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1. Introduction

Consider C ⊂ P2, a projective plane curve of degree d. An important geometric method for studying C, involves meromorphic

functions arising from linear projections of C from a point p ∈ P2. For instance, B. Riemann established in his famous work

[4], that the topological structure of a smooth curve C ⊂ P2 depends entirely on the nature of branch types of the branched

covering πp arising from a linear projection. To construct πp, we choose a point p ∈ P2 which may or may not be lying on

C and then identify P1 with the pencil of lines passing through p ∈ P2. If p ∈ P2 \ C, then a generic line through p meets

the curve C in d distinct points. Thus, the linear projection from a point p ∈ P2 \ C is a finite surjective morphism

πp : C −→ P1 (1)

of degree d. Namely, the morphism πp is a branched covering of P1 and the points of P1 where several intersection points

of the corresponding line with C coincide are the branch points of πp. Therefore, it is a basic problem to characterize and

enumerate those meromorphic functions f on C which can be realized as linear projections. First, note that in general not

all meromorphic functions on a curve C ⊂ P2 can be realized as such. However, for d > 4 we have the following result which

we will prove.

Theorem 1.1. Suppose that C ⊂ P2 is a smooth projective plane curve of degree d > 4. Then any meromorphic function

f : C −→ P1 of degree d can be realized as a linear projection πp : C −→ P1.

Hurwitz numbers [1, 3] count non-isomorphic meromorphic functions on curves with fixed genus g having a fixed branched

profile. On the other hand, Zeuthen numbers [11] count nodal plane curves of a fixed degree d and geometric genus g

passing through a general points and tangent to b general lines in P2, where a+ b = 3d+ g − 1. There is a class of Zeuthen
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numbers corresponding to what we call plane Hurwitz numbers. Zeuthen numbers have been interpreted by R.Vakil

in the context of stable maps as positive degree Gromov-Witten invariants of P2. In section §5 below, following [9], we

will sketch a derivation of a class of characteristic numbers of smooth plane curves which correspond to calculating plane

Hurwitz numbers.

2. General Preliminaries

2.1. Notation and conventions

The base field is C, the field of complex numbers and we denote by Pn the n−dimensional projective space over C. By

a variety we mean a reduced algebraic projective scheme over C. The term curve means a complete connected variety

of dimension 1. By a smooth or nonsingular curve we implicitly assume that it is irreducible. If Γ ⊂ Pn is a closed

subscheme, we write OΓ for the structure sheaf over Γ and IΓ ⊂ OPn denotes the ideal sheaf of Γ. Let D be a divisor on a

curve X, then |D| is the complete linear system of D. We write KX or K for the canonical class of a smooth curve X and

we denote by |KX | or |K| for the complete canonical series respectively. Suppose that F is a sheaf of vector spaces over a

projective scheme X. Then we set

hi(F ) := dim Hi(X,F ) and χ(F ) :=

dimX∑
i=0

(−1)ihi(F ).

2.2. General Definitions

Let C be a nonsingular curve of genus g. A surjective morphism f : C → P1 is called a meromorphic function. More

precisely, a meromorphic function f gives a finite morphism to the complex projective line P1 whose degree d by definition

is the degree of the morphism f : C −→ P1. Thus for a meromorphic function f and any fixed point q ∈ P1 we have the

divisor f−1(q) = µ1p1 + . . .+ µnpn, where p1, . . . , pn are pairwise distinct points on C and µ1, . . . , µn are positive integers

summing up to d. In particular, we can assume µ1 ≥ . . . ≥ µn. The partition (µ1, . . . , µn) ` d is called the branch type of

f at a point q. For instance, f is unbranched over q, if the branch type equal to (1, 1, . . . , 1). The branch type for a simple

branch point is (2, 1, . . . , 1). The set of all branch points is called the branching locus of f . In this way, every nonconstant

meromorphic function on a curve C is a branched covering. The basic problem is then the classification and enumeration

of such maps f : C → P1 for a given g and d for a prescribed branch type over each branch point of f . The set of all branch

types for f will be called branch profile of f .

