International Journal of Mathematics And its Applications

Deriving the Formula for Linear Regression

Nirbhay Narang ${ }^{1, *}$
1 Jayshree Periwal International School, Jaipur, Rajasthan, India.

Abstract

The goal of this research paper is to determine a generalised formula for the line and plane of best fit given a set of points in 2 and 3 dimensions respectively, as well as generalising a formula for a function of best fit in n dimensions. The applications are wide and varied, including statistical analysis and data science.

Keywords: Linear Regression, Matrices, Machine Learning, Planes of best fit, Linear Algebra. (C) JS Publication.

1. Find the Equation of the Line of Best Fit

Given a set of n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$, our objective is to find a and b such that the straight line $y=a x+b$ is the line of best fit for the data set. To do this, let us first define a one-dimensional vector called y which is a vector of all the y-coordinates in the data set.

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Next, let us define another one-dimensional vector called y_{p} which denotes the output values of the function $y=a x+b$, or the expected values of the line of best fit. Since y_{p} is simply an expression for the output of $y=a x+b$, the vector y_{p} can be expressed as

$$
y_{p}=\left(a x_{1}+b\right),\left(a x_{2}+b\right), \ldots,\left(a x_{n}+b\right)
$$

In order to determine the equation of the line of best fit, we must minimise the distance between corresponding elements of y and y_{p}. Let us denote the sum of the squares of the distances between corresponding elements of the vectors y and y_{p} as J. Therefore,

$$
J=\left(y_{p 1}-y_{1}\right)^{2}+\left(y_{p 2}-y_{2}\right)^{2}+\ldots+\left(y_{p n}-y_{n}\right)^{2}
$$

J can also be written as

$$
J=\left(a x_{1}+b-y_{1}\right)^{2}+\left(a x_{2}+b-y_{2}\right)^{2}+\ldots+\left(a x_{n}+b-y_{n}\right)^{2}
$$

Expanding J yields

$$
J=a^{2} x_{1}^{2}+2\left(a x_{1}\right)\left(b-y_{1}\right)+\left(b-y_{1}\right)^{2}+a^{2} x_{2}^{2}+2\left(a x_{2}\right)\left(b-y_{2}\right)+\left(b-y_{2}\right)^{2}+\ldots+a^{2} x_{n}^{2}+2\left(a x_{n}\right)\left(b-y_{n}\right)+\left(b-y_{n}\right)^{2}
$$

[^0]In sigma notation, J can be expressed as

$$
J=\sum_{k=1}^{n} a^{2} x_{k}^{2}+2\left(a x_{k}\right)\left(b-y_{n}\right)+\left(b-y_{k}\right)^{2}
$$

In order to obtain values for a and b, we must obtain equations for the same. Rearranging J as a quadratic expression in terms of a by determining the coefficients of a^{2} and a yields

$$
\left.J=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right) a^{2}+2\left(\left(b-y_{1}\right) x_{1}+\left(b-y_{2}\right) x_{2}+\ldots+\left(b-y_{n}\right) x_{n}\right)\right) a+\left(b-y_{1}\right)^{2}+\left(b-y_{2}\right)^{2}+\ldots+\left(b-y_{n}\right)^{2}
$$

This can be further rearranged to yield

$$
J=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right) a^{2}+2\left(\left(x_{1}+x_{2}+\ldots+x_{n}\right) b-\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right) a+\left(b-y_{1}\right)^{2}+\left(b-y_{2}\right)^{2}+\ldots+\left(b-y_{n}\right)^{2}\right.
$$

This expression gives the distance or the expected error with a value for a Since it is a quadratic expression in the form $y=a x^{2}+b x+c$, the function can be minimised using either differentiation to find the minima or via the use of the formula $x_{\text {min }}=\frac{-b}{2 a}$, where a is the coefficient of the squared term and b is the coefficient of the term with power 1 . Using the formula above,

$$
a=\frac{-\left(2\left(x_{1}+x_{2}+\ldots+x_{n}\right) b-\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)\right)}{2\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)}
$$

This can be rearranged to obtain:

$$
a\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+\left(x_{1}+x_{2}+\ldots+x_{n}\right) b=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

This is the first equation in a system of two linear equations to find the values of a and b which minimise the error. In order to derive the second equation, we must repeat the process above but instead, derive the quadratic expression in terms of b. Recall that

$$
J=a^{2} x_{1}^{2}+2\left(a x_{1}\right)\left(b-y_{1}\right)+\left(b-y_{1}\right)^{2}+a^{2} x_{2}^{2}+2\left(a x_{2}\right)\left(b-y_{2}\right)+\left(b-y_{2}\right)^{2}+\ldots+a^{2} x_{n}^{2}+2\left(a x_{n}\right)\left(b-y_{n}\right)+\left(b-y_{n}\right)^{2}
$$

