Int. J. Math. And Appl., 7(4)(2019), 87-93
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Wathematics ud cts #pplications

Some Rational Contractions for Coupled Coincidence and
Common Coupled Fixed Point Theorems in
Complex-Valued Metric Spaces

Animesh Gupta®"* and Prahalad Singh Kaurav?

1 H.No. 93/654, Ward No. 2, Gandhi Chowk Pachmarhi, Hoshangabad, Madhya Pradesh, India.

2 Department of Mathematics, Government P.G. College, Gadarwara, Narsingpur, Madhya Pradesh, India.

Abstract: The aim of this paper is to obtain a coupled coincidence point theorem and a common coupled fixed point theorem of
contractive type mappings involving rational expressions in the framework of a complex-valued metric spaces. We also
improve the result obtain by [4]. The results of this paper generalize and extend the results of Kang [3], in complex-valued
metric spaces.

MSC: 15A24, 15A29, 47H10.

Keywords: Coupled fixed point theorem, contractive type mapping, complex valued metric space.
© JS Publication.

1. Introduction and Preliminaries

In 2011, Azam [2] introduced the notion of complex valued metric space which is a generalization of the classical metric
space. They established some fixed point results for mappings satisfying a rational inequality. The idea of complex valued
metric spaces can be exploited to define complex valued normed spaces and complex valued Hilbert spaces; additionally, it
offers numerous research activities in mathematical analysis. Let C be the set of complex numbers and z1, zo € C, we define

a partial order < on C as follows:

z1 X zo ifand only if Re(z1) < Re(z2) and Im(z1) < Im(z2).

It follows that z1 =< z2 if one of the following conditions is satisfied:
(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);
(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2);
(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2);

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).
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In particular, we will write z1 < 22 if 21 # 22 and one of (C2), (C3) and (C4) is satisfied and we will write z1 < 22 if only

(C4) is satisfied.

Remark 1.1. We obtained that the following statements hold:
(1). If a,b € R with a < b, then az < bz for all z € C.

(2). If 0 <X z1 < 22, then |z1]| < |z2].

(3). If z1 < z2 and 22 < z3, then z1 < z3.

Consistent with Azam [2], we state some definitions and results about the complex-valued metric space to prove our main

results.
Definition 1.2. Let X be a nonempty set. Suppose that the mapping d : X X X — C satisfies the following conditions:
(d1) 0 R d(z,y) for all z,y € X;
(d2) d(z,y) =0 if and only if x =y for all x,y € X;
(d3) d(z,y) = d(y,z) for all z,y € X;
(d4) d(z,y) < d(x,z) +d(z,y) for all x,y,z € X.
Then d is called a complex-valued metric on X and (X,d) is called a complez-valued metric space.

Example 1.3. Let X = C. Define the mapping d : X x X — C by d(z1,22) = 2i|z1 — 22| for all z1,2z2 € X. Then (X,d) is

a complex valued metric space.
Definition 1.4. Let (X,d) be a complez-valued metric space.

(1). Apoint x € X 1is called interior point of a set B C X whenever there exists 0 < r € C such that

N(z,r):={y € X : d(z,y) <r} C B.

(2). A point x € X is called limit point of a set B C X whenever there exists 0 < r € C such thatN(z,r) N (B{z}) # ¢.
(3). A subset B C X is called open whenever each element of B is an interior point of B.
(4). A subset B C X is called closed whenever each limit point of B belongs to B.

(5). The family F = {N(z,r) : z € X,0 < r} is a sub-basis for a topology on X. We denote this complex topology by 7.

Indeed, the topology 1. is Hausdorff.
Definition 1.5. Let (X,d) be a complez-valued metric space, and let {x,} be a sequence in X and z € X.

(1). If for every c € C with 0 < ¢ there is N € N such that for alln > N, d(xn,z) < ¢ then {z,} is said to be convergent, if

{zn} converges to x and x is the limit point of {x,}. We denote this by ., — x as n — oo or lim, 00 Tn = 2.

