

International Journal of Mathematics And its Applications

Gel'fand Theory of the Commutative Banach Algebra $\mathcal{A} \times_c \mathcal{I}$ with the Convolution Product

H. V. Dedania^{1,*} and H. J. Kanani²

1 Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.

2 Department of Mathematics, Bahauddin Science College, Junagadh, Gujarat, India.

Abstract:	Let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A} . Then $\mathcal{A} \times \mathcal{I}$ is an algebra with pointwise linear operations and the convolution product $(a, x)(b, y) = (ab + xy, ay + xb)$ $((a, x), (b, y) \in \mathcal{A} \times \mathcal{I})$; it will be denoted by $\mathcal{A} \times_c \mathcal{I}$. If \mathcal{A} is a commutative Banach algebra and \mathcal{I} is a closed ideal in \mathcal{A} , then $\mathcal{A} \times_c \mathcal{I}$ is also a commutative Banach algebra with some suitable norm. In this paper, we shall study the Gel'fand theory, uniqueness properties, and regularity of $\mathcal{A} \times_c \mathcal{I}$.
MSC:	Primary 46J05; Secondary 46K05.
Keywords:	Convolution product, UUNP, UC*NP, regular algebra, uniform algebra

© JS Publication.

1. Introduction

Consider the group $\mathbb{Z}_2 = \{0, 1\}$ with the binary operation addition modulo 2. Then $\ell^1(\mathbb{Z}_2)$ is a Banach algebra with convolution product. For $f, g \in \ell^1(\mathbb{Z}_2)$, the convolution product of f and g is defined as

f * g = (f(0)g(0) + f(1)g(1), f(0)g(1) + f(1)g(0)).

This motivates the following product. Let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ is an algebra with pointwise linear operations and the *convolution product* defined as (a, x)(b, y) = (ab + xy, ay + xb) $((a, x), (b, y) \in \mathcal{A} \times_c \mathcal{I})$. It is commutative (resp. unital) iff \mathcal{A} is commutative (resp. unital). Further, If \mathcal{A} is a normed algebra (resp. Banach algebra), then $\mathcal{A} \times_c \mathcal{I}$ is a normed algebra (resp. Banach algebra) with the norm $||(a, x)||_1 = ||a|| + ||x||$ $((a, x) \in \mathcal{A} \times_c \mathcal{I})$.

2. Basic Results

Throughout the paper, let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A} . Let \mathcal{A}_{-1} denote the set of all quasi invertible elements of \mathcal{A} . If \mathcal{A} is unital, \mathcal{A}^{-1} is the set of all invertible elements of \mathcal{A} . Further, $\sigma_{\mathcal{A}}(a)$ and $r_{\mathcal{A}}(a)$ denote the spectrum and the spectral radius of a in \mathcal{A} . Then we have the following.

Proposition 2.1. Let $(a, x) \in \mathcal{A} \times_c \mathcal{I}$. Then

^{*} E-mail: hvdedania@yahoo.com

- (1). $(a, x) \in (\mathcal{A} \times_c \mathcal{I})^{-1}$ iff $a + x, a x \in \mathcal{A}^{-1}$;
- (2). $(a, x) \in (\mathcal{A} \times_c \mathcal{I})_{-1}$ iff $a + x, a x \in \mathcal{A}_{-1}$;
- (3). $\sigma_{\mathcal{A}\times_{c}\mathcal{I}}((a,x)) = \sigma_{\mathcal{A}}(a+x) \cup \sigma_{\mathcal{A}}(a-x);$
- (4). $r_{\mathcal{A}\times_c\mathcal{I}}((a,x)) = \max\{r_{\mathcal{A}}(a+x), r_{\mathcal{A}}(a-x)\}.$

Proposition 2.2. Let \mathcal{A} be a normed algebra and \mathcal{I} be closed in \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ has a left approximate identity iff \mathcal{A} has a left approximate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let $\mathcal{A} \times_c \mathcal{I}$ has a left approximate identity $((e_\alpha, x_\alpha))_{\alpha \in \Lambda}$ and $a \in \mathcal{A}$. Then

$$||e_{\alpha}a - a|| \le ||e_{\alpha}a - a|| + ||x_{\alpha}a|| = ||(e_{\alpha}, x_{\alpha})(a, 0) - (a, 0)||_{1}$$

converges to 0 as $\alpha \to \infty$. Thus (e_{α}) is a left approximate identity for \mathcal{A} .

Conversely, suppose that \mathcal{A} has a left approximate identity (e_{α}) . Then,

$$\|(e_{\alpha}, 0)(a, x) - (a, x)\|_{1} = \|(e_{\alpha}a, e_{\alpha}x) - (a, x)\|_{1} = \|(e_{\alpha}a - a) + (e_{\alpha}x - x)\|_{1}$$

converges to 0 as $\alpha \to \infty$ for every $(a, x) \in \mathcal{A} \times_c \mathcal{I}$. Thus $(e_\alpha, 0)$ is a left approximate identity for $\mathcal{A} \times_c \mathcal{I}$. Therefore $\mathcal{A} \times_c \mathcal{I}$ has a left approximate identity. The proof for the bounded approximate identity follows from the fact that a sequence $((e_\alpha, x_\alpha))$ in $\mathcal{A} \times_c \mathcal{I}$ is bounded then the sequence (e_α) is bounded in \mathcal{A} and if a sequence (e_α) is bounded in \mathcal{A} , then the sequence $((e_\alpha, 0))$ is bounded in $\mathcal{A} \times_c \mathcal{I}$.