2.3. Hurwitz Numbers

Branched coverings were first described in the famous paper [4] by Riemann who developed the idea of representing non-

singular curves as branched coverings of P1 in order to study their moduli. However, systematic investigation of branched

coverings was initiated by Hurwitz in [1, 2] more than thirty years later.

Definition 2.1. Let f1 : C1 → P1, f2 : C2 → P1 be two branched coverings. Then f1 and f2 are said to be equivalent if

there exists an isomorphism h : C1 → C2 such that f1 = f2 ◦ h.

Hurwitz observed that if we fix the degree d of the branched coverings f : C → P1 and the number w of branch points and

branch profile, then equivalence classes of branched coverings form a covering space Hd,g (we suppress the branch profile

to avoid notational clutter) of the configuration space of w points in P1. These parameter spaces Hd,g are called Hurwitz

spaces. The fundamental group of the configuration space of w branch points in P1 acts on the fibers of Hg,d and the orbits
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of this action are in one-one correspondence with the connected components of Hg,d. A very special case is when all the

branch points are simple. Hurwitz proved that in this case there is only one orbit. Consequently, it follows that the Hurwitz

space parametrizing simple branched coverings of P1 of degree d is an irreducible smooth algebraic variety (see §21 of [5] or

[12]) called the small Hurwitz space denoted by

Hg,d =

 f : C −→ P1

∣∣∣∣ C has genus g and f is a branched covering

of degree d with w simple branch points


/
∼ . (2)

It turns out that Hd,g is a covering space. In fact it is shown in [1] that Hg,d comes with a natural finite étale covering

Φ : Hg,d −→Symw P1\∆

(f : C −→ P1) 7−→{branch locus of f}
(3)

where Symw P1 is the space of unordered w−tuples of points in P1 and ∆ is the discriminant hypersurface corresponding

to sets of cardinality strictly less than w. The Riemann-Hurwitz formula tells us that the degree of the branch divisor for

f : C −→ P1 in Hg,d, equals w = 2g + 2d − 2. The morphism Φ is called the branching morphism and its degree is

called the simple Hurwitz number hd,g. Since the map Φ is finite-to-one, the branch points can be regarded as local

coordinates on Hg,d and it follows that the dimension of the Hurwitz space is equal to w = 2g + 2d− 2.

3. Proof of Theorem 1.1

Given a smooth curve C, specifying a meromorphic function f : C −→ P1 of degree d on C corresponds to identifying an

effective degree d divisor D of f such that the linear system |D| has no base points and dim |D| ≥ 1.

Definition 3.1. Let D = p1 + . . .+ pd be a divisor on a smooth curve C. If |D| has no base point and dim |D| = 1, we say

that D moves in a linear pencil |D|. Equivalently, we have a meromorphic function of degree d

f : C −→ P1

such that f∗OP1(1) = L , where L ∼= OC(D) for OC(D) the invertible sheaf over C determined by the divisor D and

h0(L ) = 2, so that we may choose a basis say {f0, f1} for H0(C,L ) such that f = [f0 : f1].

Remark 3.2. The assertion of Theorem 1.1 fails if d = 3 and d = 4.

Example 3.3. If C ⊂ P2 is a smooth projective quartic, then there is a meromorphic function on C of degree 4 which is not

isomorphic to a linear projection πp. Indeed let D = p1 + . . .+ p4 be a divisor given by any 4 points on C such that no three

of them are collinear. In our case h0(L ) = 2 by Riemann-Roch’s theorem. Recall that an invertible sheaf L on C is base

point free if h0(L )−h0(L (−p)) = 1 for all p ∈ C. Then h0(L (−p)) = deg(L (−p))−g+1 = 1 again by Riemann-Roch. So

we obtain h0(L (−p)) = 1 = h0(L )− 1 and we conclude that the linear system |p1 + p2 + p3 + p4| has no base points. Hence

the four points move in a linear pencil but a meromorphic function specified by this divisor on a smooth quartic cannot be

realized as a linear projection as this 4 points are not in a line.

The proof of Theorem 1.1 will be derived from the following result.