(2). If for every ¢ € C with 0 < ¢ there is N € N such that for all n,m > N, d(n,zm) < ¢ then {x,} is said is said to be

Cauchy sequence.

(3). If every Cauchy sequence in X is convergent, then (X,d) is said to be a complete complez-valued metric space.
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Lemma 1.6. Let (X,d) be a complez-valued metric space, and let {x,} be a sequence in X. Then {x,} converges to z if

and only if |d(xn,z)] — 0 as n — oco.

Lemma 1.7. Let (X, d) be a complez-valued metric space, and let {zn} be a sequence in X. Then {z,} is a Cauchy sequence

if and only if |d(xn, Tnym)| — 0 as n — co.

In 2006, Bhaskar [1] introduced the notion of coupled fixed point and proved some fixed point results in this context.

Similarly, Kang [3] introduce the notion of coupled fixed point for a mapping in complex valued metric spaces as follows.

Definition 1.8. Let (X,d) be a complez-valued metric space, an element (z,y) € X x X is said to be a coupled fized point

of the mapping F : X x X — X if F(z,y) =z and F(y,z) = y.
Definition 1.9. Let (X,d) be a complex valued metric space. An element (z,y) € X X X is said to be

(1). A coupled coincidence point of mappings F : X x X — X and g : X — X if g(z) = F(z,y) and g(y) = F(y,z),
and (gz, gy) is called a coupled point of coincidence if there exists (u,v) € X X X such that x = gu = F(u,v) and

y=gv="F(,u).
(2). A common coupled fized point of mappings F: X x X — X and g: X — X ifx = gz = F(z,y) and y = gy = F(y, ).

Definition 1.10. Let (X,d) be a complex-valued metric space. The mappings F : X X X — X and g : X — X are called

w-compatible if g(F(x,y)) = F(gz,gy), whenever gx = F(z,y) and gy = F(y,x).

Kang [3] prove following result,

Theorem 1.11. (/3], Theorem-2.1) Let (X, d) be a complex valued metric space. Suppose that the mapping F : X x X — X
satisfies

d(F(z,y), F(u,v)) < hd(z,u) + kd(y,v) (1)

for all x,y,u,v € X, where h and k are non-negative constants with h + k < 1. Then F has a unique coupled fixed point.
In [4], Jhade and Khan prove following result,

Theorem 1.12 ([4], Theorem 3.1). Let (X,d) be a complex-valued metric space. Let F : X x X - X and g : X — X
be two mappings. Suppose that there exist nonnegative constants a; € [0,1),i = 1,2,...,6 such that Y% 1a; < 1 and for all

z,y,u,v € X

d(F(z,y), F(u,v)) = aid(gz,gu)

d(gz, F(z,y))d(gu, F'(u,v)) +as d(gz, F(u,v))d(gu, F(z,y))
d(gz, gu) d(gz, gu)

d(gy, F(y, z))d(gv, F (v, u)) d(gy, F(v,u))d(gv, F(y, z))
d(gy, gv) d(gy, gv) '

+az2(gy, gv) + a3

+as

+ ag

2
Suppose F(X x X) C g(X) and g(X) is a complete subspace of X. Then F and g have a coupled coincidence point
(z",y") € X x X.

Remark 1.13. It should be noted that Theorem 1.12 is not true for x = u and y = v, i.e., 2 is not valid for x = u and

y = v and we can not obtain coupled fixed point.
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2. Main Results

First we improve the Theorem 1.12 and prove a coupled coincidence point theorem which state is as follows,

Theorem 2.1. Let (X, d) be a complez-valued metric space. Let F: X x X — X and g : X — X be two mappings. Suppose

that there exist nonnegative constants a; € [0,1),5 =1,2,...,6 such that ¥$ ja; <1 and for all z,y,u,v € X

d(F(m,y),F(u, U)) = ald(gxuqu) +a2d(gyygv)