Remark 2.3. Let $\|\cdot\|$ be a norm on an algebra \mathcal{A} and \mathcal{I} be an ideal of \mathcal{A} . Let $\|(a, x)\|_{\infty} = \max\{\|a\|, \|x\|\}$ $((a, x) \in \mathcal{A} \times_{c} \mathcal{I})$. Then $\|\cdot\|_{\infty}$ is a linear norm but it may not be an algebra norm on $\mathcal{A} \times_{c} \mathcal{I}$.

- **Definition 2.4.** Let \mathcal{A} be an algebra. Then
- (1). An algebra norm $|| \cdot ||$ on \mathcal{A} is a uniform norm if $||a^2|| = ||a||^2$ $(a \in \mathcal{A})$.
- (2). A is a uniform algebra if it admits a complete uniform norm.
- (3). An algebra norm $||\cdot||$ on a *-algebra \mathcal{A} is a C*-norm if $||a^*a|| = ||a||^2 (a \in \mathcal{A})$.

Lemma 2.5. Let \mathcal{I} be an ideal in a normed algebra $(\mathcal{A}, \|\cdot\|)$ and $(a, x) \in \mathcal{A} \times_c \mathcal{I}$. Define $|(a, x)| := \max\{\|a + x\|, \|a - x\|\}$. Then

- (1). $|\cdot|$ is an algebra norm on $\mathcal{A} \times_c \mathcal{I}$;
- (2). $|\cdot|$ is a uniform norm on $\mathcal{A} \times_c \mathcal{I}$ iff $||\cdot||$ is a uniform norm on \mathcal{A} ;
- (3). Let \mathcal{A} be a *-algebra and \mathcal{I} be a *-ideal in \mathcal{A} . Then $|\cdot|$ is a C*-norm on $\mathcal{A} \times_c \mathcal{I}$ iff $||\cdot||$ is a C*-norm on \mathcal{A} .

Corollary 2.6. Let \mathcal{I} be a closed ideal in a Banach algebra \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ is a uniform algebra iff \mathcal{A} is a uniform algebra.

Proof. Let \mathcal{I} be a closed ideal in a Banach algebra \mathcal{A} . Since $\mathcal{A} \cong \mathcal{A} \times \{0\}$ is a closed subalgebra of $\mathcal{A} \times_c \mathcal{I}$, \mathcal{A} is a uniform algebra whenever $\mathcal{A} \times_c \mathcal{I}$ is a uniform algebra. Conversely, let $\|\cdot\|$ be the complete uniform norm on \mathcal{A} . Then, by Lemma 2.5(2), $|\cdot|$ is a uniform norm on $\mathcal{A} \times_c \mathcal{I}$. Next, let $((a_n, x_n))$ be a Cauchy sequence in $(\mathcal{A} \times_c \mathcal{I}, |\cdot|)$. Then, for each $n \in \mathbb{N}$,

$$||a_n|| \le \frac{1}{2} \{ ||a_n + x_n|| + ||a_n - x_n|| \} \le \max \{ ||a_n + x_n||, ||a_n - x_n|| \} = |(a_n, x_n)|$$

This implies that (a_n) is a Cauchy sequence in $(\mathcal{A}, \|\cdot\|)$. Since $\|\cdot\|$ is a complete norm on \mathcal{A} , the sequence (a_n) converges to some $a \in \mathcal{A}$. By the similar argument, it follows that the sequence (x_n) converges to some $x \in \mathcal{I}$. Hence the sequence $((a_n, x_n))$ converges to $(a, x) \in \mathcal{A} \times_c \mathcal{I}$. Thus $|\cdot|$ is a complete uniform norm on $\mathcal{A} \times_c \mathcal{I}$.

3. Gel'fand Space and Shilov Boundary

Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A} . In this section, we calculate the Gel'fand space $\Delta(\mathcal{A} \times_c \mathcal{I})$. Note that the Gel'fand space of $\mathcal{A} \times_c \mathcal{I}$ is very much different from the Gel'fand space of $\mathcal{A} \times \mathcal{B}$ (see [4]).

Notations 3.1. Let $\varphi \in \Delta(\mathcal{I})$ and $u \in \mathcal{I}$ such that $\varphi(u) = 1$. Define $\varphi^+, \varphi^- : \mathcal{A} \times_c \mathcal{I} \longrightarrow \mathbb{C}$ as $\varphi^+((a, x)) := \varphi(au) + \varphi(x)$ and $\varphi^-((a, x)) := \varphi(au) - \varphi(x)$ $((a, x) \in \mathcal{A} \times_c \mathcal{I})$. We note that φ^+, φ^- are independent of u. Let $F \subset \Delta(\mathcal{A})$. Define $F^+ := \{\varphi^+ : \varphi \in F\}$ and $F^- := \{\varphi^- : \varphi \in F\}$.

Lemma 3.2. Let $F \subset \Delta(\mathcal{A})$ and $G \subset \Delta(\mathcal{I})$. Then

- (1). $F^+, F^- \subset \Delta(\mathcal{A} \times_c \mathcal{I});$
- (2). $G^+, G^- \subset \Delta(\mathcal{A} \times_c \mathcal{I});$
- (3). $G^+ \cap G^- = F^+ \cap G^- = F^- \cap G^+ = \emptyset$.