Rearranging J as a quadratic expression in terms of b by determining the coefficients of b^{2} and b yields

$$
J=\left(b^{2}+b^{2}+\ldots b^{2}\right)+2\left(\left(a x_{1}-y_{1}\right)+\left(a x_{2}-y_{2}\right)+\ldots+\left(a x_{n}-y_{n}\right)\right) b+K
$$

where K is a constant term. This can be further rearranged.

$$
J=n b^{2}+2\left(a x_{1}-y_{1}+a x_{2}-y_{2}+\ldots+a x_{n}-y_{n}\right) b+K
$$

Thus, the coefficient of b^{2} is n and the coefficient of b is $2\left(a\left(x_{1}+x_{2}+\ldots+x_{n}\right)-\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right)$. Using the formula

$$
x_{\min }=\frac{-b}{2 a}
$$

The minimum value of b is given by

$$
b=\frac{-\left(2\left(a\left(x_{1}+x_{2}+\ldots+x_{n}\right)-\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right)\right)}{2(n)}
$$

This can be further simplified to

$$
b=\frac{\left(y_{1}+y_{2}+\ldots+y_{n}\right)-a\left(x_{1}+x_{2}+\ldots+x_{n}\right)}{n}
$$

From this, we know that

$$
a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+b n=y_{1}+y_{2}+\ldots+y_{n}
$$

This is the second equation required to find the values for a and b which give the minimum error. Therefore, the system of equations is

$$
\begin{aligned}
a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+n b & =y_{1}+y_{2}+\ldots+y_{n} \\
a\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+\left(x_{1}+x_{2}+\ldots+x_{n}\right) b & =x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
\end{aligned}
$$

This can be written in matrix form

$$
\left[\begin{array}{cc}
\left(x_{1}+x_{2}+\ldots+x_{n}\right) & n \\
\left(x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots x_{n}{ }^{2}\right) & \left(x_{1}+x_{2}+\ldots+x_{n}\right)
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\left(y_{1}+y_{2}+\ldots+y_{n}\right) \\
\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)
\end{array}\right]
$$

Solving the system of equations for a and b yields

$$
\begin{aligned}
& a=\frac{\left(\left(x_{1}+x_{2}+\ldots x_{n}\right) *\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right)-\left(n *\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)\right)}{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2} *\right) n} \\
& b=\frac{-\left(\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right) *\left(y_{1}+y_{2} \ldots+y_{n}\right)\right)+\left(x_{1}+x_{2}+\ldots+x_{n}\right) *\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)}{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} *(n)\right)}
\end{aligned}
$$

This generalised formula can be used to find the equation of the line of regression for any n data points. This concludes Section 3 of this paper.

2. Find the Equation of the Plane of Best Fit

Given a set of $n 3$-dimensional points $\left(x_{1}, y_{1}, z_{1}\right), \ldots\left(x_{n}, y_{n}, z_{n}\right)$, our goal is to derive a generalised formula for a, b, c such that the error between the plane $z=a x+b y+c$ and the given data set is at a minimum. Let the vector z denote all the z -coordinates in the data set.

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)
$$

Now, let us denote a vector z_{p} which denotes the the output values of the equation of the plane of best fit $z=a x+b y+c$. Therefore,

$$
z_{p}=\left(a x_{1}+b y_{1}+c\right),\left(a x_{2}+b y_{2}+c\right), \ldots,\left(a x_{n}+b y_{n}+c\right)
$$

Let J denote the square of the distance between corresponding points of z and z_{p}. Therefore,

$$
J=\left(a x_{1}+b y_{1}+c-z_{1}\right)^{2}+\left(a x_{2}+b y_{2}+c-z_{1}\right)^{2}+\ldots+\left(a x_{n}+b y_{n}+c-z_{n}\right)^{2}
$$

Since there are 3 unknowns, we will need 3 equations to find the values of a, b, c. First, let us find a quadratic equation in terms of a. Since

$$
J=\left(a x_{1}+b y_{1}+c-z_{1}\right)^{2}+\left(a x_{2}+b y_{2}+c-z_{1}\right)^{2}+\ldots+\left(a x_{n}+b y_{n}+c-z_{n}\right)^{2}
$$

Expanding J yields

$$
\begin{aligned}
J & =a^{2}\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+b^{2}\left(y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}\right)+2 a\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c^{2}+z_{1}^{2}-2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right) \\
& +2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right)+2 a c\left(x_{1}+x_{2}+. .+x_{n}\right)-2 a\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)+2 b c\left(y_{1}+y_{2}+. .+y_{n}\right) \\
& -2 b\left(y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{n} z_{n}\right)
\end{aligned}
$$