Theorem 3.4. Let Γ = {p1, . . . , pd} ⊂ P2, be any collection of d ≥ 5 distinct points. If Γ fails to impose independent linear

conditions on |OP2(d− 3)| then at least d− 1 of the points are collinear.
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To see why the proof of Theorem 1.1 follows from that of Theorem 3.4, recall from the introduction that to specify a

meromorphic function of degree d on C, we specify a divisor D of degree d on C such that the linear system |D| has no base

points and dim |D| ≥ 1, where

dim |D| := h0(D)− 1.

In the case the divisor D on C has a linear system as above, we say that D moves.

Definition 3.5. The finite set Γ = {p1, . . . , pd} ⊂ P2 of distinct points imposes linear independent conditions on

plane curves of degree m if for every point P ∈ Γ there exist plane curves of degree m that contains Γ \ P and does not

contain the point P ∈ Γ.

Consider the subset Γ ⊂ P2 as a closed zero-dimensional subscheme of P2. Then we have the standard exact sequence of

sheaves

0 −→ IΓ ⊗OP2(m) −→ OP2(m) −→ OΓ(m) −→ 0, (4)

where IΓ ⊂ OP2 is the ideal sheaf of the zero dimensional variety Γ. Note that OΓ(m) ∼= ⊕di=1Opi ∼= Cd, and that surjectivity

of

α : H0(P2,OP2(m)) −→ H0(Γ,OΓ(m))

exactly means that there is for each pi, i = 1, . . . , d a plane curve of degree m that contains Γ \ {pi} but not pi. Hence

Γ ⊂ P2 fails to impose independent conditions on curves of degree m if and only if α is not surjective. Namely if and only if

h0(IΓ ⊗OP2(m)) > h0(OP2(m))− d =
(m+ 1)(m+ 2)

2
− d.

Equivalently since H1(P2,OP2(m)) = 0, Γ fails to impose independent conditions on |OP2(m)| if we have h1
(
IΓ⊗OP2(m)

)
>

0.

Let D = p1 + . . .+pd be a divisor of degree d on a smooth curve C ⊂ P2. A criterion for determining when D moves is given

by the Riemann-Roch theorem for curves. Denote by H the divisor of a general linear section. The adjunction formula tells

us that

KC ∼ (d− 3)H.

By the Bézout theorem the degree of the divisor (d− 3)H is equal to d(d− 3). So we obtain that

2g − 2 = (d− 3)d or g =
(d− 1)(d− 2)

2
.

The Riemann-Roch formula implies that

h0(D) = d− g + 1 + h0(KC −D
)
,

and hence dim |D| ≥ 1 if and only if

dim |KC −D| ≥
(d− 1)(d− 2)

2
− d. (5)

Now the ideal sheaf IC of C in P2 is isomorphic to OP2(−C), and so

H0(P2,IC ⊗OP2(d− 3)) ∼= H1(P2,IC ⊗OP2(d− 3)) = 0
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since H0(P2,OP2(−3)) ∼= H1(P2,OP2(−3)) = 0. Twisting the exact sequence

0 −→ IC −→ OP2 −→ OC −→ 0

by OP2(d− 3), we find that H0(P2,OP2(d− 3)) ∼= H0(C,OC(d− 3)). Furthermore we have that

H0(P2,IΓ ⊗OP2(d− 3)) = ker
(
H0(P2,OP2(d− 3)) −→ H0(Γ,OΓ(d− 3))

)
.

On the other hand, KC ∼ (d− 3)H and OC(D) is the ideal of D in C which implies that

H0(C,OC(KC −D)) = ker
(
H0(C,OC(d− 3)) −→ H0(Γ,OΓ(d− 3))

)
,

so we find that h0(OC(KC −D)) = h0
(
ID ⊗OP2(d− 3)

)
. Hence (5) is equivalent to the inequality

h0(ID ⊗OP2(d− 3)
)
>

(d− 1)(d− 2)

2
− d. (6)

In other words, the divisor D = p1 + . . . + pd satisfies dim |D| ≥ 1 if and only if the set Γ = {p1, . . . , pd} fails to impose

independent conditions on the canonical linear system |KC |. We will now see that we may use this to derive Theorem 1.1

from Theorem 3.4.