Proof. (1) Let $\varphi \in F$. Choose $u \in \mathcal{A}$ such that $\varphi(u) = 1$. Then $\varphi^+((u,0)) = 1 \neq 0$. It is clear that φ^+ is linear. We show that φ^+ is multiplicative. Also, $\varphi(au) = \varphi(a)$. So we have $\varphi^+((a,x)) = \varphi(a) + \varphi(x)$. Let $(a,x), (b,y) \in \mathcal{A} \times_c \mathcal{I}$. Then

$$\varphi^{+}((a,x)(b,y)) = \varphi^{+}(ab + xy, ay + xb) = \varphi(ab + xy) + \varphi(ay + xb)$$
$$= \varphi(a)\varphi(b) + \varphi(x)\varphi(y) + \varphi(a)\varphi(y) + \varphi(x)\varphi(b)$$
$$= (\varphi(a) + \varphi(x))(\varphi(b) + \varphi(y)) = \varphi^{+}((a,x))\varphi^{+}((b,y)).$$

Thus $\varphi^+ \in \Delta(\mathcal{A} \times_c \mathcal{I})$. Hence, $F^+ \subset \Delta(\mathcal{A} \times_c \mathcal{I})$. By similar arguments, it follows that $F^- \subset \Delta(\mathcal{A} \times_c \mathcal{I})$. (2) Let $\varphi \in G$. Let $u \in \mathcal{I}$ be such that $\varphi(u) = 1$. Then it is clear that φ^- is a nonzero linear function on $\mathcal{A} \times_c \mathcal{I}$. To show that φ^- is multiplicative, let $(a, x), (b, y) \in \mathcal{A} \times_c \mathcal{I}$. Then

$$\varphi^{-}((a,x)(b,y)) = \varphi^{-}((ab+xy,ay+xb)) = \varphi((ab+xy)u) - \varphi(ay+xb)$$
$$= \varphi(au)\varphi(bu) + \varphi(x)\varphi(y) - \varphi(au)\varphi(y) - \varphi(x)\varphi(bu)$$
$$= (\varphi(au) - \varphi(x))(\varphi(bu) - \varphi(y)) = \varphi^{-}((a,x))\varphi^{-}((b,y)).$$

Thus $\varphi^- \in \Delta(\mathcal{A} \times_c \mathcal{I})$. Hence, $G^- \subset \Delta(\mathcal{A} \times_c \mathcal{I})$. By similar arguments, it follows that $G^+ \subset \Delta(\mathcal{A} \times_c \mathcal{I})$. (3) Suppose that $\tilde{\eta} \in F^+ \cap G^-$. Then there exist $\varphi \in F, \psi \in G$ such that $\varphi^+ = \tilde{\eta} = \psi^-$ on $\mathcal{A} \times_c \mathcal{I}$. Then, $2\varphi(x) = \varphi^+((x,x)) = \psi^-((x,x)) = 0$ $(x \in \mathcal{I})$. Thus $\varphi \equiv 0$ on \mathcal{I} . Therefore, $\psi(x) = \psi^-((x,0)) = \varphi^+((x,0)) = \varphi(x) = 0$ $(x \in \mathcal{I})$. Thus $\psi \equiv 0$ on \mathcal{I} , a contradiction. Hence $F^+ \cap G^- = \emptyset$. By similar arguments, it follows that $G^+ \cap G^- = F^- \cap G^+ = \emptyset$.

Theorem 3.3. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal of \mathcal{A} . Then $\Delta(\mathcal{A} \times_c \mathcal{I}) \cong \Delta^+(\mathcal{A}) \biguplus \Delta^-(\mathcal{I})$.

Proof. It follows from Lemma 3.2 that $\Delta^+(\mathcal{A}) \biguplus \Delta^-(\mathcal{I}) \subset \Delta(\mathcal{A} \times_c \mathcal{I}).$

For the reverse inclusion, let $\tilde{\eta} \in \Delta(\mathcal{A} \times_c \mathcal{I})$. Define $\varphi(a) = \tilde{\eta}((a,0))$ on \mathcal{A} and $\psi(x) = \tilde{\eta}((0,x))$ on \mathcal{I} . Then $\tilde{\eta}((a,x)) = \varphi(a) + \psi(x) \ ((a,x) \in \mathcal{A} \times_c \mathcal{I})$. Also, if $\varphi \equiv 0$ on \mathcal{A} , then $\psi(x)^2 = \tilde{\eta}((0,x))^2 = \tilde{\eta}((x,0))^2 = \varphi(x)^2 = 0 \ (x \in \mathcal{I})$.

Hence $\tilde{\eta} \equiv 0$ on $\mathcal{A} \times_c \mathcal{I}$. This is not possible. Therefore, there exists $a \in \mathcal{A}$ such that $\varphi(a) \neq 0$. Also, $\varphi(ab) = \tilde{\eta}((ab, 0)) = \tilde{\eta}((ab, 0)) = \tilde{\eta}((ab, 0)) = \varphi(a)\varphi(b)$ $(a, b \in \mathcal{A})$. Hence $\varphi \in \Delta(\mathcal{A})$. Now, there are two cases. **Case -(i):** $\tilde{\eta} = 0$ on $\{0\} \times \mathcal{I}$. So that $\psi = 0$ on \mathcal{I} . Therefore, for every $x \in \mathcal{I}$,

$$\varphi(x)^{2} = \tilde{\eta}((x,0))^{2} = \tilde{\eta}((x,0)^{2}) = \tilde{\eta}((0,x)^{2}) = \tilde{\eta}((0,x))^{2} = 0.$$

So $\varphi(x) = 0$ $(x \in \mathcal{I})$. Hence, $\varphi = \psi$ on \mathcal{I} . Also, for $(a, x) \in \mathcal{A} \times_c \mathcal{I}$,

$$\widetilde{\eta}((a,x)) = \widetilde{\eta}((a,0)) + \widetilde{\eta}((0,x)) = \varphi(a) + \psi(x) = \varphi(a) + \varphi(x) = \varphi^+((a,x)).$$

