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Abstract: The goal of this research paper is to determine a generalised formula for the line and plane of best fit given a set of

points in 2 and 3 dimensions respectively, as well as generalising a formula for a function of best fit in n dimensions. The
applications are wide and varied, including statistical analysis and data science.
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1. Find the Equation of the Line of Best Fit

Given a set of n points (x1, y1) , (x2, y2) , (x2, y2) ... (xn, yn), our objective is to find a and b such that the straight line

y = ax + b is the line of best fit for the data set. To do this, let us first define a one-dimensional vector called y which is a

vector of all the y-coordinates in the data set.

y = (y1, y2, ..., yn)

Next, let us define another one-dimensional vector called yp which denotes the output values of the function y = ax + b, or

the expected values of the line of best fit. Since yp is simply an expression for the output of y = ax + b, the vector yp can

be expressed as

yp = (ax1 + b) , (ax2 + b) , ..., (axn + b)

In order to determine the equation of the line of best fit, we must minimise the distance between corresponding elements of

y and yp. Let us denote the sum of the squares of the distances between corresponding elements of the vectors y and yp as

J . Therefore,

J = (yp1 − y1)2 + (yp2 − y2)2 + ... + (ypn − yn)2

J can also be written as

J = (ax1 + b− y1)2 + (ax2 + b− y2)2 + ... + (axn + b− yn)2

Expanding J yields

J = a2x2
1 + 2(ax1)(b− y1) + (b− y1)2 + a2x2

2 + 2(ax2)(b− y2) + (b− y2)2 + ... + a2x2
n + 2(axn)(b− yn) + (b− yn)2
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In sigma notation, J can be expressed as

J =

n∑
k=1

a2x2
k + 2(axk)(b− yn) + (b− yk)2

In order to obtain values for a and b, we must obtain equations for the same. Rearranging J as a quadratic expression in

terms of a by determining the coefficients of a2 and a yields

J = (x2
1 + x2

2 + ... + x2
n)a2 + 2((b− y1)x1 + (b− y2)x2 + ... + (b− yn)xn))a + (b− y1)2 + (b− y2)2 + ... + (b− yn)2

This can be further rearranged to yield

J = (x2
1 + x2

2 + ... + x2
n)a2 + 2((x1 + x2 + ... + xn)b− (x1y1 + x2y2 + ... + xnyn)a + (b− y1)2 + (b− y2)2 + ... + (b− yn)2

This expression gives the distance or the expected error with a value for a Since it is a quadratic expression in the form

y = ax2 + bx+ c, the function can be minimised using either differentiation to find the minima or via the use of the formula

xmin = −b
2a

, where a is the coefficient of the squared term and b is the coefficient of the term with power 1. Using the formula

above,

a =
−(2(x1 + x2 + ... + xn)b− (x1y1 + x2y2 + ... + xnyn))

2(x2
1 + x2

2 + ... + x2
n)

This can be rearranged to obtain:

a(x2
1 + x2

2 + ... + x2
n) + (x1 + x2 + ... + xn)b = x1y1 + x2y2 + ... + xnyn

This is the first equation in a system of two linear equations to find the values of a and b which minimise the error. In order

to derive the second equation, we must repeat the process above but instead, derive the quadratic expression in terms of b.

Recall that

J = a2x2
1 + 2(ax1)(b− y1) + (b− y1)2 + a2x2

2 + 2(ax2)(b− y2) + (b− y2)2 + ... + a2x2
n + 2(axn)(b− yn) + (b− yn)2

Rearranging J as a quadratic expression in terms of b by determining the coefficients of b2 and b yields

J = (b2 + b2 + ...b2) + 2((ax1 − y1) + (ax2 − y2) + ... + (axn − yn))b + K

where K is a constant term. This can be further rearranged.

J = nb2 + 2(ax1 − y1 + ax2 − y2 + ... + axn − yn)b + K

Thus, the coefficient of b2 is n and the coefficient of b is 2(a(x1 + x2 + ... + xn)− (y1 + y2 + ... + yn)). Using the formula

xmin =
−b
2a

The minimum value of b is given by

b =
−(2(a(x1 + x2 + ... + xn)− (y1 + y2 + ... + yn)))

2(n)

154



Nirbhay Narang

This can be further simplified to

b =
(y1 + y2 + ... + yn)− a(x1 + x2 + ... + xn)

n

From this, we know that

a(x1 + x2 + ... + xn) + bn = y1 + y2 + ... + yn

This is the second equation required to find the values for a and b which give the minimum error. Therefore, the system of

equations is

a(x1 + x2 + ... + xn) + nb = y1 + y2 + ... + yn

a(x2
1 + x2

2 + ... + x2
n) + (x1 + x2 + ... + xn)b = x1y1 + x2y2 + ... + xnyn

This can be written in matrix form

(x1 + x2 + ... + xn) n

(x1
2 + x2

2 + ...xn
2) (x1 + x2 + ... + xn)


a
b

 =

 (y1 + y2 + ... + yn)

