On the Connectedness of the Complement of a Unit Graph of a Commutative Ring

Dr. Jaydeep Parejiya ${ }^{1, *}$
1 Department of Mathematics, Government Polytechnic, Rajkot, Gujarat, India.

Abstract

The rings considered in this article are commutative with identity. We denote the set of all maximal ideals of a ring R by $\operatorname{Max}(R)$ and we denote the Jacobson radical of R by $J(R)$. Let R be a ring. Recall from [2] that the unit graph of R, denoted by $G(R)$, is an undirected graph whose vertex set of all elements of R and distinct vertices x, y are joined by an edge in this graph if and only if $x+y \in U(R)$. In this article, we studied Complement of unit graph and we denoted it $(U G(R))^{c}$. Hence, in this graph two elements x, y are joined by an edge in $(U G(R))^{c}$ if and only if $x+y \in N U(R)$. In this article we proved some results on connectedness of $(U G(R))^{c}$.

MSC: $\quad 13 \mathrm{~A} 15,05 \mathrm{C} 25$.

Keywords: Connected graph, $\operatorname{Max}(\mathrm{R})$.
(C) JS Publication

1. Introduction

Let R be a nonzero ring with identity. Let $U(R)$ denote the set of all units of R and let us denote the set of all nonunits of R by $N U(R)$. Recall from [2] that the unit graph of R, denoted by $G(R)$, is an undirected graph whose vertex set of all elements of R and distinct vertices x, y are joined by an edge in this graph if and only if $x+y \in U(R)$. Let $G=(V, E)$ be a simple graph. The complement G^{c} of G is defined by taking $\mathrm{V}\left(G^{c}\right)=\mathrm{V}(\mathrm{G})=\mathrm{V}$ and two distinct vertices u and v are adjacennt in G^{c} if and only if they are not adjacent in G. In this article, we studied Complement of unit graph and we denoted it $(U G(R))^{c}$. Hence, in this graph two elements x, y are joined by an edge in $(U G(R))^{c}$ if and only if $x+y \in N U(R)$. In this article we proved some results on connectedness of $(U G(R))^{c}$. Subgraph H of G is said to be a spanning subgraph of G, if $V(H)=V(G)$.

2. \quad Some Results on the Connectedness of $(U G(R))^{c}$

Let R be a ring. The aim of this section is to discuss some results on the connectedness of $(U G(R))^{c}$.

Proposition 2.1. Let R be a ring. The following statements are equivalent:
(i). $(U G(R))^{c}$ is connected.
(ii). $|\operatorname{Max}(R)| \geq 2$.

[^0]Proof. $\quad(i) \Rightarrow(i i)$ Assume that $(U G(R))^{c}$ is connected. Suppose that R is quasilocal with \mathfrak{m} as its unique maximal ideal. Let $V_{1}=\mathfrak{m}$ and let $V_{2}=R \backslash \mathfrak{m}$. It is clear that $V_{i} \neq \emptyset$ for each $i \in\{1,2\}, R=V\left((U G(R))^{c}\right)=V_{1} \cup V_{2}$, and $V_{1} \cap V_{2}=\emptyset$. Let $x \in V_{1}$ and let $y \in V_{2}$. Then $x+y \in U(R)$. Hence, x and y are not adjacent in $(U G(R))^{c}$. Thus there exists no edge of $(U G(R))^{c}$ whose one end vertex is in V_{1} and the other in V_{2}. Therefore, we obtain from [4, Theorem 2.1] that $(U G(R))^{c}$ is not connected. This is a contradiction and so, $|\operatorname{Max}(R)| \geq 2$.
$(i i) \Rightarrow(i)$ We are assuming that $|\operatorname{Max}(R)| \geq 2$. Let $\mathfrak{m}_{1}, \mathfrak{m}_{2}$ be any two distinct maximal ideals of R. Note that $\mathfrak{m}_{1}+\mathfrak{m}_{2}=R$ and so, there exist $x \in \mathfrak{m}_{1}$ and $y \in \mathfrak{m}_{2}$ such that $x+y=1$. Let $a, b \in R$ be such that $a \neq b$. We show that there exists a path of length at most two between a and b in $(U G(R))^{c}$. We can assume that a and b are not adjacent in $(U G(R))^{c}$. Then $a+b \in U(R)$. Observe that $a+(-a x-b y)=a(1-x)-b y=a y-b y=(a-b) y \in \mathfrak{m}_{2}$ and $b+(-a x-b y)=-a x+b(1-y)=$ $-a x+b x=(b-a) x \in \mathfrak{m}_{1}$. Thus $a-(-a x-b y)-b$ is a path of length two between a and b in $(U G(R))^{c}$. This proves that $(U G(R))^{c}$ is connected.

