International Journal of Mathematics And its Applications

Some Rational Contractions for Coupled Coincidence and Common Coupled Fixed Point Theorems in Complex-Valued Metric Spaces

Animesh Gupta ${ }^{1, *}$ and Prahalad Singh Kaurav ${ }^{2}$
1 H.No. 93/654, Ward No. 2, Gandhi Chowk Pachmarhi, Hoshangabad, Madhya Pradesh, India.
2 Department of Mathematics, Government P.G. College, Gadarwara, Narsingpur, Madhya Pradesh, India.

Abstract

The aim of this paper is to obtain a coupled coincidence point theorem and a common coupled fixed point theorem of contractive type mappings involving rational expressions in the framework of a complex-valued metric spaces. We also improve the result obtain by [4]. The results of this paper generalize and extend the results of Kang [3], in complex-valued metric spaces.

MSC: \quad 15A24, 15A29, 47 H 10.

Keywords: Coupled fixed point theorem, contractive type mapping, complex valued metric space.
(c) JS Publication.

1. Introduction and Preliminaries

In 2011, Azam [2] introduced the notion of complex valued metric space which is a generalization of the classical metric space. They established some fixed point results for mappings satisfying a rational inequality. The idea of complex valued metric spaces can be exploited to define complex valued normed spaces and complex valued Hilbert spaces; additionally, it offers numerous research activities in mathematical analysis. Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$, we define a partial order \preceq on \mathbb{C} as follows:

$$
z_{1} \preceq z_{2} \quad \text { if and only if } \quad \operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right) \quad \text { and } \quad \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)
$$

It follows that $z_{1} \preceq z_{2}$ if one of the following conditions is satisfied:
(C1) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$;
(C2) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$;
(C3) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$;
(C4) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$.

[^0]In particular, we will write $z_{1} \prec z_{2}$ if $z_{1} \neq z_{2}$ and one of (C 2), (C3) and (C 4$)$ is satisfied and we will write $z_{1} \prec z_{2}$ if only (C4) is satisfied.

Remark 1.1. We obtained that the following statements hold:
(1). If $a, b \in \mathbb{R}$ with $a \leq b$, then $a z \prec b z$ for all $z \in \mathbb{C}$.
(2). If $0 \preceq z_{1} \prec z_{2}$, then $\left|z_{1}\right|<\left|z_{2}\right|$.
(3). If $z_{1} \preceq z_{2}$ and $z_{2} \prec z_{3}$, then $z_{1} \prec z_{3}$.

Consistent with Azam [2], we state some definitions and results about the complex-valued metric space to prove our main results.

Definition 1.2. Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow \mathbb{C}$ satisfies the following conditions:
(d1) $0 \preceq d(x, y)$ for all $x, y \in X$;
(d2) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(d3) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(d4) $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a complex-valued metric on X and (X, d) is called a complex-valued metric space.

Example 1.3. Let $X=\mathbb{C}$. Define the mapping $d: X \times X \rightarrow \mathbb{C}$ by $d\left(z_{1}, z_{2}\right)=2 i\left|z_{1}-z_{2}\right|$ for all $z_{1}, z_{2} \in X$. Then (X, d) is a complex valued metric space.

Definition 1.4. Let (X, d) be a complex-valued metric space.
(1). Apoint $x \in X$ is called interior point of a set $B \subseteq X$ whenever there exists $0<r \in \mathbb{C}$ such that

$$
N(x, r):=\{y \in X: d(x, y)<r\} \subseteq B
$$

(2). A point $x \in X$ is called limit point of a set $B \subseteq X$ whenever there exists $0<r \in \mathbb{C}$ such thatN $(x, r) \cap(B\{x\}) \neq \phi$.
(3). A subset $B \subseteq X$ is called open whenever each element of B is an interior point of B.
(4). A subset $B \subseteq X$ is called closed whenever each limit point of B belongs to B.
(5). The family $F=\{N(x, r): x \in X, 0 \prec r\}$ is a sub-basis for a topology on X. We denote this complex topology by τ_{c}. Indeed, the topology τ_{c} is Hausdorff.

