2} \lambda \sin 2(\lambda x-\omega t) \\
& =\lambda^{-2 S+3} \sin 2(\lambda x-\omega t)
\end{aligned}
$$

Therefore

$$
D^{-2} \partial_{x}\left(\partial_{x}\left(u^{\omega, \lambda}\right)\right)^{2}=D^{-2} \lambda^{-2 S+3} \sin 2(\lambda x-\omega t)
$$

$$
=F_{3}
$$

Now consider $D^{-2} \partial_{x}\left(u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right)$

$$
\begin{aligned}
u_{x x}^{\omega, \lambda} & =-\lambda^{-s+1} \cos (\lambda x-\omega t) \lambda \\
& =-\lambda^{-s+2} \cos (\lambda x-\omega t) \\
u^{\omega, \lambda} u_{x x}^{\omega, \lambda} & =\left[\omega \lambda^{-1}+\lambda^{-s} \cos (\lambda x-\omega t)\right]\left[-\lambda^{-s+2} \cos (\lambda x-\omega t)\right] \\
& =-\omega \lambda^{-s+1} \cos (\lambda x-\omega t)-\lambda^{-2 s+2}\left[\frac{1}{2}+\frac{1}{2} \cos 2(\lambda x-\omega t)\right]
\end{aligned}
$$

Since $\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta$

$$
\begin{aligned}
\partial_{x}\left(u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right) & =-\omega \lambda^{-s+1}(-\sin (\lambda x-\omega t) \lambda)+0-\lambda^{-2 s+2}\left(\frac{1}{2}(-\sin 2(\lambda x-\omega t) 2 \lambda)\right) \\
\partial_{x}\left(u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right) & \left.=\omega \lambda^{-s+2}(\sin (\lambda x-\omega t))+\lambda^{-2 s+3} \sin 2(\lambda x-\omega t)\right) \\
D^{-2} \partial_{x}\left(u^{\omega, \lambda} u_{x x}^{\omega, \lambda}\right) & =D^{-2} \omega \lambda^{-s+2} \sin (\lambda x-\omega t)+D^{-2} \lambda^{-2 s+3} \sin 2(\lambda x-\omega t) \\
& =F_{4}+F_{5}
\end{aligned}
$$

To summarize, the error F of the approximate solution (5) is

$$
\begin{equation*}
F=F_{1}+F_{2}+F_{3}+F_{4}+F_{5} \tag{10}
\end{equation*}
$$

Where F_{j} 's are derived as above.

3. Estimating the Error of Approximate solutions of FW and OBBM equations

Next we shall estimate the H^{σ}-norm of the error F in (9) and (10) by estimating separately the H^{σ} norm of each term F_{j}.
Estimating the H^{σ}-norm of error of FW equation:
Estimating the H^{σ}-norm of F_{1}

$$
\begin{aligned}
\left\|F_{1}(t)\right\|_{H^{\sigma}(T)} & =\left\|\frac{-1}{2} \omega \lambda^{-s} \sin (\lambda x-\omega t)\right\|_{H^{\sigma}(T)} \\
& =\frac{1}{2} \omega \lambda^{-s}\|\sin (\lambda x-\omega t)\|_{H^{\sigma}(T)} \\
& \leq \frac{1}{2} \omega \lambda^{-s+\sigma}
\end{aligned}
$$

since by Lemma 1.1, $\lambda \gg 1$.
Estimating the H^{σ}-norm of F_{2}

$$
\begin{aligned}
\left\|F_{2}(t)\right\|_{H^{\sigma}(T)} & =\left\|-\frac{3}{4} \lambda^{-2 s+1} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}(T)} \\
& =\frac{3}{4} \lambda^{-2 s+1}\|\sin 2(\lambda x-\omega t)\|_{H^{\sigma}(T)} \\
& \leq \frac{3}{4} \lambda^{-2 s+1+\sigma}
\end{aligned}
$$

since by Lemma $1.1, \lambda \gg 1$.
Estimating the H^{σ}-norm of F_{3}

$$
\begin{aligned}
\left\|F_{3}(t)\right\|_{H^{\sigma}(T)} & =\left\|D^{-2} \lambda^{-s+1} \sin (\lambda x-\omega t)\right\|_{H^{\sigma}(T)} \\
& =\left\|\lambda^{-s+1} \sin (\lambda x-\omega t)\right\|_{H^{\sigma-2}(T)} \\
& \leq \lambda^{-s+1}\|\sin (\lambda x-\omega t)\|_{H^{\sigma-2}(T)} \\
& \leq \lambda^{-s+1} \lambda^{\sigma-2} \\
& =\lambda^{-s+\sigma-1}
\end{aligned}
$$

since by Lemma $1.1, \lambda \gg 1$. Putting the above estimates together gives the following H^{σ}-estimate for the error of the FW approximate solution.

$$
\begin{equation*}
\|F\|_{H^{\sigma}(T)} \leq \frac{1}{2} \omega \lambda^{-s+\sigma}+\frac{3}{4} \lambda^{-2 s+1+\sigma}+\lambda^{-s+\sigma-1} \tag{11}
\end{equation*}
$$