Corollary 2.2. Let R be a ring such that $|M a x(R)| \geq 2$. Then $(U G(R))^{c}$ is connected and moreover, $\operatorname{diam}\left((U G(R))^{c}\right)=$ $r\left((U G(R))^{c}\right)=2$.

Proof. Since $|\operatorname{Max}(R)| \geq 2$, we know from $(i i) \Rightarrow(i)$ of Proposition 2.1 that $(U G(R))^{c}$ is connected and moreover, we know from the proof of $(i i) \Rightarrow(i)$ of Proposition 2.1 that $\operatorname{diam}\left((U G(R))^{c}\right) \leq 2$. Let $r \in R$. We claim that $e(r) \geq 2$ in $(U G(R))^{c}$. Suppose that $r \in U(R)$. Then r and 0 are not adjacent in $\left.(U G(R))^{c}\right)$ and so, $d(r, 0) \geq 2$ in $(U G(R))^{c}$. Hence, $e(r) \geq 2$ in $(U G(R))^{c}$. Suppose that $r \in N U(R)$. Note that $r \neq 1-r$ and $r+1-r=1 \in U(R)$. Hence, r and $1-r$ are not adjacent in $(U G(R))^{c}$. Therefore, $d(r, 1-r) \geq 2$ in $(U G(R))^{c}$ and so, $e(r) \geq 2$ in $(U G(R))^{c}$. Since $\operatorname{diam}\left((U G(R))^{c}\right) \leq 2$, we obtain that $e(r)=2$ in $(U G(R))^{c}$ for any $r \in R$. This proves that $\operatorname{diam}\left((U G(R))^{c}\right)=r\left((U G(R))^{c}\right)=2$.

Corollary 2.3. Let R be a ring. Then $(U G(R[X]))^{c}$ is connected and diam $\left((U G(R[X]))^{c}\right)$
$=r\left((U(R[X]))^{c}\right)=2$, where $R[X]$ is the polynomial ring in one variable X over R.
Proof. Let \mathfrak{m} be any maximal ideal of R. Observe that $\frac{R[X]}{\mathfrak{m}[X]} \cong \frac{R}{\mathfrak{m}}[X]$ as rings. Let us denote the field $\frac{R}{\mathfrak{m}}$ by F. Since $F[X]$ has an infinite number of maximal ideals, it follows that $\operatorname{Max}(R[X])$ is infinite. Therefore, we obtain from Corollary 2.2 that $(U G(R[X]))^{c}$ is connected and $\operatorname{diam}\left((U G(R[X]))^{c}\right)=r\left((U G(R[X]))^{c}\right)=2$.

Proposition 2.4. Let R be a ring. The following statements are equivalent:
(i). $(U G(R))^{c}$ is connected.
(ii). $|\operatorname{Max}(R)| \geq 2$.
(iii). $N U(R)$ is a dominating set of $(U G(R))^{c}$.

