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We consider the finite dimensional approximation of simplified Gauss-Newton iterative scheme presented in [14] for solving
nonlinear ill-posed problems. The convergence and convergent analysis of this scheme is carried out with both an a priori
and an a posteriori parameter choice strategies. The error estimates are derived accordingly. We propose an order optimal
parameter choice strategy for the regularization parameter, which gives the optimal convergence rate. Finally, we present
numerical examples to verify the theoretical results.
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1. Introduction

Many inverse problems in science and engineering can be modeled as an operator equation of the form

Flx)=y 1)

where F': D — H is a nonlinear operator, H is a real Hilbert space, D C H. Nonlinear ill-posed problems of the form (1)

arise in a number of applications, see e.g., [1, 3, 8, 9, 15]. In practical situations, one may not have the accurate data y

rather has to deal with inexact data . Hence we assume that we have only approximate data § of y satisfying

ly—gll <o )

where § > 0 is the known noise level. In such circumstances, we consider the operator equation as

Fx)=g9 3)

with ||y — g|]| < J, & > 0. In general, the operator equation (3) is ill-posed in the sense that the continuous dependence on

the data cannot be guaranteed. We assume that (1) has a solution = and F possesses a locally uniformly bounded Fréchet

derivative in By (z0) := {x € X : ||x — xo|| < 7}, where o is an initial guess of 7. Then the computation of a stable solution

of (1) from noisy data § becomes an important topic of ill-posed problems, and the regularization [1, 3] have to be taken into
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account. Many regularization techniques are available in the literature [2, 4, 6, 9, 11-14]. The iterative scheme considered
in [14] is

Fng1 = dn 4+ (A+al) YK (§— F(in)) — a(@n — x0)) (4)

where K = F'(z0), A = K*K and a > 0 be the regularization parameter. In this paper we are considering the finite

dimensional approximation of (4) of the form,

Znt1,h = Tn,h + (PRAP, + Oénf)fl(PhK* (G — F(Zn,n)) — an(Zn,n — x0)), (5)

dimHp,
j=1

where {a, } is a positive sequence, Zo,n, := Prxo, Py defined by P (z) =Y (z,ej) ej, x € H is a sequence of orthogonal
projections on the finite dimensional subspaces Ho C Hy C .... C H;... C H with dimH; ~ 2%,s > 1 and {e1, ez, ....} be the
orthonormal basis for H. Here apart from an a priori method, we also propose an a posteriori stopping rule and an adaptive
parameter choice strategy for choosing the regularization parameter.

This paper is organized as follows. In Section 2, we prove convergence analysis of the scheme and convergence rate using an
a priori parameter choice rule. In Section 3, we propose an a posteriori parameter for the choice of regularization parameter

combined with the discrepancy principle. Numerical examples are discussed in Section 4 to illustrate the theoretical results.

2. Convergence Analysis and Error Estimate

In order to establish the convergence of the method and deriving the convergence rate, we make use of the following
assumptions.

Assumption I (A-I): There exists a positive constant ko and ¢(z, zo,v) € H satisfying (F'(z)—F'(z0))v = F'(z0)¢(z, 0, v)

with [[¢(z, 2o, v)|| < kollvl|[|[x—zoll, V2, v in Bz (z0). Moreover, 50T (14 4n,n) < 1 with yh,n = 2\7}’(;7, where n, = ||K(I—P)||.

Assumption IT (A-II): 2 — zy = A4 for some @ € H.

We make use of the following results for the convergence analysis.

Lemma 2.1. Suppose that F possesses a locally bounded Fréchet derivative in B% (z0). Then by using assumption A-I
_ * ko’/‘
I(A+al)" K (F(z) = Fly) - Kz —y) || < =~ llz —yll (6)

for all z,y in Bz (zo).
Proof.  See [14]. O

Lemma 2.2. Let a, be the sequence satisfying, 0 < an < a and lima,, < a. Moreover, we assume that ¥, be the sequence
satisfying

0 < Vi1 < an +b0n + et
with n € N and 9o > 0, holds for some b,c > 0. Let ¥ and 9 be defined as

2

B a
1—-b++/(1—0)2%—4ac

W

and

i 1-b+4+/(1-0)%—4ac
o 2c '

If b+ \Jac < 1 and if 99 < 0, then
I < maz{do,?'}.
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Proof.  See [2,

10]. O

Now by above lemma we claim that all the successive iterations belong to the ball B, /; (z0). We assume that zt e B, /4 (z0) C

BT/Q(:E()) C D(F)

Lemma 2.3. The successive iterations Zni1,n of the iterative scheme (5) belong to the ball Bz (zo).