(x1y1 + x2y2 + ... + xnyn)


Solving the system of equations for a and b yields

a =
((x1 + x2 + ...xn) ∗ (y1 + y2 + ... + yn))− (n ∗ (x1y1 + x2y2 + ... + xnyn))

(x1 + x2 + ... + xn)2 − (x1
2 + x2

2
+...xn

2∗)n

b =
−((x1

2 + x2
2 + ... + xn

2) ∗ (y1 + y2... + yn)) + (x1 + x2 + ... + xn) ∗ (x1y1 + x2y2 + ... + xnyn)

(x1 + x2 + ... + xn)2 − (x1
2 + x2

2 + ... + xn
2 ∗ (n))

This generalised formula can be used to find the equation of the line of regression for any n data points. This concludes

Section 3 of this paper.

2. Find the Equation of the Plane of Best Fit

Given a set of n 3-dimensional points (x1, y1, z1), ...(xn, yn, zn), our goal is to derive a generalised formula for a, b, c such

that the error between the plane z = ax + by + c and the given data set is at a minimum. Let the vector z denote all the

z-coordinates in the data set.

z = (z1, z2, ..., zn)

Now, let us denote a vector zp which denotes the the output values of the equation of the plane of best fit z = ax + by + c.

Therefore,

zp = (ax1 + by1 + c), (ax2 + by2 + c), ..., (axn + byn + c)

Let J denote the square of the distance between corresponding points of z and zp. Therefore,

J = (ax1 + by1 + c− z1)2 + (ax2 + by2 + c− z1)2 + ... + (axn + byn + c− zn)2

Since there are 3 unknowns, we will need 3 equations to find the values of a, b, c. First, let us find a quadratic equation in

terms of a. Since

J = (ax1 + by1 + c− z1)2 + (ax2 + by2 + c− z1)2 + ... + (axn + byn + c− zn)2
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Expanding J yields

J = a2(x1
2 + x2

2 + ... + xn
2) + b2(y1

2 + y2
2 + ... + yn

2) + 2a(x1y1 + x2y2 + ... + xnyn) + c2 + z1
2 − 2c(z1 + z2 + ... + zn)

+ 2c(z1 + z2 + ... + zn) + 2ac(x1 + x2 + .. + xn)− 2a(x1z1 + x2z2 + ... + xnzn) + 2bc(y1 + y2 + .. + yn)

− 2b(y1z1 + y2z2 + ... + ynzn)

In order to determine a quadratic equation in terms of a, we must determine the coefficients of a2 and a. From the equation

above, the coefficient of a2 is (x1
2 + x2

2 + ... + xn
2). The coefficient of a is 2(b(x1y1 + x2y2 + ... + xnyn) + c(x1 + x2 + ... +

xn)− (x1z1 + x2z2 + ... + xnzn)). Using the formula

xmin =
−b
2a

The value for a which minimises the error is given by

a =
−(2(b(x1y1 + x2y2 + ... + xnyn) + c(x1 + x2 + ... + xn)− (x1z1 + x2z2 + ... + xnzn)))

2(x1
2 + x2

2 + ... + xn
2)

This can be simplified to obtain

a(x1
2 + x2

2 + ... + xn
2) + b(x1y1 + x2y2 + ... + xnyn) + (x1 + x2 + ... + xn)c = x1z1 + x2z2 + ... + xnzn

This is the first in a system of 3 linear equations in terms of a, b, c. To obtain the second equation, we will rearrange J as a

quadratic expression in terms of b. Recall that J is given by

J = a2(x1
2 + x2

2 + ... + xn
2) + b2(y1

2 + y2
2 + ... + yn

2) + 2a(x1y1 + x2y2 + ... + xnyn) + c2 + z1
2 − 2c(z1 + z2 + ... + zn)

+ 2c(z1 + z2 + ... + zn) + 2ac(x1 + x2 + .. + xn)− 2a(x1z1 + x2z2 + ... + xnzn) + 2bc(y1 + y2 + .. + yn)

− 2b(y1z1 + y2z2 + ... + ynzn)

From the equation above, the coefficient of b2 is (y1
2 + y2

2 + ... + yn
2). The coefficient of b is 2(y1 + y2 + ... + yn)(a(x1 +

x2 + ... + xn)− (z1 + z2 + ... + zn) + c). Using the formula

xmin =
−b
2a

The value for b which minimises the error is given by

b =
−2(y1 + y2 + ... + yn)(a(x1 + x2 + ... + xn)− (z1 + z2 + ... + zn) + c)

2(y12 + y22 + ... + yn2)

This can be rearranged to obtain

b(y1
2 + y2

2 + ...yn
2) + a(x1y1 + x2y2 + ... + xnyn) + c(y1 + y2 + ... + yn) = y1z1 + y2z2 + ... + ynzn

This is the second equation in a system of 3 linear equations. To determine the third and final equation, we must rearrange