To complete the proof of Theorem 1.1, it suffices to show that either all the d points of D are collinear, or if only the d− 1

points of D lie on a line then the d-th point is a base point of the linear system |D|. In the first case D ∼ H and we are

done. In the second case, suppose that D = p1, . . . , pd−1 + q, where the points p1, . . . , pd−1 lie on a line ` and q /∈ `. We

must show that q is a base point of the linear system |D| or equivalently that we have

dim |p1 + . . .+ pd−1| = dim |p1 + . . .+ pd−1 + q|.

But as the degree of the divisor p1 + . . .+ pd−1 is equal to degD − 1, the Riemann-Roch then implies that it is enough to

show that the following equality:

dim |KC − p1 − . . .− pd−1 − q| = dim |KC − p1 − . . .− pd−1| − 1 (7)

holds. Since degC = d, we can write the divisor cut by C on ` as C · ` = p1 + . . .+ pd−1 + b, where b 6= q because q /∈ `. If

a curve C1 of degree d− 3 passes through d− 1 collinear points p1, . . . , pd−1, it must contain ` as a component. Thus, the

linear system in equation (7) on left-hand side

|KC − p1 − . . .− pd−1 − q| ∼= |Iq ⊗OP2(d− 4)|,

whereas the linear system on right-hand side in (7)

|KC − p1 − . . .− pd−1| ∼= |OP2(d− 4)|

which follows from the fact that dim |Iq ⊗ OP2(d − 4)| = dim |OP2(d − 4)| − 1. And this implies (7), which completes the

proof.

It is worthy to remark that if p1, . . . , pd−1 are distinct points in P2, then they will always impose independent conditions

on curves of degree d ≥ 4. In particular, the divisor D = p1 + . . . + pd−1 moves in a linear pencil if and only if the points

p1, . . . , pd−1 lie on a line. It follows that for a smooth plane curve C ⊂ P2 of degree d, there is no nonconstant meromorphic

function of degree less than d− 1.
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4. Proof of Theorem 3.4

To shorten the proof of theorem 3.4, we first reformulate it below in a slightly different but equivalent form.

Theorem 4.1. Let Γ = {p0, . . . , pd} ⊂ P2, be any collection of d + 1 ≥ 5 distinct points. If Γ fails to impose independent

linear conditions on |OP2(d− 2)| then at least d of the points in Γ are collinear.

Proof. By assumption there exists at least one point (without loss of generality) say p0 ∈ Γ such that any curve of degree

d− 2 passing through the points in Γ \ p0 also passes through p0. Note that if we have a curve C of degree n ≤ d− 2 that

passes through Γ \ p0, then it follows by assumption that C also must pass through p0.

Let p0, p1 . . . , pj be the minimal number of points in Γ lying on a line ` containing the point p0. Rename the remaining

points as q1, . . . qd−j . By construction, any line through a point pi 6= p0 and a point qi, will not pass through p0. We now

construct a curve C being a product of such lines. We let `i be the line through pi and qi if 1 ≤ i ≤ min{j, d− j}. For the

possible remaining points, we either let `i denote the lines through pi and q1 (if d− j < i ≤ j) or the line through qi and p1

(if j < i ≤ d− j). The curve

C = `1 . . . `n (where n = max{j, d− j})

passes through all the points of Γ \ p0, but not though p0. If we have 2 ≤ j ≤ d− 2 then we get that the degree n ≤ d− 2,

which is a contradiction to our assumption.

If we have j = 1, then any line `′ through two points Γ \ p0 would not contain p0. Observe that, to cover Γ \ p0, we need at

most n ≤ d/2 lines `′1, . . . , `
′
n if d is even, and at most n ≤ (d + 1)/2 lines to cover Γ \ p0, if d is odd. Note that d ≥ 5 is

equivalent to (d+ 1)/2 ≤ d−2, and if d = 4 then we have that d/2 ≤ d−2. Hence for any d, in our range, we have the curve

C′ = `′1 . . . `
′
n

of degree n ≤ d− 2 that passes through all points of Γ \ p0, but not through p0. This is impossible by assumption.

Finally, we are left with the only possibility that j > d − 2. However if j ≥ d − 1, then we have at least j + 1 ≤ d point

p0, . . . , pj aligned on the line `. This completes the proof.