Proof.

5 T
In+1,h — T

= (PaAPy + anl) ™t ((PhAPh FanD)(Enp — )+ PAK™(§ — F(@nn)) — n(Fnp — xo))
= (PoAPy + anl) ‘P K" (K(gzn,h i F(gzn,h)) + (PuAPy, + and) an(wo — a1)
— (PuAPy + anl) ' P K (K(in,h vt ot - P+ F(:en,h)) + (PuAPy + anl)  an(zo — z')
= (PuAPy + anl) ' PK* (K(in,h — ') 4§ = F@nn) + Fz') - F(w*))
+(PLAPy + an]) ' P K (K (2" — Poa®)) + (PhAP, + an D) an (w0 — 21)
— (PoAPy + anl) ' P K" (K(f;n,h — 2" 4§ — F@nn) + Fz') — F(xf))
+(PhAP, + anl) ' Py K" (K (2" — Poa®)) 4+ (PLAP, + anl)  an(zo — x1)
= (PuAPy + anl) ' P K" (K(ﬁn,h — ) = F(&nn) + F(:ﬁ)) + (PuAPy, + anl) " PoK*(§ — F(zh)

+(PLAPy 4 an]) ' P K (K (2f — Poa®)) + (PhAP, + an D) (2o — z). (7)

‘We have, using spectral theory result and assumptions,

|(PAP, + anl) ' PE™ (K (aF — Puat)))|

IA

ﬁHK(l — Pt ©)

lan (Ph AP, 4+ anl) (o — 2')|| = anl|(PhAP, + anl) ™ (Ph 4+ I — Py) Adl|

and

< an|[(PuAPy 4 an )™ PoAdl| 4+ an||(Po AP, + anl) ™ (I — Py)Adl|

< an||(PhAPy 4+ anI) ' PoA(Py + T — Po)a|| + ||(I — Py)Adl|

< an||(PhAPy + anI) ' PoAPLG| + an||(PhAPL + an ) P AT — Pr)il|
+(I = Pn)Adl|

< omlld] + A = Pu)all + [[(1 — Pa)Adl|

< amllal + 2([ AL = Pa)l||a]] )

H(PhAPh Fan]) ' PoK (K (Fn — ') —F(Fan) + F(:J))H

<|(PoAPy + anD) ' PoK K $(Enn +t(x" — o), zo, (' — Enn))||
<|[(PhAPy + an D) ' PoK K (I — Py + Po)(Znn 4tz — Fnn), zo, (27 — Znn))||
< |(PhAPy + D) ' PuK K Pogp(&nn + t(z" — Znn), o, (' — Enn))||

+ ||(PhAPy 4+ an]) ' PoK* K (I — Po)d(Zn.n + t(zT — Znn), o, (2" — Znn))||

k 1

< B ot = Bl 5 (T = PO + e = ). 0, & = )
kor + kor mn o

< e - n o o — - n

< B e’ — Gl + 5 ot — B
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k .
< S5 (1 ) [En g — 2]l (10)
Therefore,
i —a'll € B0+ ) Enn ol + s + 7||K(I Pz’ || + anlall + 2I1AU = Po)llllall. (1)
2 Va, 2/,
This is of the form
19n+1 S 01931, + b'ﬁn + Qn
with 9, = |&n,n — 2], an = QM + 2\/fHK([ — Po)zt|| + anlltl| + 2]| AT — Pu)|||a]], b= %8"(1 4+ Yhn), ¢ = 0. We have

b+2\ﬁf (14 ynn) < 1.