(14 d(gz, F(z,y))ld(gu, F(u,v)) [1 + d(gz, F(u, v))ld(gu, F(z,y))

as d(gz, gu) + 1 e d(gz,gu) +1
tas [1 +d(gy, F(y, x))ld(gv, F(v,u)) 1 ag [1 +d(gy, F(v,u))]d(gv, F(y,z)) 3)
d(gy, gv) + 1 d(gy, gv) + 1 :

Suppose F(X x X) C g(X) and g(X) is a complete subspace of X. Then F and g have a coupled coincidence point
(", y") € X x X.

Proof. Let zo,yo € X are arbitrary. Set gz1 = F (w0, yo0) and gy1 = F(yo, To), this can be done because F(X x X) C g(X).
Continuing the process, we obtain two sequences {x, } and {y»} such that gzn4+1 = F(Zn,yn) and gynt+1 = F(yn, zn) for all

n > 0. Then we have

d(gzn, 9Tnt1) = d(F(Tn-1,Yn-1), F(Tn,yn))

PN

a1d(gTn—1, gTn) + a2d(gYn—1, gyn)

[1+d(gzn—1, F(Tn—1,Yn-1))]d(gTn, F (Tn, Yn)) +ay [1 +d(gzn—1, F(Tn, yn))]d(gZn, F(Tn-1,Yn-1))
d(gTn-1,97n) +1 d(gTn-1,97n) +1

[1 +d(gyn—1, F(yn—1,Tn-1))]d(gyn, F (Yn, Tn)) [1 +d(gyn—1, F'(yn, zn))|d(gyn, F'(Yn-1,Tn—1))
d(gyn—-1,9yn) +1 d(gyn—1,9yn) +1

a1d(gTn—1, gTn) + a2d(gYn—1, gyn)

+as

+as

+ as

IA

d(gxn:ngﬂ—l)

[1+ d(gTn—1,92n)]d(gTn, gTn+1) [1+d(gxn—1,9%n+1)]d(gTn, gTn)
d(gTn-1,97n) + 1 d(gTn-1,97n) + 1

[1 + d(gyn—1,9yn)]d(gYn; gYn+1) 1+ a (1 + d(gyn—1,d(gyn—1,9Yn))|d(gyn, gyn)
d(gyn-1,9yn) + 1 d(gyn—1,9yn) + 1

+as + a4

+as

which implies
|d(gn, gTnt1)| 2 ar|d(grn—1,92n)| + a2|d(gyn—1,gyn)| + asld(gzn, gZni1)| + as|d(gyn, gyn+1)| (4)
Similarly we have
|d(gyn, gyn+1)| = arld(gyn—1, gyn)| + az|d(gzn—1, gzn)| + as|d(gyn, gynt1)| + as|d(gn, grni1)]- ()
Suppose that dn, = ||d(gZn, gZn+t1|| + [|d(gYn, gYn+1||. Adding inequalities 4 and 5, we obtain
dn < (a1 + a2)dn—1 + (a3 + as)dn (6)
that is d, < hd,—1, where h = % < 1. Thus, we have

dn < hdn—1 < h?dn_z < hPdn_3 < h'dn_a < -+ < h"do. (7)
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We shall show that {z,} and {y,} are Cauchy sequences. If m > n, then we have

IA

|d(g2n; gTm| + 1d(gyn, gym| |d(gn, gTnt1] + |d(gYns gyn+1| + |d(gTn+1, 9Tnt2| + |d(gYnt1, gYn+2]

+d(gTnt2, 9Tn+3| + |d(gynt2; gyntsl + -+ +1d(gTm—1, 9Tm| + [d(gYm—1, gym|

< h"do+ A"t do + R T dy + R 3o + - + R My
h’i’l

<
- 1-

do—>0 as n — oo.