Definition 1.5. Let (X, d) be a complex-valued metric space, and let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
(1). If for every $c \in \mathbb{C}$ with $0<c$ there is $N \in \mathbb{N}$ such that for all $n>N, d\left(x_{n}, x\right)<c$ then $\left\{x_{n}\right\}$ is said to be convergent, if $\left\{x_{n}\right\}$ converges to x and x is the limit point of $\left\{x_{n}\right\}$. We denote this by $x_{n} \rightarrow x$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} x_{n}=x$.
(2). If for every $c \in \mathbb{C}$ with $0<c$ there is $N \in \mathbb{N}$ such that for all $n, m>N, d\left(x_{n}, x_{m}\right)<c$ then $\left\{x_{n}\right\}$ is said is said to be Cauchy sequence.
(3). If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete complex-valued metric space.

Lemma 1.6. Let (X, d) be a complex-valued metric space, and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 1.7. Let (X, d) be a complex-valued metric space, and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

In 2006, Bhaskar [1] introduced the notion of coupled fixed point and proved some fixed point results in this context. Similarly, Kang [3] introduce the notion of coupled fixed point for a mapping in complex valued metric spaces as follows.

Definition 1.8. Let (X, d) be a complex-valued metric space, an element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 1.9. Let (X, d) be a complex valued metric space. An element $(x, y) \in X \times X$ is said to be
(1). A coupled coincidence point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g(x)=F(x, y)$ and $g(y)=F(y, x)$, and $(g x, g y)$ is called a coupled point of coincidence if there exists $(u, v) \in X \times X$ such that $x=g u=F(u, v)$ and $y=g v=F(v, u)$.
(2). A common coupled fixed point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $x=g x=F(x, y)$ and $y=g y=F(y, x)$.

Definition 1.10. Let (X, d) be a complex-valued metric space. The mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are called w-compatible if $g(F(x, y))=F(g x, g y)$, whenever $g x=F(x, y)$ and $g y=F(y, x)$.

Kang [3] prove following result,
Theorem 1.11. ([3], Theorem-2.1) Let (X, d) be a complex valued metric space. Suppose that the mapping $F: X \times X \rightarrow X$ satisfies

$$
\begin{equation*}
d(F(x, y), F(u, v)) \leq h d(x, u)+k d(y, v) \tag{1}
\end{equation*}
$$

for all $x, y, u, v \in X$, where h and k are non-negative constants with $h+k<1$. Then F has a unique coupled fixed point.

In [4], Jhade and Khan prove following result,

Theorem 1.12 ([4], Theorem 3.1). Let (X, d) be a complex-valued metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings. Suppose that there exist nonnegative constants $a_{i} \in[0,1), i=1,2, \ldots, 6$ such that $\sum_{i=1}^{6} a_{i}<1$ and for all $x, y, u, v \in X$

$$
\begin{align*}
d(F(x, y), F(u, v)) \preceq & a_{1} d(g x, g u) \\
& +a_{2}(g y, g v)+a_{3} \frac{d(g x, F(x, y)) d(g u, F(u, v))}{d(g x, g u)}+a_{4} \frac{d(g x, F(u, v)) d(g u, F(x, y))}{d(g x, g u)} \\
& +a_{5} \frac{d(g y, F(y, x)) d(g v, F(v, u))}{d(g y, g v)}+a_{6} \frac{d(g y, F(v, u)) d(g v, F(y, x))}{d(g y, g v)} . \tag{2}
\end{align*}
$$

Suppose $F(X \times X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X. Then F and g have a coupled coincidence point $\left(x^{*}, y^{*}\right) \in X \times X$.

Remark 1.13. It should be noted that Theorem 1.12 is not true for $x=u$ and $y=v$, i.e., 2 is not valid for $x=u$ and $y=v$ and we can not obtain coupled fixed point.