Thus we get $\tilde{\eta} = \varphi^+ \in \Delta^+(\mathcal{A}).$

Case-(ii): $\tilde{\eta} \neq 0$ on $\{0\} \times \mathcal{I}$. So that $\psi \neq 0$ on \mathcal{I} . Since ψ is linear, there exists $y \in \mathcal{I}$ such that $\psi(y) = 1$. Then, for each $x \in \mathcal{I}$,

$$\varphi(x) = \varphi(x)\psi(y) = \tilde{\eta}((x,0))\tilde{\eta}((0,y)) = \tilde{\eta}((x,0)(0,y))$$
$$= \tilde{\eta}((0,xy)) = \tilde{\eta}((y,0)(0,x)) = \varphi(y)\psi(x)$$
(1)

Now, $\varphi(y)^2 = \tilde{\eta}((y,0))^2 = \tilde{\eta}((y,0)^2) = \tilde{\eta}((0,y)^2) = \psi(y)^2 = 1$ implies that $\varphi(y) = \pm 1$. If $\varphi(y) = 1$, then from equation (1), $\varphi(x) = \psi(x)(x \in \mathcal{I})$. So that

$$\widetilde{\eta}((a,x)) = \varphi(a) + \psi(x) = \varphi(a)\varphi(y) + \varphi(x)$$
$$= \varphi(ay) + \varphi(x) = \varphi^+((a,x)) \quad ((a,x) \in \mathcal{A} \times_c \mathcal{I}).$$

Thus $\tilde{\eta} = \varphi^+ \in \Delta^+(\mathcal{A})$. If $\varphi(y) = -1$, then from equation (1), we get $\varphi(x) = -\psi(x)$ $(x \in \mathcal{I})$ and $\varphi(u) = 1$, where u = -y. So that

$$\widetilde{\eta}((a,x)) = \varphi(a) + \psi(x) = \varphi(a)\varphi(u) - \varphi(x)$$
$$= \varphi(au) - \varphi(x) = \varphi^{-}((a,x)) \quad ((a,x) \in \mathcal{A} \times_{c} \mathcal{I}).$$

Thus, $\tilde{\eta} = \varphi^- \in \Delta^-(\mathcal{I})$. Hence $\Delta(\mathcal{A} \times_c \mathcal{I}) \subset \Delta^+(\mathcal{A}) \biguplus \Delta^-(\mathcal{I})$. Thus $\Delta(\mathcal{A} \times_c \mathcal{I})$ and $\Delta^+(\mathcal{A}) \biguplus \Delta^-(\mathcal{I})$ are set theoretically same. By arguments as in [4, Theorem 2.2], we can show that they are homeomorphic.

Theorem 3.4 ([6, Corollary 3.3.4]). Let X be a locally compact Hausdorff space, and let \mathcal{A} be a subalgebra of $C_0(X)$ which strongly separates the points of X. Then a point $x \in X$ belongs to the Shilov boundary of \mathcal{A} if and only if given any open neighbourhood U of x, there exist $f \in \mathcal{A}$ such that $||f|_{X \setminus U}||_{\infty} < ||f|_U||_{\infty}$.

Theorem 3.5. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal of \mathcal{A} . Then $\partial(\mathcal{A} \times_c \mathcal{I}) = \partial^+(\mathcal{A}) \biguplus \partial^-(\mathcal{I})$.

Proof. Let $\varphi_0 \in \partial \mathcal{A}$. Let \widetilde{U} be a neighborhood of φ_0^+ . Set $U = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{U}\} \cup \{\psi \in \Delta(\mathcal{I}) : \psi^- \in \widetilde{U}\}$. Then U is a neighborhood of φ_0 . Therefore, by Theorem 3.4, there exists $a \in \mathcal{A}$ such that $\|\widehat{a}\|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} < \|\widehat{a}\|_U\|_{\infty}$. If $\psi^- \in \Delta(\mathcal{A} \times_c \mathcal{I})\setminus \widetilde{U}$, then $\psi \in \Delta(\mathcal{A}) \setminus U$. If $\varphi^+ \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{U}$, then $\varphi \in \Delta(\mathcal{A}) \setminus U$. This gives $\|(a, 0)^{\wedge}\|_{\Delta(\mathcal{A} \times_c \mathcal{I})\setminus \widetilde{U}}\|_{\infty} = \|\widehat{a}\|_{\Delta(\mathcal{A})\setminus U}\|_{\infty}$. Also $(a, 0)^{\wedge}(\varphi^+) = \widehat{a}(\varphi)$ for every $\varphi^+ \in \widetilde{U}$. Hence

$$\|(a,0)^{\wedge}|_{\Delta(\mathcal{A}\times_{c}\mathcal{I})\setminus\widetilde{U}}\|_{\infty} = \|\widehat{a}|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} < \|\widehat{a}|_{U}\|_{\infty} = \|(a,0)^{\wedge}|_{\widetilde{U}}\|_{\infty}.$$