Hence {z,} and {yn} are Cauchy sequences in ¢g(X). Since g(X) is complete, there exists * and y* such that gz, — z*

and gy, — y* as n — oo. On the other hand, we have from 3,

d(F(z",y%),92") = d(F(z",y"),9%ns1) + d(gTni1, 92")
= d(F(x*,y*),F(:vn,yn)) +d(ga:n+1,gm*)

d(F(z",y"),92") = ard(gz", gxn) + azd(gy”, gyn)

[+ d(ga”, F(a”, y))d(gtn, Fan,yn)) | [+ dlga”, F(@n, yn))ld(gzn, F27,y7))

tas d(g:c ,gazn)—l-l ta d(gz*, gzn) + 1
+a5[ d(gy”, F(y",2"))]d(gyn, F (Yn,Tn)) +a6[ +d(gy™, F(Yn, Tn))ld(gyn, F(y", 7))
d(gy y9yn) +1 (gy gyn)+1

+ld(gzni1, 927

d(F(z",y"),92") = ard(gz", gxn) + azd(gy”, gyn)
[1+d(gz™, F(z” *))]d(gfvn,gwnﬂ) tay [1+d(gx", grnt1)]d(gan, F(z*, y"))

+as

d(gz* 7gwn) d(gz*, gxn) + 1
[1+d(gy™, F(y",="))ld (gyn»gynﬂ 0 L+ A9y, 9ynt)]d(gyn, F(y”, 7))
+as
d(gy*, gyn) + d(gy*, gyn) + 1

+ld(gzni1, 92"

ld(F(z",y"),92")] = aild(gz", gzn)| + a2|d(gy”, gyn)|

ras [ +|d(ge”, F(@", y)II(dgzn, g27)| + |d(g2”, g2nrn)) | [L+ |d(g2", gznry)[]ld(gzn, F(z”,y"))|
|d(gz*, gzn)| + 1 |d(gz*, gzn)| +1

tas [1+ [d(gy™, F(y", 2" )II(d(gyn, gy™)| + |d(gy™, gyn+1)) 1 ag [1 +1d(g9y", gyn+)llld(gyn, F(y*, x"))|
ld(gy*, gyn)| + 1 ld(gy*, gyn)| + 1

+d(g9zny1, gz")|.

Since gz, — gz* and gy, — gy* as n — oo, we have |d(F(z*,y"),gz*)| < 0. That is, F(z*,y") = gx*. Similarly one can

show that F(y*,z") = gy*. Hence (z*,y") is a coupled coincidence point of F and g. O

For common coupled fixed point for the mappings F' and g, the condition of Theorem 2.1 are not enough. So by applying

the condition of w-compatibility on F' and g, we obtain the following common coupled fixed point theorem.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1 are not enough to prove the existence of a common coupled
fized point for the mappings F and g. By applying the condition of w-compatibility on F and g, we obtain the following
common coupled fized point theorem, if F' and g are w-compatible, then F' and g have a unique common coupled fixed point.

Moreover, a common coupled fized point of F' and g is of the form (u,v) for some u,v € X.

Proof. The existence of coupled coincidence point (z*,3*) of F and g follows from Theorem 2.1. Then (gz*, gy*) is a
coupled point of coincidence of F, g and so gz* = F(z*,y") and gy* = F(y*,z").
First we will show that this coupled point of coincidence is unique. For this, suppose that F' and g have another coupled

point of coincidence (gu, gv), that is, gu = F(u,v) and gv = F(v,u) where (u,v) € X x X. Then we have

d(F(z",y"), F(u,v)) X aid(gz", gu) + a2d(gy”, gv)
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[+ d(gz”, Fa”,y"))ld(gu, F(u,v)) | [L+dga”, Fu, v))ld(gu, Fz”,y"))
d(gz*, gu) + 1 d(gz*, gu) + 1

[1+d(gy", F(y",z"))]d(gv, F(v,u)) 1 ag [1 +d(gy”", F(v,u))]d(gv, F'(y",z"))
d(gy*, gv) + 1 d(gy*,gv) +1 '