2. Main Results

First we improve the Theorem 1.12 and prove a coupled coincidence point theorem which state is as follows,

Theorem 2.1. Let (X, d) be a complex-valued metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings. Suppose that there exist nonnegative constants $a_{i} \in[0,1), i=1,2, \ldots, 6$ such that $\Sigma_{i=1}^{6} a_{i}<1$ and for all $x, y, u, v \in X$

$$
\begin{align*}
d(F(x, y), F(u, v)) \preceq & a_{1} d(g x, g u)+a_{2} d(g y, g v) \\
& +a_{3} \frac{[1+d(g x, F(x, y))] d(g u, F(u, v))}{d(g x, g u)+1}+a_{4} \frac{[1+d(g x, F(u, v))] d(g u, F(x, y))}{d(g x, g u)+1} \\
& +a_{5} \frac{[1+d(g y, F(y, x))] d(g v, F(v, u))}{d(g y, g v)+1}+a_{6} \frac{[1+d(g y, F(v, u))] d(g v, F(y, x))}{d(g y, g v)+1} . \tag{3}
\end{align*}
$$

Suppose $F(X \times X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X. Then F and g have a coupled coincidence point $\left(x^{*}, y^{*}\right) \in X \times X$.

Proof. Let $x_{0}, y_{0} \in X$ are arbitrary. Set $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$, this can be done because $F(X \times X) \subseteq g(X)$. Continuing the process, we obtain two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$ for all $n \geq 0$. Then we have

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+1}\right)= & d\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
\preceq & a_{1} d\left(g x_{n-1}, g x_{n}\right)+a_{2} d\left(g y_{n-1}, g y_{n}\right) \\
& +a_{3} \frac{\left[1+d\left(g x_{n-1}, F\left(x_{n-1}, y_{n-1}\right)\right)\right] d\left(g x_{n}, F\left(x_{n}, y_{n}\right)\right)}{d\left(g x_{n-1}, g x_{n}\right)+1}+a_{4} \frac{\left[1+d\left(g x_{n-1}, F\left(x_{n}, y_{n}\right)\right)\right] d\left(g x_{n}, F\left(x_{n-1}, y_{n-1}\right)\right)}{d\left(g x_{n-1}, g x_{n}\right)+1} \\
& +a_{5} \frac{\left[1+d\left(g y_{n-1}, F\left(y_{n-1}, x_{n-1}\right)\right)\right] d\left(g y_{n}, F\left(y_{n}, x_{n}\right)\right)}{d\left(g y_{n-1}, g y_{n}\right)+1}+a_{6} \frac{\left[1+d\left(g y_{n-1}, F\left(y_{n}, x_{n}\right)\right)\right] d\left(g y_{n}, F\left(y_{n-1}, x_{n-1}\right)\right)}{d\left(g y_{n-1}, g y_{n}\right)+1} \\
d\left(g x_{n}, g x_{n+1}\right) \preceq & a_{1} d\left(g x_{n-1}, g x_{n}\right)+a_{2} d\left(g y_{n-1}, g y_{n}\right) \\
& +a_{3} \frac{\left[1+d\left(g x_{n-1}, g x_{n}\right)\right] d\left(g x_{n}, g x_{n+1}\right)}{d\left(g x_{n-1}, g x_{n}\right)+1}+a_{4} \frac{\left[1+d\left(g x_{n-1}, g x_{n+1}\right)\right] d\left(g x_{n}, g x_{n}\right)}{d\left(g x_{n-1}, g x_{n}\right)+1} \\
& +a_{5} \frac{\left[1+d\left(g y_{n-1}, g y_{n}\right)\right] d\left(g y_{n}, g y_{n+1}\right)}{d\left(g y_{n-1}, g y_{n}\right)+1}+a_{6} \frac{\left[1+d\left(g y_{n-1}, d\left(g y_{n-1}, g y_{n}\right)\right)\right] d\left(g y_{n}, g y_{n}\right)}{d\left(g y_{n-1}, g y_{n}\right)+1}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|d\left(g x_{n}, g x_{n+1}\right)\right| \preceq a_{1}\left|d\left(g x_{n-1}, g x_{n}\right)\right|+a_{2}\left|d\left(g y_{n-1}, g y_{n}\right)\right|+a_{3}\left|d\left(g x_{n}, g x_{n+1}\right)\right|+a_{5}\left|d\left(g y_{n}, g y_{n+1}\right)\right| \tag{4}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left|d\left(g y_{n}, g y_{n+1}\right)\right| \preceq a_{1}\left|d\left(g y_{n-1}, g y_{n}\right)\right|+a_{2}\left|d\left(g x_{n-1}, g x_{n}\right)\right|+a_{3}\left|d\left(g y_{n}, g y_{n+1}\right)\right|+a_{5}\left|d\left(g x_{n}, g x_{n+1}\right)\right| . \tag{5}
\end{equation*}
$$