5. Plane Hurwitz numbers and Zeuthen Numbers

5.1. Plane Hurwitz Numbers

Generally in calculating Hurwitz numbers, we make no reference to the embedding of curves. For example, one can not

expect for instance a branched covering of P1 whose domain is genus 2 to be planar and smooth, since a smooth plane curve

of degree d, has g =
(
d−1

2

)
. Additionally, we expect that not all curves of genus g =

(
d−1

2

)
can be embedded in P2 as smooth

curves. For instance, among all smooth curves of genus 3 (for d = 4), there are hyperelliptic curves, which are not planar.

Fix d > 0; the space parametrizing all degree d algebraic curves in P2 is a complete system |OP2(d)|, which forms a projective

space

P(H0(P2,OP2(d))) ∼= PN,

where N =
(
d+2

2

)
− 1 = d(d+ 3)/2. In particular, the set of all smooth plane curves of a given degree d is an open subset of

PN. The group PGL(3,C) of all projective automorphisms of P2 acts on PN in a natural way. Of particular interest is the

subgroup Gp ⊂ PGL(3,C) fixing p and preserving the pencil of lines through p. Given a smooth curve C ⊂ P2, for instance
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if p = [0 : 1 : 0] ∈ P2 \ C for some choice of coordinate system of P2 an element of the group Gp has the form

g =

g0 0 0

g1 g2 g3

0 0 g0

 with g0g2 6= 0.

The group of automorphisms Gp acts equivalently on PN keeping the branching points of the projection πp : C → P1 fixed.

Recall from Definition 2.1, that two branched coverings π1
p : C1 → P1 and π2

p : C2 → P1 are called equivalent if there exists

an isomorphism g : C1 → C2 such that π2
p ◦ g = π1

p. Then we have:

Proposition 5.1. Let C1, C2 ⊂ P2 be two smooth projective plane curves of the same degree d > 1 and not passing through

p ∈ P2. Two projections π1
p : C1 −→ P1 and π2

p : C2 −→ P1 are equivalent if and only if there exists an automorphism g ∈ Gp

such that g(C1) = C2.

Proof. Let C1, C2 ⊂ P2 be smooth projective curves not passing through p ∈ P2. If there exists an automorphism g ∈ Gp

such that C2 = g(C1), then the morphisms πp and π′p are equivalent by an isomorphism given by g. For the ‘only if ’

direction, suppose that π1
p and π2

p are equivalent and that this equivalence is determined by an isomorphism g : C1 → C2.

For each line ` 3 p the isomorphism g maps C1∩` to C2∩`; thus, g maps hyperplane sections of C1 to hyperplane sections of

C2. Since both C1 and C2 are embedded in P2 by complete linear system of hyperplane sections H0(P2,OCi(1)), for i = 1, 2,

this implies that g is induced by projective automorphism PGL(3,C). To complete the proof, it only remains to check that

g ∈ Gp; to that end, consider a generic line ` 3 p; this line intersects Ci for i = 1, 2 at d = degCi > 1 points and this points

are mapped by g to d distinct points on `. So g(`) = ` for the generic line and thus for any ` 3 p. If `1, `2 containing p then

g(p) = g(`1 ∩ `2) = g(`1) ∩ g(`2) = `1 ∩ `2 = p.

Hence g ∈ Gp as expected and this completes the proof.

A generic projection of smooth curve C ⊂ P2 from a point p ∈ P2 which is not on a bitangent line or a flex line we obtain

a linear projection πp : C → P1 with only simple branch points. This leads us to the orbit space parametrizing all generic

linear projections. Denote this space of generic linear projections by:

PHd =

 πp : C → P1

∣∣∣∣ πp is a simple linear projection from

p ∈ P2 \ C of a smooth curve C ⊂ P2


/
∼ . (8)

where ∼ is the equivalence of projections from a point p ∈ P2 up to the Gp- action.

Note that for g =
(
d−1

2

)
, we have a natural inclusion PHd ⊆ Hd,g of small Hurwitz spaces for d > 1. The information about

the dimension of PHd is a direct consequence of proposition 5.1 we summarize as follows.

Corollary 5.2. The dimension of the space PHd is equal to N− 3 = d(d+3)
2
− 3.