Therefore, by Theorem 3.4, $\varphi_0^+ \in \partial(\mathcal{A} \times_c \mathcal{I})$. Thus $\partial^+(\mathcal{A}) \subset \partial(\mathcal{A} \times_c \mathcal{I})$. Let $\psi_0 \in \partial \mathcal{I}$. Let \tilde{V} be a neighborhood of ψ_0^- . Set $V = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \tilde{V}\} \cup \{\psi \in \Delta(\mathcal{I}) : \psi^- \in \tilde{V}\}$. Then V is a neighborhood of ψ_0 . Therefore, by Theorem 3.4, there exists $x \in \mathcal{I}$ such that $\|\hat{x}|_{\Delta(\mathcal{I})\setminus V}\|_{\infty} < \|\hat{x}|_V\|_{\infty}$. If $\psi^- \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \tilde{V}$, then $(x, -x)^{\wedge}(\psi^-) = 2\hat{x}(\psi)$. If $\varphi^+ \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \tilde{V}$, then $(x, -x)^{\wedge}(\varphi^+) = 0$. This gives $\|(x, -x)^{\wedge}|_{\Delta(\mathcal{A} \times_c \mathcal{I})\setminus \tilde{V}}\|_{\infty} = 2\|\hat{x}|_{\Delta(\mathcal{I})\setminus V}\|_{\infty}$. Hence

$$\|(x,-x)^{\wedge}|_{\Delta(\mathcal{A}\times_{\mathcal{C}}\mathcal{I})\setminus\widetilde{V}}\|_{\infty} = 2\|\widehat{x}|_{\Delta(\mathcal{I})\setminus V}\|_{\infty} < 2\|\widehat{x}|_{V}\|_{\infty} = \|(x,-x)^{\wedge}|_{\widetilde{V}}\|_{\infty}.$$

Therefore, by Theorem 3.4, $\psi_0^- \in \partial(\mathcal{A} \times_c \mathcal{I})$. Thus $\partial^-(\mathcal{I}) \subset \partial(\mathcal{A} \times_c \mathcal{I})$.

For the reverse inclusion, let $\varphi_0^+ \in \partial(\mathcal{A} \times_c \mathcal{I})$. Let U be a neighborhood of $\varphi_0 \in \Delta(\mathcal{A})$. Then $\widetilde{U} = U^+$ is a neighborhood of φ_0^+ in $\Delta(\mathcal{A} \times_c \mathcal{I})$. Since $\varphi_0^+ \in \partial(\mathcal{A} \times_c \mathcal{I})$, by Theorem 3.4, there exists $(a, x) \in \mathcal{A} \times_c \mathcal{I}$ such that $||(a, x)^{\wedge}|_{\Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{U}}||_{\infty} < ||(a, x)^{\wedge}|_{\widetilde{U}}||_{\infty}$. This gives $||(a + x)^{\wedge}|_{\Delta(\mathcal{A}) \setminus U}||_{\infty} < ||(a + x)^{\wedge}|_{U}||_{\infty}$. Therefore $\varphi_0 \in \partial \mathcal{A}$.

Let $\psi_0^- \in \partial(\mathcal{A} \times_c \mathcal{I})$. Let V be a neighborhood of $\psi_0 \in \Delta(\mathcal{I})$. Then V^- is a neighborhood of ψ_0^- in $\Delta(\mathcal{A} \times_c \mathcal{I})$. Since $\psi_0^- \in \partial(\mathcal{A} \times_c \mathcal{I})$, by Theorem 3.4, there exists $(a, x) \in \mathcal{A} \times_c \mathcal{I}$ such that $\|(a, x)^{\wedge}|_{\Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{V}}\|_{\infty} < \|(a, x)^{\wedge}|_{\widetilde{V}}\|_{\infty}$. Hence $\|(a - x)^{\wedge}|_{\Delta(\mathcal{I}) \setminus V}\|_{\infty} \leq \|(a - x)^{\wedge}|_{V}\|_{\infty}$. Therefore, by Theorem 3.4, $\psi_0 \in \partial \mathcal{I}$. Hence $\partial(\mathcal{A} \times_c \mathcal{I}) \subset \partial^+(\mathcal{A}) \biguplus \partial^-(\mathcal{I})$.

Remark 3.6. Let $\varphi \in \Delta(\mathcal{I})$. Then there exists $u \in \mathcal{I}$ such that $\varphi(u) = 1$. Define Opt. Lett. $\varphi(a) := \varphi(au)$. Then Opt. Lett. $\varphi \in \Delta(\mathcal{A})$. Thus every $\varphi \in \Delta(\mathcal{I})$ can be extended to $\Delta(\mathcal{A})$. Therefore, $\Delta(\mathcal{I}) \subset \Delta(\mathcal{A})$. Also, it is clear that $\Delta(\mathcal{A}) = \Delta(\mathcal{I}) \cup \{\varphi \in \Delta(\mathcal{A}) : \mathcal{I} \subset \ker \varphi\}$. Hence $\Delta^+(\mathcal{A}) \cup \Delta^-(\mathcal{I}) = \Delta^+(\mathcal{A}) \cup \Delta^-(\mathcal{A})$ as sets.

Theorem 3.7. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be closed ideal in \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ is semisimple if and only if \mathcal{A} is semisimple.

Proof. Suppose that $\mathcal{A} \times_c \mathcal{I}$ is semisimple. Let $a \in \mathcal{A}$ such that $\varphi(a) = 0$ ($\varphi \in \Delta(\mathcal{A})$). Let $\psi \in \Delta(\mathcal{A})$ and $u \in \mathcal{A}$ such that $\psi(u) = 1$. Then $\psi^+((a,0)) = \psi(au) + \psi(0) = \psi(a)\psi(u) + 0 = 0$. Now let $\psi \in \Delta(\mathcal{I})$. Then, by Remark 3.6, Opt. Lett. $\psi \in \Delta(\mathcal{A})$. So, by the assumption, $\psi(av) = Opt$. Lett. $\psi(a) = 0$. Hence $\psi^-((a,0)) = \psi(av) = 0$. Thus $\tilde{\eta}((a,0)) = 0$ for all $\tilde{\eta} \in \Delta^+(\mathcal{A}) \uplus \Delta^-(\mathcal{I})$. Since $\mathcal{A} \times_c \mathcal{I}$ is semisimple, (a,0) = (0,0) gives a = 0. Thus \mathcal{A} is semisimple.