By using lemma 2.2

Jnsrn —atl < llzo — o (12)
Therefore ||zns1. — 2ol < llFns1 — o'l + 12! = o]
< 2|z’ — o
r
< - 13
<! (13)
Hence the theorem is proved. O

Theorem 2.4 (An a priori method). Let the assumptions A-I and A-II hold. The regularization parameter is chosen a
priori as an = ao(l+p") with 0 < p <1, n =1,2,... and oo ~ (0 + nh)2/3. If we choose the iteration number n and

dimension h such that (X82)"*! < (5 + nh)% then,
2" = Zns1nll = O((8 + 1) *?). (14)

Proof. We have, using (11),

K(I — Py)at
s =l < B4l =l + g + =PI a4 2140 = polla)
kor + kor mn T 4 I K (I — Py)woll
< — n,h — n -
< B =l + T — '+ o+ IR
_ T_
*”K(I =0l ol + 2K~ PO
‘We have,
1K = Paeoll _ (= Pl
2/, 2Ja,
1 U = PN~ Pa)aol
= 2/a,
< Ml = pr)zo]
- 2/,
Therefore,
~ k T k T (5 H(I— Ph)x()H
_ gt < Ror Sl 4 For Ih
D N e
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5 Kl + ool + 21K a1
< Moy B,y S Gl P
+ 5 Kl + il + 23+ )
< Sl — ol S R0 2 SOl PRI L oscyan s+ m) +
With the choice of a,, and ap we have,
o+ mn

Therefore,

k‘oT

< S llEan — 1| + c1(8 + nn)*/?
kor [ kor . t 2/3 2/3
< 5 THxn—l,h_l‘ Il +c1(6 +nn) +c1(d +mm)
kor .o - kor
= (%)2|lxn—1,h — ')+ (%01 +c1)(8 + mn)*/?
kor n+ly~ t 2(1 - (%)n) 2/3
< (7) [Zo — 2| + wclﬁS + 1)
k n+1
< (%) hoo-sll+a@m
< (6 +m)??,

201—(*7)m)

where ¢; = %Z + % + H(I*Zh,)%o\\ + 'UhHI{Q””’{L” + QHKHHQH((S + nh) + Ha” and ¢y = e

Ci. D

3. An a posteriori stopping rule

In this section, we propose an a posteriori rule for stopping the iteration using a discrepancy principle. Throughout this
section we assume that || K|| < 1. We terminate the iteration in such a way that there is a number N for which the following

relation holds. Forn =0,1,2,...,
an || PuK* (§ — F(@nn))ll < CO +nn)** < an| PaK"(§ = F (@)l (15)

where C is an appropriately chosen positive number. We make use of the following principle to obtain a decreasing sequence

of regularization parameter a,,. Choose an initial approximation aq by solving the equation
a0l (PhAPy + aol) " PuK ™ (§ — F(xo))l| = C(5+m)*°. (16)

Define a,, such that

an = [K[*(1+¢")ao
where ¢ := % Similar kind of stopping rule has been employed in literature for iterative schemes [11, 13, 14, 16]. In this
paper, we claim that as a consequence of the stopping rule, the parameter obtained through this strategy and the resultant

error estimate are of the order O(8 + n;,)%/3.
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Proposition 3.1. Suppose iteration (5) is stopped according to the stopping criterion (15) and o, are chosen as mentioned
above. Then

an-1~ (6 + 77h)2/37 (17)
where N is the stopping index.

Proof. The iteration formula is

INp =ITN-1,n + (PhAP, + C¥1\171.7)7l (PhK*(:lj — F(Zn-1,n)) —an—1(Zn—1,nh — wo))-
Therefore
PoK*(§— F(@Zn-1,1)) = (PhAPy + an-11)(Znp — En—1,n) + aN—1(EN_1,n — T0)-

By using (13) and an—1 = ||K|*(1 + ¢™)ao,

1PoK* (G — F(@n-10)|l < [(PoAPy +an—1D)(@nn — Env—1,0)|| + an-1]ZNv-1,n — 2ol

IA

(IKI* + an-1) |2,

IN

(IKN1? + an—1)r + an—1|Ex-1,n — @0l

2an-1

—|—2a )z—i—a u
1-|—q N-1 N-1

2 2
+3) an-—1

—ON-—-1-.

2

(T e

( 1+q

( +31+q )r
(144~

By using discrepancy principle

C(8 +mn)*"?