Suppose that $d_{n}=\| d\left(g x_{n}, g x_{n+1}\|+\| d\left(g y_{n}, g y_{n+1} \|\right.\right.$. Adding inequalities 4 and 5 , we obtain

$$
\begin{equation*}
d_{n} \leq\left(a_{1}+a_{2}\right) d_{n-1}+\left(a_{3}+a_{5}\right) d_{n} \tag{6}
\end{equation*}
$$

that is $d_{n} \leq h d_{n-1}$, where $h=\frac{a_{1}+a_{2}}{1-\left(a_{3}+a_{5}\right)}<1$. Thus, we have

$$
\begin{equation*}
d_{n} \leq h d_{n-1} \leq h^{2} d_{n-2} \leq h^{3} d_{n-3} \leq h^{4} d_{n-4} \leq \cdots \leq h^{n} d_{0} . \tag{7}
\end{equation*}
$$

We shall show that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences. If $m>n$, then we have

$$
\begin{aligned}
\mid d\left(g x_{n}, g x_{m}|+| d\left(g y_{n}, g y_{m} \mid \leq\right.\right. & \mid d\left(g x_{n}, g x_{n+1}|+| d\left(g y_{n}, g y_{n+1}|+| d\left(g x_{n+1}, g x_{n+2}|+| d\left(g y_{n+1}, g y_{n+2} \mid\right.\right.\right.\right. \\
& +\mid d\left(g x_{n+2}, g x_{n+3}|+| d\left(g y_{n+2}, g y_{n+3}|+\cdots+| d\left(g x_{m-1}, g x_{m}|+| d\left(g y_{m-1}, g y_{m} \mid\right.\right.\right.\right. \\
\leq & h^{n} d_{0}+h^{n+1} d_{0}+h^{n+2} d_{0}+h^{n+3} d_{0}+\cdots+h^{m-1} d_{0} \\
\leq & \frac{h^{n}}{1-h} d_{0} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is complete, there exists x^{*} and y^{*} such that $g x_{n} \rightarrow x^{*}$ and $g y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$. On the other hand, we have from 3 ,

