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Abstract: A prime element in a Euclidean ring and to an irreducible polynomial in a polynomial ring defined over a field are
identical. The irreducible polynomial allows us to construct a prime ideal which in turn leading to a maximal ideal. So,
the maximal ideal and the Euclidean ring together form a quotient field in which the zero element is the maximal ideal
itself. The quotient field is seen as the extended field over the field referred in the beginning. It is easily seen that the
actual irreducible polynomial f(x) is now reducible over the extended field. In the present case, we take a finite field and
a polynomial from the polynomial ring over this field and verify the members of the field obey the distributive law or
not. The purpose of producing a not distributive lattice is to see that enciphering can be done using the members of such
a lattice in which it will be difficult to judge the correct deciphered text. Because, there will be multiple results in the
deciphering approach. So, which is the correct decipher among the available cipher texts will be a matter of confusion.
The present Galois field is over the field of residue classes modulo 3.

Keywords: Distributive Lattice, Galois Field, Euclidean ring.
© JS Publication.

1. Introduction

If (R,+,e) is a commutative ring with unity and M is an ideal of R, then M is maximal if and only if R/M is a field.
We fit a polynomial ring F[z] in the place of the commutative ring with unity while every polynomial ring defined over
a field F' is a commutative ring with unity. Also, we replace the maximal ideal M by a principal ideal generated by
an irreducible polynomial (p (z)) over the ring F[z] leading to % as a field under the addition of cosets defined by
{pE)+f@)rd{p)+g@)}={(p)+{f(x)+g(x)} and the multiplication of cosets defined by {(p (z)) + f ()} ®
{{p@))+g (@)} =(p(x)+{f (z) e g(z)} having the zero element (p (z)) and any member of % in the form (p (z))+ f ()

is the non zero element if f (z) # p(z) g () for any g (z)in F [z].

Zy = {[0], [1], [2]}
f(z)=2"+22+2

Faon =121, £ =102, ()=

Observe that f ([z]) #[0] V 0<x <2. So, p(x) = x> + 2z + 2 is irreducible over Zs;. We now make the linear factors of
this polynomial that are reducible over the extended fields.
Obviously Zs [z] is a polynomial ring under addition modulo 3 and multiplication modulo 3, which is also a commutative

ring with unity and (p (z)) = <x2 + 2z 4 2) is the principal ideal generated by the irreducible polynomial f (z), it is the
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Zg[x]
(p(z))

maximal ideal in Z3 [z]. So, = 75 [z] is a field under the addition of cosets defined by

(P () + g () ®(p)) +h(x)=(p()+ (9 +h) ()

and multiplication of cosets defined by (p (x)) + g () ® (p ()) + h (z) = (p(x)) + g (z) h (z)

Zs[x] _

(@) {p@),p(@)+Lp(x)+2,p(z)+z,p(x)+2z,p(x)+1+z,p(x)+2+z,p(z)+1+2z,p(z)+2+ 2z}

with 9 elements and f(z) is the zero element. We now show that f (x) is reducible over Zj3 [z]. This field can also conveniently
be written as Z3 [z] = {0,1,2,z,2x,1 4,1 + 22,2 4+ x,2 + 2z} by using the zero element z? + 2z + 2.

Observe that (m2 +22+42)+1& (a:2 + 22 4 2) + 2 are the non zero elements of Zj [z]. Consider

{@*+2z+2)+1}@{(®+20+2) +2} = {(z" +22+2) +1} @ {(+* + 22+ 2) + 2}

2

= (" +22+2)" +3(2° + 22 +2)

{a:2 +2x+2}

)
2® + 2z +2) {2 + 22+ 2 + 3}
)
)2

= (
= (;r2—|—2x+2
= (12+2m+2

and this is a multiple of p (x) € (p (z)) the zero element of Zj [x]. So, x®+2x+2+1 = 2>+ 22 and 2® +2x+2+2 = 2 +22+1
are the factors of p (z) = 2% + 2z + 2 in the extension field. So, Zj [z] is an extension field or a Galois field defined over the

field Z3 with the irreducible polynomial p (z) = 2 + 2z + 2.

Remark 1.1. See that the degree of the factor polynomials p(z) is equal to the degree of the polynomial p(z). The reason

for this is, the field over which p(x) irreducible is already a finite field.

Definition 1.2. p (%) Vimoa 3 ¢ (z) = {[p () q(z) dz} mod 3,

n+1
{/xndaz} mod 3 = {z+ 1 } mod 3 = (3 — (n+1)mod 3) gntmod 3

Definition 1.3. p () Amod 3 ¢ () = {2 (p(x) ¢ (2))} mod 3,

% (™) = (n mod 3) "' ™43
Vimods | 0 1 2 Tz (2| 14+x 24z | 14+2z2 | 24+ 2z
0 0 0 0 010 0 0 0 0
1 0 z 2z 2?2 | x4+ 2? |22+ 2?| 2+ 2? |22 4 2P
2 0 2z T 2?2?20+ 2 | x+2? |20+ 2| x+a®
T 0 z? z? 010 z? z? z? x?
2z |0 x? z? 010 z? z? x? x?
1+2 |0| z+2® |20 +2?|2?|2? | o +2? 2z T 2z + 22
24z (0|22 4+ 2| x4 22 |2? |22 2z x4+ 2 |2z + 22 T
1422|0| x4 22 |20+ 2% |2 | 2? T 20+ 22 | x+a® 2z
2422 |0|2c + 2| x+2% |22 |2?| 20 + 2° T 2z x + 2?
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Amod3 2 T 2x l1+z |14+22| 242 |2+ 22
0 0 0 0 0 0 0 0
1 0 1 2 1 2 1 2
2 1 2 1 2 1 2 1
T 2| 2z T 1+22| 142 |242z| 2+
2z 1 x 2z 242 |242z| 1+ |1+ 22
1+ 211 4+2x| 242 |2+ 2z T 2x 1+x
1+ 22 1142 |24+ 22 z 1+22| 242 2z
242 212422 | 142 2z 242 |14 22 x
2+ 2z 1/|24+2 |1+2z| 14+ 2 2z T 24+ 2x

(p () + (14 22) Amoa 3 {(p () + (24 2) Vimoa 3 (p () + (1 + 2)} = (p(2)) + 2+ 22

(1) & (2) confirm that the lattice is not distributive.
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