The number of branch points of a generic projection πp : C → P1 of a smooth curve of degree d from p ∈ P2 \C is determined

by the Riemann-Hurwitz formula as w = d(d− 1). We refer to the number of 3-dimensional G-orbits with the same set of w

tangents lines as the d-th plane Hurwitz number and denote it by hd. Thus, to compute hd as indicated in (3), we need

to calculate the degree of the branch morphism

PHd −→Symw P1\∆, (9)

restricted to its image. Notice that by Corollary 5.2 the dimPHd < d(d− 1) for d ≥ 4. Next we will give two examples of

known plane Hurwitz numbers.
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Degree 3-plane Hurwitz Numbers

The first nontrivial case involves projections of smooth plane cubics. The remark following Theorem 1.1 asserts that if d = 3

not all meromorphic function of degree 3 on smooth plane cubics are realizable as projections. However, degree 3 simple

plane Hurwitz numbers coincides with the usually Hurwitz number. Namely, over w = 6 pairwise distinct points on the

projective line P1 there are exactly 40 three-dimensional orbits of smooth cubics branched over them, see [1]. To see this,

recall that Hurwitz numbers count branched covering up to equivalence, the equivalence of plane Hurwitz with the usual

Hurwitz number is a consequence of the fact that every meromorphic function of degree 3 on a smooth cubic is a composition

of a group shift of C followed by a linear projection from p ∈ P2 \C. This is a well-known consequence of the fact that any

smooth plane cubic curve is an abelian group. We give the details below.

Proposition 5.3. Every meromorphic function of degree 3 on a smooth cubic curve C ∈ P2 can be represented as a

composition of a group shift on C by a fixed point on C with a linear projection from a point p ∈ P2.

Proof. Let C be a smooth projective cubic and let f : C −→ P1 be a meromorphic function of degree 3. If we write

f−1(0) = z1 + z2 + z3, f−1(∞) = p1 + p2 + p3 for the zero divisor and polar divisor of f respectively (where zi and pi for

all i = 1, 2, 3 are not necessarily distinct). The linear equivalence of divisors f−1(0) ∼ f−1(∞) implies the equality

p1 + p2 + p3 = z1 + z2 + z3

as divisors, where “+” denotes the addition from group law on the cubic curve. Fix a point P0 ∈ C such that p1 + p2 + p3 +

3P0 = 0 and define

Qi = pi + P0, and Ri = zi + P0 for all i = 1, 2, 3.

Then we have

Q1 +Q2 +Q3 = p1 + p2 + p3 + 3P0 = 0

R1 +R2 +R3 = z1 + z2 + z3 + 3P0 = 0.

In particular, {Q1, Q2, Q3} and {R1, R2, R3} lie on distinct lines in P2, Since otherwise these sets would be equal and so

f−1(0) = f−1(∞), which is impossible. Denote the lines given by the translates {Q1, Q2, Q3} and {R1, R2, R3} by `1 ⊂ P2

and `2 ⊂ P2 respectively. If l1(x, y, z) and l2(x, y, z) are equations for the lines `1 and `2, the meromorphic function given

by composition of the group shift and projection is the quotient l1/l2: f(P − P0) = `1(P )
`2(P )

⇐⇒ f(P ) = `1(P+P0)
`2(P+P0)

, (where

P = (x, y, x)) after possibly multiplying with a constant using the fact that a meromorphic function without poles will be

constant.

Degree 4-plane Hurwitz Numbers

The case d = 4 is more exciting. Note that the space parametrizing projections PH4 has dimension 4(4+3)
2
− 3 = 11. As

branched coverings, this 11-dimensional family PH4 admits a natural inclusion into the small Hurwitz space H4,3 defined in

(2) which is a smooth irreducible variety of dimension 12. The inclusion PH4 ⊂ H4,3 implies that the branch locus defines

an hypersurface B ⊂ Sym12 P1. R. Vakil in [10] has computed its degree to be equal to 3762. Moreover, he establishes that

there are essentially 120 smooth plane quartic branched over admissible 12 points in P1. Thus, it follows that the plane

Hurwitz number of degree 4 is

h4 = 120× (310 − 1)

2
. (10)