$$
\begin{aligned}
d\left(F\left(x^{*}, y^{*}\right), g x^{*}\right) \preceq & d\left(F\left(x^{*}, y^{*}\right), g x_{n+1}\right)+d\left(g x_{n+1}, g x^{*}\right) \\
= & d\left(F\left(x^{*}, y^{*}\right), F\left(x_{n}, y_{n}\right)\right)+d\left(g x_{n+1}, g x^{*}\right) \\
d\left(F\left(x^{*}, y^{*}\right), g x^{*}\right) \preceq & a_{1} d\left(g x^{*}, g x_{n}\right)+a_{2} d\left(g y^{*}, g y_{n}\right) \\
& +a_{3} \frac{\left[1+d\left(g x^{*}, F\left(x^{*}, y^{*}\right)\right)\right] d\left(g x_{n}, F\left(x_{n}, y_{n}\right)\right)}{d\left(g x^{*}, g x_{n}\right)+1}+a_{4} \frac{\left[1+d\left(g x^{*}, F\left(x_{n}, y_{n}\right)\right)\right] d\left(g x_{n}, F\left(x^{*}, y^{*}\right)\right)}{d\left(g x^{*}, g x_{n}\right)+1} \\
& +a_{5} \frac{\left[1+d\left(g y^{*}, F\left(y^{*}, x^{*}\right)\right)\right] d\left(g y_{n}, F\left(y_{n}, x_{n}\right)\right)}{d\left(g y^{*}, g y_{n}\right)+1}+a_{6} \frac{\left[1+d\left(g y^{*}, F\left(y_{n}, x_{n}\right)\right)\right] d\left(g y_{n}, F\left(y^{*}, x^{*}\right)\right)}{d\left(g y^{*}, g y_{n}\right)+1} \\
& +\left|d\left(g x_{n+1}, g x^{*}\right)\right| \\
d\left(F\left(x^{*}, y^{*}\right), g x^{*}\right) \preceq & a_{1} d\left(g x^{*}, g x_{n}\right)+a_{2} d\left(g y^{*}, g y_{n}\right) \\
& +a_{3} \frac{\left[1+d\left(g x^{*}, F\left(x^{*}, y^{*}\right)\right)\right] d\left(g x_{n}, g x_{n+1}\right)}{d\left(g x^{*}, g x_{n}\right)+1}+a_{4} \frac{\left[1+d\left(g x^{*}, g x_{n+1}\right)\right] d\left(g x_{n}, F\left(x^{*}, y^{*}\right)\right)}{d\left(g x^{*}, g x_{n}\right)+1} \\
& +a_{5} \frac{\left[1+d\left(g y^{*}, F\left(y^{*}, x^{*}\right)\right)\right] d\left(g y_{n}, g y_{n+1}\right)}{d\left(g y^{*}, g y_{n}\right)+1}+a_{6} \frac{\left[1+d\left(g y^{*}, g y_{n+1}\right)\right] d\left(g y_{n}, F\left(y^{*}, x^{*}\right)\right)}{d\left(g y^{*}, g y_{n}\right)+1} \\
& +\left|d\left(g x_{n+1}, g x^{*}\right)\right| \\
\left|d\left(F\left(x^{*}, y^{*}\right), g x^{*}\right)\right| \preceq & a_{1}\left|d\left(g x^{*}, g x_{n}\right)\right|+a_{2}\left|d\left(g y^{*}, g y_{n}\right)\right| \\
& +a_{3} \frac{\left[1+\left|d\left(g x^{*}, F\left(x^{*}, y^{*}\right)\right)\right|\right]\left(\left|d\left(g x_{n}, g x^{*}\right)\right|+\left|d\left(g x^{*}, g x_{n+1}\right)\right|\right)}{\left|d\left(g x^{*}, g x_{n}\right)\right|+1}+a_{4} \frac{\left[1+\left|d\left(g x^{*}, g x_{n+1}\right)\right|\right]\left|d\left(g x_{n}, F\left(x^{*}, y^{*}\right)\right)\right|}{\left|d\left(g x^{*}, g x_{n}\right)\right|+1} \\
& +a_{5} \frac{\left[1+\left|d\left(g y^{*}, F\left(y^{*}, x^{*}\right)\right)\right|\right]\left(\left|d\left(g y_{n}, g y^{*}\right)\right|+\left|d\left(g y^{*}, g y_{n+1}\right)\right|\right)}{\left|d\left(g y^{*}, g y_{n}\right)\right|+1}+a_{6} \frac{\left[1+\left|d\left(g y^{*}, g y_{n+1}\right)\right|\right]\left|d\left(g y_{n}, F\left(y^{*}, x^{*}\right)\right)\right|}{\left|d\left(g y^{*}, g y_{n}\right)\right|+1} \\
& +\left|d\left(g x_{n+1}, g x^{*}\right)\right| .
\end{aligned}
$$

Since $g x_{n} \rightarrow g x^{*}$ and $g y_{n} \rightarrow g y^{*}$ as $n \rightarrow \infty$, we have $\left|d\left(F\left(x^{*}, y^{*}\right), g x^{*}\right)\right| \leq 0$. That is, $F\left(x^{*}, y^{*}\right)=g x^{*}$. Similarly one can show that $F\left(y^{*}, x^{*}\right)=g y^{*}$. Hence $\left(x^{*}, y^{*}\right)$ is a coupled coincidence point of F and g.