+as

+as
Hence
ld(gz", gu)| < aild(gz”, gu)| + az|d(gy”, gv)| + aa|d(gz", gu)| + as|d(gy", gv)|. (8)
Similarly we obtain
ld(gy™, gv)| = a1l|d(gy”, gv)| + az|d(gz", gu)| + as|d(gy™, gv)| + as|d(gz", gu)|. 9)
Adding 8 and 9 we obtain
ld(gz™, gu)| +|d(gy", gv)| < (a1 + a2 + a4 + aq)[|d(g2", gu)| + |d(gy”, gv)]].

Since (a1 + a2 + a4 + ag) < 1. Therefore,

ld(gz™, gu)| + |d(gy", gv)| < O

which contradiction. Hence d(gz*, gu) = 0 and d(gy*, gv) =0, i.e., gz* = gu and gy* = gv. Thus (gz*, gy*) = (u,v) is the
unique coupled point of coincidence of F' and g. Now if F' and g are w-compatible, then gu = g(F(z*,y*)) = F(gz*,9y") =
F(u,v) = w(say). Similarly, we obtain gv = g(F(y*,z")) = F(gy", gz*) = F(v,u) = z(say). So, (w,z) is another coupled
point of coincidence of F' and g. By uniqueness, we have (u,v) = (w, 2z), that is, gu = F(u,v) = u and gv = F(v,u) = v.

Thus (u,v) is the unique common coupled fixed point of F' and g. O

Example 2.3. Let X = {iz : x € [0,1]} and consider a complezx valued metric d : X x X — X defined by d(z,y) = i|z — y|
for all z,y € X. Then (X,d) is a complex valued metric space. Define the mappings F': X x X - X and g: X — X by

F(z,y) =i(% 4+ %) and g(x) = Zi for all z,y € [0,1]. Then we have

d(F(z,y), F(u,v)) = ili (130 + 1-15) i (1% + %) |

IA
| e
S
=,
/N
]
|
|
N
+ .
| o
=
—
|
|
| <
N—

IN

1 1
d(gz, gu) + gd(g% gv)

where a1 = %, az = %, a; = 0,1 = 3,4,5,6. Note that a1 + a2 = %—&—% <1, F(X x X) C g(X) and g(X) is a complete
subspace of X. Hence the condition of Theorem 2.1 are satisfied, that is, F' and g have a coupled coincidence point (0,0).
Furthermore, since F' and g are w-compatible, hence, Theorem 2.2 shows that (0,0) is the unique common coupled fized point

of F and g.

Remark 2.4. [t should be noted that Example 2.3 is valid for Theorem 2.1 as well as for Theorem 1.12 . In fact Theorem

2.1 is more general the Theorem 1.12 .

Remark 2.5. If we take a; =0 for ¢ = 3,4,5,6 and g = Ix (identity mapping over X) in Theorem 2.1 then we get
result of Kang [3].
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Corollary 2.6 ([3]). Let (X,d) be a complete complex valued metric space. Suppose that the mapping F : X x X — X
satisfies d(F(z,y), F(u,v)) < h[(d(z,u) + d(y,v))] for all z,y,u,v € X, where h is a non-negative constant with h < .

Then F' has a unique coupled fixed point.

Proof. 1f we take a1 = a2 =h,a; =0 for i=3,4,56and g = Ix (identity mapping over X) in Theorem 2.1, then we

get required result. O

Example 2.7. Let X = {iz : x € [0,1]} and consider a complex valued metric d : X x X — X defined by d(z,y) = i|lz — y|
for all x,y € X. Then (X,d) is a complex valued metric space. Define the mappings F: X x X — X by F(z,y) =1 (ZSﬂ)
for all x,y € [0,1]. Then we have h = % < % So all condition of Corollary 2.6 are satisfied and we get (0,0) is a coupled
fixed of F.
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