IN

an-1||PnK*(§ — F(Zn—-1,1))|l
243014 ¢Vao\ 7
@ _1( (14 qV)ao )2aN_1
(2+3(1+qN)ao)
(14 ¢M)ao

IN

r o2
—QN_1-
2

‘We know that

aoll(PhAPy + aol) " PuK™ (5 = F(wo))|| = C(5 + ).

This would imply that ao||Z1,n — 2o = C(6 + 1x)*3. Let ||Z1,n — xo|| = r’. Therefore ag = ¢/(5 + nn)?/?, where ¢/ = C/r.

Hence,

2C(1 + ¢V)ao
7(2+3(1+ ¢V)ao)
20(1 + ¢V (8 + nn)¥/?

7(2+3(1 4+ ¢V)ao)

2C(1+¢")c
@130+ ¢)a0)

20(1 +qN)CI 1/2 2/3
é
(2r+3r(1—|—q”)a0) (84 mn)

(6 +mn)*/?

IN
Q
i

(6 +mn)*/?

IA
Q
i

IN
Q

>0
|

(8 +nn)"/?

IA
Q
i

On the other hand, from the definition of a, = ||K||*(1 + ¢" "), we have
an—1 < K1+ V)6 +nn)*. (18)

Hence by (18) and (18) an—1 ~ (6 +n,)%/3. =
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Theorem 3.2. Suppose iterative scheme (5) satisfies the assumption (A-I), (A-II) and is stopped according to the stopping

criterion (15) with parameter choice described above, then
2
lz" = &nnll = O3 +mn)3. (19)

Proof. Throughout this proof, for simplify the notation we set e, := ||#nn — z'|| for n = 1,2,..., and ey = ||zo — =]

Using (11) and (9),

5, IKI— Py
s Nlew—1] + +

\/7 2jan | 2jana

kor T lewoa| + ) n |K(I — Prn)zo|

RNt dyanTi | 2Jant

K(I — P — . .

PRI 20l o a4+ 2040 - POl
aN-—1

kor §__  mlU = Phao]

+
2 21/ H 0” ,/OcNfl 2«/04N71

+ an—flafl + 2| K| [[@l|mm

IN

kor . .
lexll < 57 (145 + analla] + 21141 = Po)llla]

IN

qllen-1ll + =~

IN

qallen—1ll + —-
+77}21HK||\|UH
2. /aN—1

kor o6 1 1
gllen—1|| + 20T or +77h r + Nn + Nh

2 2,/ 4 2\/CMN71 2,/&1\]71
= K1 + o —xl[al] + 2| K 111(0 + mn)

IN

(I = Pr)xol|

0+ Mn
2./an

qllen—1l +

+—

IN

o+ nn {kﬂr r 1 (= Pu)zol 77h||K||Hﬁ||} N N
A 4T 9 — 2| K
Jan—i\ 4 4 Taot 2 + 5 +an—1lla] + 2| K|l (6 + nn)

allex—all + e1(8 +mn)*.

IN

Therefore,

IN

1—
lewll < g™ lleoll + == (8 +m)**

AN-1
1 K[[20
QaN-—-1
i [P €0l c2(3 + 1mm)
QN—1
<
= K20
ON-—1

2/3

IN

1} leoll + ¢2(6 + 1)

2/3

K| l[all + c2(6 + m)**

IN

— ] +ea( (8 +mn)*"*

CS{OCNfl + (0 + nh)2/3}

IN

2/3

IN

(6 +nn)

where c is a positive constant. Hence the theorem follows from anx—1 ~ (0 + nh)2/3. O

4. Numerical Examples

Example 4.1 (cf. [5]). In the following, we consider a parameter identification problem to illustrate the proposed scheme.