Estimating the H^{σ}-norm of error of OBBM equation: Next we shall estimate the H^{σ}-norm of the error F in (6) by estimating separately the H^{σ} norm of each term F_{j}.
Estimating the H^{σ}-norm of F_{1}

$$
\begin{aligned}
\left\|F_{1}(t)\right\|_{H^{\sigma}(T)} & =\left\|-\frac{1}{2} \lambda^{-2 s+1} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}(T)} \\
& =\frac{1}{2} \lambda^{-2 s+1}\|\sin 2(\lambda x-\omega t)\|_{H^{\sigma}(T)} \\
& \leq \frac{1}{2} \lambda^{-2 s+1} \lambda^{\sigma} \\
& \leq \lambda^{-2 s+\sigma+1}
\end{aligned}
$$

since by Lemma $1.1, \lambda \gg 1$.
Estimating the H^{σ}-norm of F_{2}

$$
\begin{aligned}
\left\|F_{2}(t)\right\|_{H^{\sigma}} & =\left\|D^{-2} \lambda^{-s+1} \sin (\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\lambda^{-s+1}\|\sin (\lambda x-\omega t)\|_{H^{\sigma-2}} \\
& \leq \lambda^{-s+1+\sigma}
\end{aligned}
$$

Estimating the H^{σ}-norm of F_{3}

$$
\begin{aligned}
\left\|F_{3}(t)\right\|_{H^{\sigma}} & =\left\|D^{-2} \lambda^{-2 s+3} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\lambda^{-2 s+3}\left\|D^{-2} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\lambda^{-2 s+3}\|\sin 2(\lambda x-\omega t)\|_{H^{\sigma-2}} \\
& \leq \lambda^{-2 s+3+\sigma}
\end{aligned}
$$

since by Lemma $1.1, \lambda \gg 1$.
Estimating the H^{σ}-norm of F_{4}

$$
\left\|F_{4}(t)\right\|_{H^{\sigma}}=\left\|D^{-2} \omega \lambda^{-s+2} \sin (\lambda x-\omega t)\right\|_{H^{\sigma}}
$$

$$
\begin{aligned}
& =\omega \lambda^{-s+2}\left\|D^{-2} \sin (\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\omega \lambda^{-s+2}\|\sin (\lambda x-\omega t)\|_{H^{\sigma-2}} \\
& \leq \omega \lambda^{-s+2+\sigma}
\end{aligned}
$$

since by Lemma 1.1, $\lambda \gg 1$.

Estimating the H^{σ}-norm of F_{5}

$$
\begin{aligned}
\left\|F_{5}(t)\right\|_{H^{\sigma}} & =\left\|D^{-2} \lambda^{-2 s+3} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\lambda^{-2 s+3}\left\|D^{-2} \sin 2(\lambda x-\omega t)\right\|_{H^{\sigma}} \\
& =\lambda^{-2 s+3}\|\sin 2(\lambda x-\omega t)\|_{H^{\sigma-2}} \\
& \leq \lambda^{-2 s+3+\sigma}
\end{aligned}
$$

since by Lemma 1.1, $\lambda \gg 1$. Now putting the above estimates together gives the following H^{σ}-Estimate for the error of the OBBM approximate solution.

$$
\begin{equation*}
\|F(t)\|_{H^{\sigma}} \leq \lambda^{-2 s+1+\sigma}+\lambda^{-s+1+\sigma}+\lambda^{-2 s+3+\sigma}+\omega \lambda^{-s+2+\sigma}+\lambda^{-2 s+3+\sigma} \tag{12}
\end{equation*}
$$

Hence, we derived the approximate solutions of FW and OBBM equations and compute the error of the approximate sloution of FW and OBBM equation. Also we estimated the H^{σ} norm of the error.

References

[1] J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23(2002), 1241-52.
[2] R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Int. Eqs., 14 (2001), 953-988.
[3] G. odriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46(2001), 309-327.
[4] A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Diff. Int. Eqs., 22(2009), 201-224.
[5] A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Diff. Int. Eqs., 14(2001), 821-831.
[6] A. Himonas, Kenig and G. Misiolek, Non-uniform dependence for the periodic CH equation, Commun. Partial Diff. Eqns., 35(2010), 1145-62.
[7] A. Himonas and G. Misiolek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296(2010), 285-301.
[8] A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation DiscreteContin, Dyn. Syst., 31(2011), 469-88.
[9] C. Holliman, Non-uniform dependence and well-posedness for the periodic Hunter-Saxton equation, Diff. Int. Eqns., 23(2010), 1159-94.
[10] W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the Novikov equation, Journal of Nonlinear Differential Equations and Applications, 20(2013), 1157-1169.
[11] A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Discrete Continuous Dynamical Systems, 31(2011), 469-488.
[12] A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation, Nonlinearity, 25(2012), 449-479.
[13] A. Himonas and C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation, Advanced Differential Equations, 19(2014), 161-200.
[14] A. Yin, Well-posedness and blow-up phenomena for a class of nonlinear third-order partial differential equations, Houston Journal of Mathematics, 31(2005), 961-972.
[15] A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 37(2005), 996-1026.
[16] Yongsheng Mi, Chunlai Mu and Pan Zheng, On the Cauchy problem of the modified Hunter-Saxton Equation, Discrete and continuous dynamical systems series $S, 9(6)(2016)$, 2047-2072.
[17] A. Himonas, G. Misio lek and G. Ponce, Non-uniform continuity in H^{1} of the solution map of the CH equation, Asian J. Math., 11(2007), 141-150.
[18] C. Holiman, Non-uniform dependence and well-posedness for the periodic Hunter-Saxton equation, Diff. Int. Eq., $23(2010), 1150-1194$.
[19] O. Christov and S. Hakkaev, On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation, J. Math. Anal. Appl., 360(2009), 47-56.
[20] A. Himonas and D. Mantzavinos, The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation, Nonlinear Anal., 95(2014), 499-529.

[^0]: * E-mail: gokilamrangaswamy@gmail.com