Proof. $\quad(i) \Rightarrow(i i)$ This follows from $(i) \Rightarrow(i i)$ of Proposition 2.1.
(ii) $\Rightarrow($ iii $)$ Let $\mathfrak{m}_{1}, \mathfrak{m}_{2}$ be any two distinct maximal ideals of R. From $\mathfrak{m}_{1}+\mathfrak{m}_{2}=R$, we obtain that there exist $x \in \mathfrak{m}_{1}$ and $y \in \mathfrak{m}_{2}$ such that $x+y=1$. Let $a \in U(R)$. Note that $-a x \in \mathfrak{m}_{1} \subseteq N U(R)$ and $a+(-a x)=a(1-x)=a y \in \mathfrak{m}_{2}$. Hence, a and $-a x$ are adjacent in $(U G(R))^{c}$. This proves that $N U(R)$ is a dominating set of $(U G(R))^{c}$.
$($ iii $) \Rightarrow(i)$ We are assuming that $N U(R)$ is a dominating set of $(U G(R))^{c}$. We want to prove that $(U G(R))^{c}$ is connected. In view of $(i i) \Rightarrow(i)$ of Proposition 2.1, it is enough to show that $|\operatorname{Max}(R)| \geq 2$. Suppose that R is quasilocal with \mathfrak{m} as its unique maximal ideal. Observe that $N U(R)=\mathfrak{m}$. For any $m \in \mathfrak{m}, 1+m \in U(R)$. Hence, 1 is not adjacent to any nonunit m of R in $(U G(R))^{c}$. This is in contradiction to the assumption that $N U(R)$ is a dominating set of $(U G(R))^{c}$. Therefore, we obtain that $(U G(R))^{c}$ is connected.

Let (R, \mathfrak{m}) be a quasilocal ring. We know from $(i) \Rightarrow(i i)$ of Proposition 2.1 that $(U G(R))^{c}$ is not connected. In Theorems 2.5 and 2.6, we determine the number of components of $(U G(R))^{c}$ under the assumption that $\frac{R}{\mathrm{~m}}$ is finite.

Theorem 2.5. Let (R, \mathfrak{m}) be a quasilocal ring such that $\frac{R}{m}$ is finite and $\operatorname{char}\left(\frac{R}{m}\right) \neq 2$. Then the number of components of $(U G(R))^{c}$ equals $\frac{\left|\left(\frac{R}{m}\right)^{*}\right|}{2}+1$.

Proof. Observe that $V\left((U G(R))^{c}\right)=R=\mathfrak{m} \cup(R \backslash \mathfrak{m})$. For any $x, y \in \mathfrak{m}, x+y \in \mathfrak{m}=N U(R)$. Hence, the subgraph of $(U G(R))^{c}$ induced on \mathfrak{m} is a clique. Moreover, if $x \in \mathfrak{m}$ and $y \in U(R)=R \backslash \mathfrak{m}, x+y \in U(R)$ and so, x and y are not adjacent in $(U G(R))^{c}$. This shows that the subgraph of $(U G(R))^{c}$ induced on \mathfrak{m} is a component of $(U G(R))^{c}$ and let us denote it by H. We are assuming that $\frac{R}{\mathrm{~m}}$ is finite and $\operatorname{char}\left(\frac{R}{\mathrm{~m}}\right) \neq 2$. Therefore, $\left|\frac{R}{\mathrm{~m}}\right|=p^{n}$ for some odd prime number p and $n \geq 1$. Hence, $\left|\left(\frac{R}{\mathrm{~m}}\right)^{*}\right|=2 t$ for some $t \geq 1$. Therefore, there exist $u_{i} \in U(R)$ for each $i \in\{1, \ldots, t\}$ with $u_{1}=1$ such that $\left(\frac{R}{\mathrm{~m}}\right)^{*}=$ $\left\{u_{i}+\mathfrak{m},-u_{i}+\mathfrak{m} \mid i \in\{1, \ldots, t\}\right\}$. Let $i \in\{1, \ldots, t\}$ and let us denote $\left\{x \in U(R) \mid\right.$ either $x \equiv u_{i}(\bmod \mathfrak{m})$ or $\left.x \equiv-u_{i}(\bmod \mathfrak{m})\right\}$ by W_{i}. It is clear that $U(R)=\cup_{i=1}^{t} W_{i}$ and $W_{i} \cap W_{j}=\emptyset$ for all distinct $i, j \in\{1, \ldots, t\}$. For each $i \in\{1, \ldots, t\}$, let us denote by H_{i}, the subgraph of $(U G(R))^{c}$ induced on W_{i}. We claim that H_{i} is a component of $(U G(R))^{c}$. First, we show that H_{i} is connected. Let $x, y \in W_{i}$ be such that $x \neq y$. Suppose that x and y are not adjacent in $(U G(R))^{c}$. Then $x+y \in U(R)$. Therefore, either both x and y are congruent to u_{i} modulo \mathfrak{m} or both x and y are congruent to $-u_{i}$ modulo \mathfrak{m}. We consider the following cases.