The corresponding Hurwitz number is known to be equal to h3,4 = 255× (310−1)
2

.
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5.2. Zeuthen numbers

This notion of plane Hurwitz numbers has a strong analogy to the special case of Zeuthen’s classical problem which asks to

calculate the number of irreducible plane curves of degree d > 0 and geometric genus g ≥ 0 passing through a general points

and b tangent lines in P2, where a + b = 3d + g − 1. More precisely, assuming that the only singularities of an irreducible

curve C ⊂ P2 are δ nodes, since each node reduces the freedom of the curve by 1, we expect the set of irreducible degree d

curves with δ nodes depends on

dim |OP2(d)| − δ =
d(d+ 3)

2
− δ = 3d+ g − 1

parameters. Indeed, for all fixed integers d > 0 and g ≥ 0 as first observed by F. Severi [6] and proved by J. Harris [7], the

Severi variety Vg,δ parametrizing irreducible plane curves of degree d with δ nodes is a quasiprojective variety of dimension

3d + g − 1. It follows that for a fixed d > 0, g ≥ 0 the numbers Nd(g) of curves passing through 3d + g − 1 general points

is finite and does not depend on the generic configuration of points chosen. This Nd(g) number is commonly referred to as

Severi degree of plane curves.

In general, fix integers d > 0 and a, b, g ≥ 0. The number of irreducible curves of geometric genus g and degree d passing

through a general points and tangent to b general lines in P2 is finite provided a + b = 3d + g − 1. These numbers are

called characteristic numbers of plane curves and we denote them by Ng(a, d). The question of calculating characteristic

numbers is the classical problem of Zeuthen and thus we usually refer to the numbers Ng(a, d) as Zeuthen Numbers.

In [11], H.G. Zeuthen calculated the characteristic numbers of smooth curves in P2 of degree at most 4 and [9] has verified

Zeuthen’s results using modern results on moduli spaces of stable maps, for an exposé see e.g. [13].

5.3. Homological interpretation of Zeuthen numbers

Let Mg,0(P2, d) be the Kontsevich moduli space of maps to P2 of fixed degree d > 0 and arithmetic genus g ≥ 0. Consider

the open substack of maps of smooth curves Mg,0(P2, d). The closure of Mg,0(P2, d) is a unique component of Mg,0(P2, d)

of dimension 3d + g − 1 we denote by Mg,0(P2, d)†. The Zeuthen number Ng(a, d) can be interpreted in the language of

stable maps.

Let α and β denote the divisors in Mg,0(P2, d)† representing classes of a point and a line respectively. The characteristic

number Ng(a, d) is given by the degree of αaβb and is denoted by αaβb ∩
[
Mg,0(P2, d)†

]
. For example, it is known there is

a unique smooth cubic through 9 general points, then we will write α9 ∩
[
M1,0(P2, 3)†

]
= 1.

The following existence result is the key point for this interpretation.

Proposition 5.4. There exist two divisors α and β such that the number Ng(a, d) is αaβb ∩
[
Mg,0(P2, d)†

]
.

Proof. See [8], Theorem 3.15.

We finish with an open problem. As above letMg,0(P2, d)† be the closure of the open substackMg,0(P2, d) of maps of smooth

curves of degree d. Among the boundary divisors representing the closure of loci of maps (see [8] for precise descriptions) of

Mg,0(P2, d)†, we have a divisor Id the closure of the locus of degree d : 1 maps of smooth curves of degree d into a line in P2.

Such generic maps are necessarily branched at d(d−1) points by Riemann-Hurwitz formula. Thus the divisor Id enumerates

a special class of Zeuthen numbers whose calculation is related to that of Hurwitz numbers. Namely, the Zeuthen numbers

β3d+g−2[Id] for g =
(
d−1

2

)
. For instance, R. Vakil in [9] calculates that β8[I3] = 40× 210 and β13[I4] = 120 · 2535. It makes

sense to consider the divisor Id up to the Gp-action.
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6. Problem

Is there a natural homology class β ∈ H2(3d+g−4)

(
Mg,0(P2, d

)†
/Gp,Q) such that

hd = β3d+g−5 ∩
[
Id/Gp

]
.
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