In order to determine a quadratic equation in terms of a, we must determine the coefficients of a^{2} and a. From the equation above, the coefficient of a^{2} is $\left(x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{n}{ }^{2}\right)$. The coefficient of a is $2\left(b\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c\left(x_{1}+x_{2}+\ldots+\right.\right.$ $\left.\left.x_{n}\right)-\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)\right)$. Using the formula

$$
x_{m i n}=\frac{-b}{2 a}
$$

The value for a which minimises the error is given by

$$
a=\frac{-\left(2\left(b\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c\left(x_{1}+x_{2}+\ldots+x_{n}\right)-\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)\right)\right)}{2\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)}
$$

This can be simplified to obtain

$$
a\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+b\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+\left(x_{1}+x_{2}+\ldots+x_{n}\right) c=x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}
$$

This is the first in a system of 3 linear equations in terms of a, b, c. To obtain the second equation, we will rearrange J as a quadratic expression in terms of b. Recall that J is given by

$$
\begin{aligned}
J & =a^{2}\left(x_{1}^{2}+x_{2}{ }^{2}+\ldots+x_{n}^{2}\right)+b^{2}\left(y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}\right)+2 a\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c^{2}+z_{1}^{2}-2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right) \\
& +2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right)+2 a c\left(x_{1}+x_{2}+. .+x_{n}\right)-2 a\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)+2 b c\left(y_{1}+y_{2}+. .+y_{n}\right) \\
& -2 b\left(y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{n} z_{n}\right)
\end{aligned}
$$

From the equation above, the coefficient of b^{2} is $\left(y_{1}{ }^{2}+y_{2}{ }^{2}+\ldots+y_{n}{ }^{2}\right)$. The coefficient of b is $2\left(y_{1}+y_{2}+\ldots+y_{n}\right)\left(a\left(x_{1}+\right.\right.$ $\left.\left.x_{2}+\ldots+x_{n}\right)-\left(z_{1}+z_{2}+\ldots+z_{n}\right)+c\right)$. Using the formula

$$
x_{\min }=\frac{-b}{2 a}
$$

The value for b which minimises the error is given by

$$
b=\frac{-2\left(y_{1}+y_{2}+\ldots+y_{n}\right)\left(a\left(x_{1}+x_{2}+\ldots+x_{n}\right)-\left(z_{1}+z_{2}+\ldots+z_{n}\right)+c\right)}{2\left(y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}\right)}
$$

This can be rearranged to obtain

$$
b\left(y_{1}^{2}+y_{2}^{2}+\ldots y_{n}^{2}\right)+a\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c\left(y_{1}+y_{2}+\ldots+y_{n}\right)=y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{n} z_{n}
$$

This is the second equation in a system of 3 linear equations. To determine the third and final equation, we must rearrange J as a a quadratic expression in terms of c. Recall that J is given by
$J=a^{2}\left(x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{n}{ }^{2}\right)+b^{2}\left({y_{1}}^{2}+y_{2}{ }^{2}+\ldots+y_{n}{ }^{2}\right)+2 a\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c^{2}+z_{1}{ }^{2}-2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right)$

$$
\begin{aligned}
& +2 c\left(z_{1}+z_{2}+\ldots+z_{n}\right)+2 a c\left(x_{1}+x_{2}+. .+x_{n}\right)-2 a\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)+2 b c\left(y_{1}+y_{2}+. .+y_{n}\right) \\
& -2 b\left(y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{n} z_{n}\right)
\end{aligned}
$$

From the equation above, the coefficient of c^{2} is $\sum_{k=1}^{n} 1=n$. The coefficient of c is $2\left(a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+b\left(y_{1}+y_{2}+\ldots+\right.\right.$ $\left.\left.y_{n}\right)-\left(z_{1}+z_{2}+\ldots+z_{n}\right)\right)$. Using the formula

$$
x_{\min }=\frac{-b}{2 a}
$$

The value for c which minimises the error is given by

$$
c=\frac{-\left(2\left(a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+b\left(y_{1}+y_{2}+\ldots+y_{n}\right)-\left(z_{1}+z_{2}+\ldots+z_{n}\right)\right)\right.}{2 n}
$$

This can be rearranged to obtain

$$
c n+a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+b\left(y_{1}+y_{2}+\ldots+y_{n}\right)=z_{1}+z_{2}+\ldots+z_{n}
$$

This is the third equation in a system of 3 linear equations.

$$
\begin{array}{r}
c n+a\left(x_{1}+x_{2}+\ldots+x_{n}\right)+b\left(y_{1}+y_{2}+\ldots+y_{n}\right)=z_{1}+z_{2}+\ldots+z_{n} \\
b\left(y_{1}^{2}+y_{2}^{2}+\ldots y_{n}^{2}\right)+a\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+c\left(y_{1}+y_{2}+\ldots+y_{n}\right)=y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{n} z_{n} \\
a\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+b\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)+\left(x_{1}+x_{2}+\ldots+x_{n}\right) c=x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}
\end{array}
$$

The solutions of these three linear equations will give the values of a, b, c which will minimise the error between the plane of best fit $z=a x+b y+c$ and the data set.