For common coupled fixed point for the mappings F and g, the condition of Theorem 2.1 are not enough. So by applying the condition of w-compatibility on F and g, we obtain the following common coupled fixed point theorem.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1 are not enough to prove the existence of a common coupled fixed point for the mappings F and g. By applying the condition of w-compatibility on F and g, we obtain the following common coupled fixed point theorem, if F and g are w-compatible, then F and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of F and g is of the form (u, v) for some $u, v \in X$.

Proof. The existence of coupled coincidence point $\left(x^{*}, y^{*}\right)$ of F and g follows from Theorem 2.1. Then $\left(g x^{*}, g y^{*}\right)$ is a coupled point of coincidence of F, g and so $g x^{*}=F\left(x^{*}, y^{*}\right)$ and $g y^{*}=F\left(y^{*}, x^{*}\right)$.

First we will show that this coupled point of coincidence is unique. For this, suppose that F and g have another coupled point of coincidence $(g u, g v)$, that is, $g u=F(u, v)$ and $g v=F(v, u)$ where $(u, v) \in X \times X$. Then we have

$$
d\left(F\left(x^{*}, y^{*}\right), F(u, v)\right) \preceq a_{1} d\left(g x^{*}, g u\right)+a_{2} d\left(g y^{*}, g v\right)
$$

$$
\begin{aligned}
& +a_{3} \frac{\left[1+d\left(g x^{*}, F\left(x^{*}, y^{*}\right)\right)\right] d(g u, F(u, v))}{d\left(g x^{*}, g u\right)+1}+a_{4} \frac{\left[1+d\left(g x^{*}, F(u, v)\right)\right] d\left(g u, F\left(x^{*}, y^{*}\right)\right)}{d\left(g x^{*}, g u\right)+1} \\
& +a_{5} \frac{\left[1+d\left(g y^{*},, F\left(y^{*}, x^{*}\right)\right)\right] d(g v, F(v, u))}{d\left(g y^{*}, g v\right)+1}+a_{6} \frac{\left[1+d\left(g y^{*}, F(v, u)\right)\right] d\left(g v, F\left(y^{*}, x^{*}\right)\right)}{d\left(g y^{*}, g v\right)+1} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|d\left(g x^{*}, g u\right)\right| \preceq a_{1}\left|d\left(g x^{*}, g u\right)\right|+a_{2}\left|d\left(g y^{*}, g v\right)\right|+a_{4}\left|d\left(g x^{*}, g u\right)\right|+a_{6}\left|d\left(g y^{*}, g v\right)\right| . \tag{8}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\left|d\left(g y^{*}, g v\right)\right| \preceq a_{1}\left|d\left(g y^{*}, g v\right)\right|+a_{2}\left|d\left(g x^{*}, g u\right)\right|+a_{4}\left|d\left(g y^{*}, g v\right)\right|+a_{6}\left|d\left(g x^{*}, g u\right)\right| . \tag{9}
\end{equation*}
$$

Adding 8 and 9 we obtain

$$
\left|d\left(g x^{*}, g u\right)\right|+\left|d\left(g y^{*}, g v\right)\right| \leq\left(a_{1}+a_{2}+a_{4}+a_{6}\right)\left[\left|d\left(g x^{*}, g u\right)\right|+\left|d\left(g y^{*}, g v\right)\right|\right] .
$$

Since $\left(a_{1}+a_{2}+a_{4}+a_{6}\right)<1$. Therefore,

$$
\left|d\left(g x^{*}, g u\right)\right|+\left|d\left(g y^{*}, g v\right)\right| \leq 0
$$

which contradiction. Hence $d\left(g x^{*}, g u\right)=0$ and $d\left(g y^{*}, g v\right)=0$, i.e., $g x^{*}=g u$ and $g y^{*}=g v$. Thus $\left(g x^{*}, g y^{*}\right)=(u, v)$ is the unique coupled point of coincidence of F and g. Now if F and g are w-compatible, then $g u=g\left(F\left(x^{*}, y^{*}\right)\right)=F\left(g x^{*}, g y^{*}\right)=$ $F(u, v)=w$ (say). Similarly, we obtain $g v=g\left(F\left(y^{*}, x^{*}\right)\right)=F\left(g y^{*}, g x^{*}\right)=F(v, u)=z($ say $)$. So, (w, z) is another coupled point of coincidence of F and g. By uniqueness, we have $(u, v)=(w, z)$, that is, $g u=F(u, v)=u$ and $g v=F(v, u)=v$. Thus (u, v) is the unique common coupled fixed point of F and g.