J as a a quadratic expression in terms of c. Recall that J is given by

J = a2(x1
2 + x2

2 + ... + xn
2) + b2(y1

2 + y2
2 + ... + yn

2) + 2a(x1y1 + x2y2 + ... + xnyn) + c2 + z1
2 − 2c(z1 + z2 + ... + zn)
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+ 2c(z1 + z2 + ... + zn) + 2ac(x1 + x2 + .. + xn)− 2a(x1z1 + x2z2 + ... + xnzn) + 2bc(y1 + y2 + .. + yn)

− 2b(y1z1 + y2z2 + ... + ynzn)

From the equation above, the coefficient of c2 is
n∑

k=1

1 = n. The coefficient of c is 2(a(x1 + x2 + ... + xn) + b(y1 + y2 + ... +

yn)− (z1 + z2 + ... + zn)). Using the formula

xmin =
−b
2a

The value for c which minimises the error is given by

c =
−(2(a(x1 + x2 + ... + xn) + b(y1 + y2 + ... + yn)− (z1 + z2 + ... + zn))

2n

This can be rearranged to obtain

cn + a(x1 + x2 + ... + xn) + b(y1 + y2 + ... + yn) = z1 + z2 + ... + zn

This is the third equation in a system of 3 linear equations.

cn + a(x1 + x2 + ... + xn) + b(y1 + y2 + ... + yn) = z1 + z2 + ... + zn

b(y1
2 + y2

2 + ...yn
2) + a(x1y1 + x2y2 + ... + xnyn) + c(y1 + y2 + ... + yn) = y1z1 + y2z2 + ... + ynzn

a(x1
2 + x2

2 + ... + xn
2) + b(x1y1 + x2y2 + ... + xnyn) + (x1 + x2 + ... + xn)c = x1z1 + x2z2 + ... + xnzn

The solutions of these three linear equations will give the values of a, b, c which will minimise the error between the plane of

best fit z = ax + by + c and the data set.

3. Extending Linear Regression into an n Dimensional Space

Consider k points in a n − 1 dimensional space. Our goal is to generalise a method to find the equation of a n − 1th

dimensional surface which minimises the distance between the set of k points and itself. In order to do this, consider a

matrix of k points in n− 1 dimensions called A which consists of our input variables denoted by xk
n.

A =



x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

...
...

...
...

xk
1 xk

2 . . . xk
n


Let us also consider a matrix B which consists of k points which are our output variables denoted by yk

B =



y1

y2

...

yk


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In this case, our unknown variables are the coefficients of x1, x2, . . . , xk denoted by b1, b2, . . . , bk and the constant term b0

respectively. Let us now create a matrix called x to denote these unknowns

x =



b0

b1

...

bn


Since the constant term b0 is present, we must modify the matrix A to reflect these changes.

A =



1 x1
1 x1

2 . . . x1
n

1 x2
1 x2

2 . . . x2
n

...
...

...
...

1 xk
1 xk

2 . . . xk
n


In order to solve for the matrix x, we must solve Ax = B. However, in this case, the matrix A is not invertible. Attempting

to solve for x will lead to no solution. In order to overcome this problem, we must multiply both sides of the equality by

AT . The transpose of A times A will always be square and symmetrical, so the matrix obtained will always be invertible.

This will allow us to solve for x. Multiplying both sides by AT yields ATAx = ATB −→ x = (ATA)−1ATB. This gives us

the result we need. An example is outlined below.

Let Apoints denote a set of 4 points in 3 dimensional space

Apoints = {(1, 3, 2), (4, 5, 1), (7, 6, 4), (9, 8, 1)}

Let Amat denote a matrix containing the input variables of these points.

Amat =



1 1 3

1 4 5

1 7 6

1 9 8


Let us now denote a matrix B containing the output variables of these points.

B =



2

1

4

1


Let us now denote a matrix x to hold the values of the coefficients of x1,x2 (b1,b2) since there are only two input variables

and a constant term b0.

x =


b0

b1

b2


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We know that Amat ∗ x = B. However, since the matrix Amat is not invertible, we must follow the steps outlined above.

AT
matAmatx = AT

matB

−→ x = (AT
matAmat)

−1AT
matB

−→ x =




1 1 1 1

1 4 7 9

3 5 6 8

 ∗


1 1 3

1 4 5

1 7 6

1 9 8





−1

∗




1 1 1 1

1 4 7 9

3 5 6 8

 ∗


2

1

4

1




Computation of the above yields

x =


b0

b1

b2

 =


681
62

69
31

−233
62


Therefore, y = 69

31
x1 − 233

62
x2 + 681

62
. These results can be corroborated by using software.

4. Conclusion

In this paper, we first derived the formula for linear regression in the 2D and 3D planes algebraically, using a system of linear

equations to generalise a formula to obtain the values of the coefficients of the terms in the equation. We also derived a

generalised formula for linear regression in n dimensions using linear algebra and matrices. This was done by pre-multiplying

both sides by the transpose of the matrix.
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