Case $(i): x \equiv u_{i}(\bmod \mathfrak{m})$ and $y \equiv u_{i}(\bmod \mathfrak{m})$.
Note that $-u_{i} \in W_{i}$ and $x-u_{i}, y-u_{i} \in \mathfrak{m}$. Hence, $x-\left(-u_{i}\right)-y$ is a path in H_{i} between x and y.
Case $(i i): x \equiv-u_{i}(\bmod \mathfrak{m})$ and $y \equiv-u_{i}(\bmod \mathfrak{m})$.
Observe that $u_{i} \in W_{i}$ and $x+u_{i}, y+u_{i} \in \mathfrak{m}$. Hence, $x-u_{i}-y$ is a path in H_{i} between x and y.
This proves that H_{i} is connected. We next verify that there is no edge of $(U G(R))^{c}$ whose one end vertex is in W_{i} and the other end vertex not in W_{i}. Suppose that $x-y$ is an edge of $(U G(R))^{c}$ such that $x \in W_{i}$ and $y \notin W_{i}$. Hence, $x+y \in N U(R)=\mathfrak{m}$. As $x \in U(R)$, it follows that $y \in U(R)$. Therefore, $y \in W_{j}$ for some $j \in\{1, \ldots, t\}$ with $j \neq i$. Note that $x \equiv \pm u_{i}(\bmod \mathfrak{m})$ and $y \equiv \pm u_{j}(\bmod \mathfrak{m})$. As $\pm u_{i} \pm u_{j} \in U(R)$ and $x+y \equiv \pm u_{i} \pm u_{j}(\bmod \mathfrak{m})$, we obtain that $x+y \in U(R)$. This is a contradiction. Therefore, there exists no edge of $(U G(R))^{c}$ whose one vertex is in W_{i} and the other end vertex not in W_{i}. This proves that H_{i} is a component of $(U G(R))^{c}$.
It is clear from the above discussion that $\left\{H, H_{i} \mid i \in\{1, \ldots, t\}\right\}$ is the set of all components of $(U G(R))^{c}$. Therefore, the number of components of $(U G(R))^{c}$ equals $t+1=\frac{\left|\left(\frac{R}{m}\right)^{*}\right|}{2}+1$.

Theorem 2.6. Let (R, \mathfrak{m}) be a quasilocal ring such that $\frac{R}{\mathfrak{m}}$ is finite and char $\left(\frac{R}{\mathfrak{m}}\right)=2$. Then the number of components of $(U G(R))^{c}$ equals $\left|\frac{R}{\mathrm{~m}}\right|$.