Conversely, suppose that \mathcal{A} is semisimple. Let $(a, x) \in \mathcal{A} \times_c \mathcal{I}$ be such that $\tilde{\eta}((a, x)) = 0$ ($\tilde{\eta} \in \Delta(\mathcal{A} \times_c \mathcal{I})$). Let $\varphi \in \Delta(\mathcal{A})$. Then $\varphi^+, \varphi^- \in \Delta(\mathcal{A} \times_c \mathcal{I})$. So that $\varphi^+((a, x)) = \varphi^-((a, x)) = 0$. Then $\varphi(a) + \varphi(x) = \varphi(a) - \varphi(x) = 0$. Hence $\varphi(a) = \varphi(x) = 0$. Since $\varphi \in \Delta(\mathcal{A})$ is arbitrary and \mathcal{A} is semisimple, we get a = x = 0. Hence $\mathcal{A} \times_c \mathcal{I}$ is semisimple.

4. Uniqueness and Separation Properties

We start with the following lemma which will be used in the proofs of main results.

Lemma 4.1. Let \mathcal{A} be a semisimple, commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A} . Let $\widetilde{F} \subset \Delta(\mathcal{A} \times_c \mathcal{I})$. Define $F_{\mathcal{A}} = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{F} \text{ or } \varphi^- \in \widetilde{F}\}$. Then

- (1). $F^+_{\mathcal{A}} \cup F^-_{\mathcal{A}} = \widetilde{F};$
- (2). If \widetilde{F} is closed, then $F_{\mathcal{A}}$ is closed in $\Delta(\mathcal{A})$;
- (3). If \widetilde{F} is a set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$, then so is $F_{\mathcal{A}}$ for \mathcal{A} .

Proof. (1) This is trivial.

(2) Suppose that $\widetilde{F} \subset \Delta(\mathcal{A} \times_c \mathcal{I})$ is closed. Let $\varphi \in Opt$. Lett. $F_{\mathcal{A}}$. Then there exists a net (φ_{α}) in $F_{\mathcal{A}}$ such that $\varphi_{\alpha} \longrightarrow \varphi$. Then we get a subnet (φ_{α_i}) of (φ_{α}) such that either $\{\varphi_{\alpha_i}^+\} \subset \widetilde{F}$ or $\{\varphi_{\alpha_i}^-\} \subset \widetilde{F}$. Also, $\varphi_{\alpha_i}^+ \longrightarrow \varphi^+$ and $\varphi_{\alpha_i}^- \longrightarrow \varphi^-$. Since \widetilde{F} is closed, either $\varphi^+ \in \widetilde{F}$ or $\varphi^- \in \widetilde{F}$. So that $\varphi \in F_{\mathcal{A}}$. Thus $F_{\mathcal{A}}$ is closed in $\Delta(\mathcal{A})$.

(3) Suppose that \widetilde{F} is a set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$. Let $a \in \mathcal{A}$ such that $\widehat{a}|_{F_{\mathcal{A}}} = 0$. Then $(a, 0)^{\wedge}(\varphi^+) = \varphi(a) = \widehat{a}(\varphi) = 0 = (a, 0)^{\wedge}(\varphi^-)$ ($\varphi \in F_{\mathcal{A}}$). Thus $(a, 0)^{\wedge} = 0$ on \widetilde{F} . This implies that (a, 0) = (0, 0) as \widetilde{F} is a set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$. Thus a = 0. Hence $F_{\mathcal{A}}$ is a set of uniqueness for \mathcal{A} .

Definition 4.2 ([1, 3]). An algebra \mathcal{A} has unique uniform norm property (UUNP) if \mathcal{A} has exactly one uniform norm.

Theorem 4.3. Let \mathcal{A} be a semisimple, commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ has UUNP if and only if \mathcal{A} has UUNP.

Proof. Let $\mathcal{A} \times_c \mathcal{I}$ have UUNP. Let $F \subset \Delta(\mathcal{A})$ be a closed set of uniqueness for \mathcal{A} . Then $F^+ \uplus F^-$ is a closed subset of $\Delta(\mathcal{A} \times_c \mathcal{I})$. Moreover, it is also a set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$. Since $\mathcal{A} \times_c \mathcal{I}$ has UUNP, by [3, Theorem 2.3], $\partial^+(\mathcal{A}) \uplus \partial^-(\mathcal{I}) \subset F^+ \uplus F^-$. Since $\Delta^+(\mathcal{A})$ and $\Delta^-(\mathcal{I})$ are disjoint, $\partial^+(\mathcal{A}) \subset F^+$. So, $\partial \mathcal{A} \subset F$. Thus $\partial \mathcal{A}$ is the smallest closed set of uniqueness for \mathcal{A} . Hence, by [3, Theorem 2.3], \mathcal{A} has UUNP.