3. Extending Linear Regression into an n Dimensional Space

Consider k points in a $n-1$ dimensional space. Our goal is to generalise a method to find the equation of a $n-1$ th dimensional surface which minimises the distance between the set of k points and itself. In order to do this, consider a matrix of k points in $n-1$ dimensions called A which consists of our input variables denoted by x_{n}^{k}.

$$
A=\left[\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{k} & x_{2}^{k} & \ldots & x_{n}^{k}
\end{array}\right]
$$

Let us also consider a matrix B which consists of k points which are our output variables denoted by y_{k}

$$
B=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]
$$

In this case, our unknown variables are the coefficients of $x_{1}, x_{2}, \ldots, x_{k}$ denoted by $b_{1}, b_{2}, \ldots, b_{k}$ and the constant term b_{0} respectively. Let us now create a matrix called x to denote these unknowns

$$
x=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Since the constant term b_{0} is present, we must modify the matrix A to reflect these changes.

$$
A=\left[\begin{array}{ccccc}
1 & x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1} \\
1 & x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots & \\
1 & x_{1}^{k} & x_{2}^{k} & \ldots & x_{n}^{k}
\end{array}\right]
$$

In order to solve for the matrix x, we must solve $A x=B$. However, in this case, the matrix A is not invertible. Attempting to solve for x will lead to no solution. In order to overcome this problem, we must multiply both sides of the equality by A^{T}. The transpose of A times A will always be square and symmetrical, so the matrix obtained will always be invertible. This will allow us to solve for x. Multiplying both sides by A^{T} yields $A^{T} A x=A^{T} B \rightarrow x=\left(A^{T} A\right)^{-1} A^{T} B$. This gives us the result we need. An example is outlined below.
Let $A_{\text {points }}$ denote a set of 4 points in 3 dimensional space

$$
A_{p o i n t s}=\{(1,3,2),(4,5,1),(7,6,4),(9,8,1)\}
$$

Let $A_{\text {mat }}$ denote a matrix containing the input variables of these points.

$$
A_{m a t}=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 4 & 5 \\
1 & 7 & 6 \\
1 & 9 & 8
\end{array}\right]
$$

Let us now denote a matrix B containing the output variables of these points.

$$
B=\left[\begin{array}{l}
2 \\
1 \\
4 \\
1
\end{array}\right]
$$

Let us now denote a matrix x to hold the values of the coefficients of $x_{1}, x_{2}\left(b_{1}, b_{2}\right)$ since there are only two input variables and a constant term b_{0}.

$$
x=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

We know that $A_{\text {mat }} * x=B$. However, since the matrix $A_{\text {mat }}$ is not invertible, we must follow the steps outlined above.

$$
\begin{aligned}
A_{m a t}^{T} A_{m a t} x & =A_{\text {mat }}^{T} B \\
& \rightarrow x=\left(A_{m a t}^{T} A_{\text {mat }}\right)^{-1} A_{m a t}^{T} B \\
& \rightarrow x=\left[\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 4 & 7 & 9 \\
3 & 5 & 6 & 8
\end{array}\right] *\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 4 & 5 \\
1 & 7 & 6 \\
1 & 9 & 8
\end{array}\right]\right]^{-1} *\left[\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 4 & 7 & 9 \\
3 & 5 & 6 & 8
\end{array}\right] *\left[\begin{array}{l}
2 \\
1 \\
4 \\
1
\end{array}\right]\right]
\end{aligned}
$$

Computation of the above yields

$$
x=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{681}{62} \\
\frac{69}{31} \\
\frac{-233}{62}
\end{array}\right]
$$

Therefore, $y=\frac{69}{31} x_{1}-\frac{233}{62} x_{2}+\frac{681}{62}$. These results can be corroborated by using software.

4. Conclusion

In this paper, we first derived the formula for linear regression in the 2 D and 3 D planes algebraically, using a system of linear equations to generalise a formula to obtain the values of the coefficients of the terms in the equation. We also derived a generalised formula for linear regression in n dimensions using linear algebra and matrices. This was done by pre-multiplying both sides by the transpose of the matrix.

References

[1] Shalabh, Improving the Predictions in Linear Regression Models, Journal of Statistical Research, 33(1)(1999).
[2] Shalabh, H. Toutenburg and C. Heumann, Mean squared error matrix comparison of least squares and Stein-rule estimators for regression coefficients under non-normal disturbances, Discussion paper 496, University of Munich, Munich, Germany, (2006).
[3] A. Schneider, G. Hommel and M. Blettner, Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Arzteblatt International, 107(44)(2010), 776782.

[^0]: * E-mail: me@nirbhay.co