Proof. It follows as in the proof of Theorem 2.5 that the subgraph of $(U G(R))^{c}$ induced on \mathfrak{m} is a component of $(U G(R))^{c}$. Let us denote this component by H. As $\frac{R}{\mathrm{~m}}$ is finite and $\operatorname{char}\left(\frac{R}{\mathrm{~m}}\right)=2$, we obtain that $\left|\frac{R}{\mathrm{~m}}\right|=2^{n}$ for some $n \geq 1$. Let $\left\{u_{i} \in U(R) \mid i \in\left\{1, \ldots, 2^{n}-1\right\}\right\}$ with $u_{1}=1$ be such that $\left(\frac{R}{m}\right)^{*}=\left\{u_{1}+\mathfrak{m}, \ldots, u_{2^{n}-1}+\mathfrak{m}\right\}$. Let $i \in\left\{1, \ldots, 2^{n}-1\right\}$. Let us denote $\left\{x \in U(R) \mid x \equiv u_{i}(\bmod \mathfrak{m}\}\right\}$ by V_{i}. Let us denote the subgraph of $(U G(R))^{c}$ induced on V_{i} by H_{i}. Note that $U(R)=\cup_{i=1}^{2^{n}-1} V_{i}$ and $V_{i} \cap V_{j}=\emptyset$ for all distinct $i, j \in\left\{1, \ldots, 2^{n}-1\right\}$. Let $i \in\left\{1, \ldots, 2^{n}-1\right\}$. We claim that H_{i} is a component of $(U G(R))^{c}$. First, we show that H_{i} is connected. Let $x, y \in V_{i}$ be such that $x \neq y$. Observe that $x+y \equiv 2 u_{i}(\bmod \mathfrak{m})$ and as $2 \in \mathfrak{m}$, we get that $x+y \in \mathfrak{m}$ and so, x and y are adjacent in H_{i}. This shows that H_{i} is complete. We next verify that there is no edge of $(U G(R))^{c}$ whose one end vertex is in V_{i} and the other end vertex not in V_{i}. Suppose that $x-y$ is an edge of $(U G(R))^{c}$ such that $x \in V_{i}$ and $y \notin V_{i}$. Hence, $x+y \in N U(R)$ and so, $y \in U(R)$. Therefore, $y \in V_{j}$ for some $j \in\left\{1, \ldots, 2^{n}-1\right\}$ with $j \neq i$. Now, $x+y \equiv u_{i}+u_{j}(\bmod \mathfrak{m})$. As $u_{i}-u_{j} \in U(R)$ and $2 \in \mathfrak{m}$,
we obtain that $u_{i}+u_{j}=u_{i}-u_{j}+2 u_{j} \in U(R)$. Therefore, it follows that $x+y \in U(R)$. This is a contradiction. Hence, there is no edge of $(U G(R))^{c}$ of the form $x-y$ with $x \in V_{i}$ and $y \notin V_{i}$. This proves that H_{i} is a component of $(U G(R))^{c}$ for each $i \in\left\{1, \ldots, 2^{n}-1\right\}$. It is clear from the above discussion that $\left\{H, H_{i} \mid i \in\left\{1, \ldots, 2^{n}-1\right\}\right\}$ is the set of all components of $(U G(R))^{c}$. Therefore, the number of components of $(U G(R))^{c}$ equals $2^{n}=\left|\frac{R}{\mathfrak{m}}\right|$.

References

[1] S. Kavithaa and R. Kalab, A note on comaximal ideal graph of commutative rings, AKCE International Journal of Graphs and Combinatorics, (2019), https://doi.org/10.1016/j.akcej.2019.06.004.
[2] N. Ashrafi, H. R. Mainmani, M. R. Pournaki and S. Yassemi, Unit graph associated with rings, Comm. Algebra, 38(2010), 2851-2871.
[3] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley publishing Company, (1969).
[4] N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Private Limited, New Delhi, (1994).
[5] M. I. Jinnah and S. C. Mathew, When is the comaximal graph split?, Comm. Algebra, 40(7)(2012), 2400-2404.
[6] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(2008), 1801-1808.
[7] S. M. Moconja and Z. Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc., 83(2011), 11-21.
[8] K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57(2)(2014), 413-423.
[9] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176(1995), 124-127.
[10] S. Visweswaran and Jaydeep Parejiya, When is the complement of the comaximal graph of a commutativering planar?, ISRN algebra, 2014(2014), 8 pages.
[11] M. Ye and T. Wu, Comaximal ideal Graphs of commutative rings, J. Algebra Appl., 6(2012), DOI : 10.1142/S0219498812501149.

[^0]: * E-mail: parejiyajay@gmail.com