Conversely, suppose that \mathcal{A} has UUNP. Since \mathcal{A} is semisimple, $\mathcal{A} \times_c \mathcal{I}$ is also semisimple by Theorem 3.7. Let $\widetilde{F} \subset \Delta(\mathcal{A} \times_c \mathcal{I})$ be a closed set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a closed set of uniqueness for \mathcal{A} and $F_{\mathcal{A}}^+ \oplus F_{\mathcal{A}}^- = \widetilde{F}$. Since \mathcal{A} has UUNP, by [3, Theorem 2.3], $\partial \mathcal{A} \subset F_{\mathcal{A}}$. Hence $\partial^+(\mathcal{A}) \subset F_{\mathcal{A}}^+$. Also we may assume that \mathcal{A} has identity due to [2, Theorem 3.1]. Then, by [6, Theorem 3.4.13], $\partial I \subset \partial A$. Therefore $\partial I \subset F_{\mathcal{A}}$. Which implies that Hence $\partial^-(I) \subset F_{\mathcal{A}}^-$. Hence

$$\partial(\mathcal{A} \times_c \mathcal{I}) = \partial^+(\mathcal{A}) \uplus \partial^-(\mathcal{I}) \subset F_{\mathcal{A}}^+ \uplus F_{\mathcal{A}}^- = \widetilde{F}.$$

Thus $\partial(\mathcal{A} \times_c \mathcal{I})$ is the smallest closed set of uniqueness for $\mathcal{A} \times_c \mathcal{I}$. Hence, again by [3, Theorem 2.3], $\mathcal{A} \times_c \mathcal{I}$ has UUNP. \Box

Definition 4.4 ([1, 3]). A *-algebra \mathcal{A} has unique C*-norm property (UC*NP) if \mathcal{A} has exactly one C* norm.

Theorem 4.5. Let \mathcal{A} be a *-semisimple, Banach *-algebra and \mathcal{I} be a closed *-ideal of \mathcal{A} . Then

(1). If $\mathcal{A} \times_c \mathcal{I}$ has UC^*NP , then \mathcal{A} has UC^*NP ;

(2). Suppose that \mathcal{A} is commutative. If \mathcal{A} has UC^*NP , then $\mathcal{A} \times_c \mathcal{I}$ has UC^*NP .

Proof. (1) Suppose that $\mathcal{A} \times_c \mathcal{I}$ has UC^*NP . Let $|\cdot|_{\mathcal{A}}$ be the largest C^* -norm on \mathcal{A} . Define $|(a, x)| = \max\{|a + x|_{\mathcal{A}}, |a - x|_{\mathcal{A}}\}$ $((a, x) \in \mathcal{A} \times_c \mathcal{I})$. Then, by Lemma 2.5 (3), $|\cdot|$ is a C^* -norm on $\mathcal{A} \times_c \mathcal{I}$. Now, let $|||\cdot|||_{\mathcal{A}}$ be any C^* -norm on \mathcal{A} . Define $|||(a, x)||| = \max\{|||a + x||_{\mathcal{A}}, |||a - x|||_{\mathcal{A}}\}$ $((a, x) \in \mathcal{A} \times_c \mathcal{I})$. Then, by Lemma 2.5 (3), $||\cdot||$ is also a C^* -norm on $\mathcal{A} \times_c \mathcal{I}$. Hence, by the hypothesis, $|\cdot| = |||\cdot|||$ on $\mathcal{A} \times_c \mathcal{I}$. Now,

$$|||a|||_{\mathcal{A}} = \max\{|||a|||_{\mathcal{A}}, |||a|||_{\mathcal{A}}\} = |||(a,0)||| = |(a,0)| = |a|_{\mathcal{A}} \quad (a \in \mathcal{A}).$$

Thus \mathcal{A} has UC^*NP .

(2) Suppose that \mathcal{A} is commutative and it has UC^*NP . Since \mathcal{I} is a closed *-ideal in \mathcal{A} , by Theorem 2.2 of [1], \mathcal{I} has UC^*NP . Let $\Delta^h(\mathcal{A})$ denote the Hermitian Gel'fand space of \mathcal{A} . Let \widetilde{F} be a proper closed subset of $\Delta^h(\mathcal{A} \times_c \mathcal{I})$. Set $F_{\mathcal{A}} = \{\varphi \in \Delta^h(\mathcal{A}) : \varphi^+ \in \widetilde{F} \text{ or } \varphi^- \in \widetilde{F}\}$. Then $F_{\mathcal{A}}$ is a proper closed subset of $\Delta^h(\mathcal{A})$ such that $F_{\mathcal{A}}^+ \uplus F_{\mathcal{A}}^- = \widetilde{F}$. Since \mathcal{A} has UC^*NP , by [1, Proposition 1.3], there exists a nonzero element $a \in \mathcal{A}$ such that $\widehat{a}|_{F_{\mathcal{A}}} = 0$. Then $(a, 0)^{\wedge}|_{\widetilde{F}} = \widehat{a}|_{F_{\mathcal{A}}} = 0$. Therefore, by [1, Proposition 1.3], $\mathcal{A} \times_c \mathcal{I}$ has UC^*NP .

Definition 4.6. A semisimple, commutative algebra \mathcal{A} is weakly regular if for each proper closed set $F \subset \Delta(\mathcal{A})$, there exists $a \in \mathcal{A}$ such that $\hat{a}|_F = 0$.

Theorem 4.7. $\mathcal{A} \times_c \mathcal{I}$ is weakly regular if and only if \mathcal{A} is weakly regular.