Example 2.3. Let $X=\{i x: x \in[0,1]\}$ and consider a complex valued metric $d: X \times X \rightarrow X$ defined by $d(x, y)=i|x-y|$ for all $x, y \in X$. Then (X, d) is a complex valued metric space. Define the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ by $F(x, y)=i\left(\frac{x}{10}+\frac{y}{15}\right)$ and $g(x)=\frac{x}{5} i$ for all $x, y \in[0,1]$. Then we have

$$
\begin{aligned}
d(F(x, y), F(u, v)) & =i\left|i\left(\frac{x}{10}+\frac{y}{15}\right)-i\left(\frac{u}{10}+\frac{v}{15}\right)\right| \\
& =i\left|i\left(\frac{x}{10}-\frac{u}{10}\right)-i\left(\frac{y}{15}-\frac{v}{15}\right)\right| \\
& \leq \frac{5}{10} i\left|i\left(\frac{x}{5}-\frac{u}{5}\right)\right|+\frac{5}{15} i\left|i\left(\frac{y}{5}-\frac{v}{5}\right)\right| \\
& \leq \frac{1}{2} d(g x, g u)+\frac{1}{3} d(g y, g v)
\end{aligned}
$$

where $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{3}, a_{i}=0, i=3,4,5,6$. Note that $a_{1}+a_{2}=\frac{5}{6}+\frac{5}{6}<1, F(X \times X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X. Hence the condition of Theorem 2.1 are satisfied, that is, F and g have a coupled coincidence point (0,0). Furthermore, since F and g are w-compatible, hence, Theorem 2.2 shows that $(0,0)$ is the unique common coupled fixed point of F and g.

Remark 2.4. It should be noted that Example 2.3 is valid for Theorem 2.1 as well as for Theorem 1.12 . In fact Theorem 2.1 is more general the Theorem 1.12 .

Remark 2.5. If we take $a_{i}=0$ for $i=3,4,5,6$ and $g=I_{X}$ (identity mapping over X) in Theorem 2. 1 then we get result of Kang [3].

Corollary 2.6 ([3]). Let (X, d) be a complete complex valued metric space. Suppose that the mapping $F: X \times X \rightarrow X$ satisfies $d(F(x, y), F(u, v)) \leq h[(d(x, u)+d(y, v))]$ for all $x, y, u, v \in X$, where h is a non-negative constant with $h<\frac{1}{2}$. Then F has a unique coupled fixed point.

Proof. If we take $a_{1}=a_{2}=h, a_{i}=0 \quad$ for $\quad i=3,4,5,6$ and $g=I_{X}$ (identity mapping over X) in Theorem 2.1, then we get required result.

Example 2.7. Let $X=\{i x: x \in[0,1]\}$ and consider a complex valued metric $d: X \times X \rightarrow X$ defined by $d(x, y)=i|x-y|$ for all $x, y \in X$. Then (X, d) is a complex valued metric space. Define the mappings $F: X \times X \rightarrow X$ by $F(x, y)=i\left(\frac{x+y}{3}\right)$ for all $x, y \in[0,1]$. Then we have $h=\frac{1}{3}<\frac{1}{2}$. So all condition of Corollary 2.6 are satisfied and we get $(0,0)$ is a coupled fixed of F.

References

[1] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65(7)(2006), 1379-1393.
[2] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32(2011), 243-253.
[3] S. M. Kang, M. Kumar, P. Kumar and S. Kumar, Coupled Fixed Point Theorems in Complex Valued Metric Spaces, Int. J. of Math. Analysis, 7(46)(2013), 2269-2277.
[4] P. K. Jhade and M. S. Khan, Some Coupled Coincicence and Common Fixed Point Theorems in Complex-valued Metric spaces, Ser. Math. Inform., 29(4)(2014), 385-395.

[^0]: * E-mail: animeshgupta10@gmail.com