The problem is to evaluate the parameter a in the two-point boundary problem
—u" +au=f, te(0,1), u(0)=wuo, u(l)=u, (20)

from the perturbed data @ of the u, where uo,u1 and f € L?[0,1] are given. Now the nonlinear operator F : D(F) C
L?[0,1] — L?[0,1] for computing a is defined as the parameter-to-solution mapping F(a) = u(a) with u(a) being the unique
solution of (20).
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2t Exact Solution
#  Computed Salutuion

ot Exact Solution
Computed Solutuion
197 191

181 181

1T 171
16 16

1.5 151

14 14f

13r 131

12 121

1 k‘_i_ 1 *_i_)*’}
o D“\ D‘Z DIJ D‘ﬂ DI5 Dlﬁ D‘? DIB DID 1 [t} I]"I DIZ D‘B D‘4 D‘S D‘G D‘? DIB D‘D 1
Figure 1. Soln. when § = .1% (h=16) Figure 2. Soln. when § =.01% (h=16)

F is Fréchet differentiable and it is given by F'(a)h = —A(a)™*(hu(a)) and its adjoint is given by F'(a)*w = —u(a)A(a),
where A(a) : H*> N Hg — L? is defined by A(a)u = —u” + au. For numerical calculation we assume f =1+ t%, ug = u; = 1
and if u(a') = 1 then the the true solution is ' = 14¢2. Let iteration start with the initial guess ao = 1+t2 4 2(t — 2t3 +1*)
and perturbed data us = 1 + §v/2sin(27t/8). The assumption A-I follows from [17] and [5]. We used Haar orthonormal
basis of L?[0, 1] and employed finite difference scheme to solve (20). The iteration (5) is stopped using the stopping criteria

(15). The result associated with various deltas are given in Table 1. The computed solutions associated with § = 0.1% and

6 = 0.01% are shown in Figure 1 and Figure 2.

) h | n |Relative Error W
2411 0.0375 0.1740
0.1 |25|1 0.0348 0.1615
26| 1 0.0271 0.1256
241 0.0292 0.2152
0.05 {25 1 0.0279 0.2055
2611 0.0220 0.1620
24| 2 0.0141 0.3043
0.01 |25 2 0.0123 0.2649
261 4 0.0097 0.2091
24115 0.0090 0.8899
0.001|25 |18 0.0067 0.6661
26121 0.0047 0.4658
Table 1. Numerical Results For Example 1
1.2 1.2
1 P*WM**MT T*H*WH 1 KW****HT T*%W*
| | | |
08 | | 08 | |
| | | |
0.6 “ “ 0.6 “ “
| | | |
0.4 ‘I 0.4 |
‘ \ \ \‘
02 ‘| | 02 | |
\ " \ [
0 ;t*'%*"ﬂ?*%e&jﬁék ¥ Exact 0 ;%**M#HH&&L ¥ Exact
Computed Computed
7020 01 0z 03 0.4 05 06 07 08 09 1 7020 01 0z 03 0.4 05 06 07 08 09 1
Figure 3. Soln. when § = 10% (h=32) Figure 4. Soln. when § = 1% (h=32)
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Example 4.2. Consider the following nonlinear integral operator equation [9] defined on H = L?[0,1].

1
F(u) := B(u) + (arctanu)® := / ey (y)dy + (arctan u)®. (21)

0
We consider the data

0 <z<

=
w0l

2 4 ((arctan(1))®) — exp(z — 1) — exp(—2) otherwise.

So that the actual solution will be

0i<z<
u(z) = (23)
1 otherwise.

Wl
w0l

The Fréchet derivative of F is

2 1
Faph = 2 [ exp(fo — y)h(u)dy. (24)
+u 0
é h | n |Relative Error W
24112 0.0242 0.1125
0.1 |25(14 0.0237 0.1099
26114 0.0158 0.0155
24128 0.0024 0.0508
0.01 |25|30 0.0018 0.0378
26131 0.0010 0.0225
24146  0.000204 0.0202
0.001125 48|  0.000258 0.0259
26150|  0.000163 0.0164

Table 2. Numerical Results For Example 2

We started the iteration (5) with initial guess as up = 1.23 and randomly perturbed data v of v with a data error ¢ such
that ||v — @|| < 8. The assumptions A-I and A-II follows from [14]. The computational results are summarized in Table 4.
The computed solutions associated with 6 = 10% and § = 1% are shown in Figure 3 and Figure 4. It shows that numerical

estimate is consistent with theoretical estimate.

5. Conclusion

In this paper, we have considered a finite dimensional approximation of simplified Gauss-Newton iterative scheme. We
proposed an a priori and an a posteriori stopping rules, that guarantees convergence of the iterates to a solution, as the noise
level goes to zero. We found the error estimates are optimal order. The numerical results are consistent with the theoretical

estimates.
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