Proof. Let $\mathcal{A} \times_c \mathcal{I}$ be weakly regular. Let F be a proper closed subset of $\Delta(\mathcal{A})$. Then $F^+ \cup F^-$ is a proper closed subset of $\Delta(\mathcal{A} \times_c \mathcal{I})$. Hence, by the hypothesis, there exists a non-zero element $(a, x) \in \mathcal{A} \times_c \mathcal{I}$ such that $(a, x)^{\wedge}|_{F^+ \cup F^-} = 0$. This implies that $(a, x)^{\wedge}|_{F^+} = 0$ and $(a, x)^{\wedge}|_{F^-} = 0$. Then $(a + x)^{\wedge}(\varphi) = (a, x)^{\wedge}(\varphi^+) = 0$ and $(a - x)^{\wedge}(\varphi) = (a, x)^{\wedge}(\varphi^-) = 0$ ($\varphi \in F$). Thus $(a + x)^{\wedge}|_F = (a - x)^{\wedge}|_F = 0$. Also, note that either $a + x \neq 0$ or $a - x \neq 0$ as (a, x) is non-zero. Hence \mathcal{A} is weakly regular.

Conversely, assume that \mathcal{A} is weakly regular. Let \widetilde{F} be a proper closed subset of $\Delta(\mathcal{A} \times_c \mathcal{I})$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a proper closed subset of $\Delta(\mathcal{A})$ such that $F_{\mathcal{A}}^+ \cup F_{\mathcal{A}}^- = \widetilde{F}$. Therefore, by the hypothesis, there exists $a \in \mathcal{A}$ such that $\widehat{a}|_{F_{\mathcal{A}}} = 0$. Now let $\widetilde{\eta} \in \widetilde{F}$. Then either $\widetilde{\eta} = \varphi^+$ or $\widetilde{\eta} = \varphi^-$ for some $\varphi \in F_{\mathcal{A}}$. Suppose that $\widetilde{\eta} = \varphi^+$ for some $\varphi \in F_{\mathcal{A}}$. Then $(a, 0)^{\wedge}(\widetilde{\eta}) = (a, 0)^{\wedge}(\varphi^+) = \varphi(a) = \widehat{a}(\varphi) = 0$. Similarly, if $\widetilde{\eta} = \varphi^-$, then also $(a, 0)^{\wedge}(\widetilde{\eta}) = 0$. Thus, in each case, $(a, 0)^{\wedge}(\widetilde{\eta}) = 0$. Therefore $(a, 0)^{\wedge}|_{\widetilde{F}} = 0$. Hence $\mathcal{A} \times_c \mathcal{I}$ is weakly regular.

Definition 4.8. \mathcal{A} is regular if for every closed set $F \subset \Delta(\mathcal{A})$ and an element $\varphi \in \Delta(\mathcal{A}) \setminus F$, there exists an element $a \in \mathcal{A}$ such that $\hat{a}(\varphi) = 1$ and $\hat{a}|_F = 0$.

Theorem 4.9. $\mathcal{A} \times_c \mathcal{I}$ is regular if and only if \mathcal{A} is regular.

Proof. Let $\mathcal{A} \times_c \mathcal{I}$ be regular. Let F be a closed subset of $\Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{A}) \setminus F$. Then F^+ is a closed subset of $\Delta(\mathcal{A} \times_c \mathcal{I})$ and $\psi^+ \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus (F^+)$. Hence, by the hypothesis, there exists $(a, x) \in \mathcal{A} \times_c \mathcal{I}$ such that $(a, x)^{\wedge}|_{F^+} = 0$ and $(a, x)^{\wedge}(\psi^+) = 1$. This implies that $(a + x)^{\wedge}(\varphi) = \varphi^+((a, x)) = (a, x)^{\wedge}(\varphi^+) = 0$ ($\varphi \in F$) and $(a + x)^{\wedge}(\psi) = (a, x)^{\wedge}(\psi^+) = 1$. Thus \mathcal{A} is regular.

Conversely, assume that \mathcal{A} is regular. Since A is semisimple, $\mathcal{A} \times_c \mathcal{I}$ is also semisimple. Let \widetilde{F} be a closed subsets of $\Delta(\mathcal{A} \times_c \mathcal{I})$ and $\widetilde{\psi} \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{F}$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a proper closed subset of $\Delta(\mathcal{A})$ such that $F_{\mathcal{A}}^+ \cup F_{\mathcal{A}}^- = \widetilde{F}$. Also, either $\widetilde{\psi} = \psi^+$ or $\widetilde{\psi} = \psi^-$ for some $\psi \in \Delta(\mathcal{A}) \setminus F_{\mathcal{A}}$, by Remark 3.6. Therefore, by the hypothesis, there exists $a \in \mathcal{A}$ such that $\widehat{a}|_{F_{\mathcal{A}}} = 0$ and $\widehat{a}(\psi) = 1$. Now let $\widetilde{\eta} \in \widetilde{F}$. Then either $\widetilde{\eta} = \varphi^+$ or $\widetilde{\eta} = \varphi^-$ for some $\varphi \in F_{\mathcal{A}}$. Suppose that $\widetilde{\eta} = \varphi^+$ for some $\varphi \in F_{\mathcal{A}}$. Then $(a, 0)^{\wedge}(\widetilde{\eta}) = (a, 0)^{\wedge}(\varphi^+) = \varphi(a) = \widehat{a}(\varphi) = 0$. Similarly, if $\widetilde{\eta} = \varphi^-$, then also $(a, 0)^{\wedge}(\widetilde{\eta}) = 0$. Thus, in each case, $(a, 0)^{\wedge}(\widetilde{\eta}) = 0$. Therefore $(a, 0)^{\wedge}|_{\widetilde{F}} = 0$. Also, $(a, 0)^{\wedge}(\widetilde{\psi}) = 1$. Hence $\mathcal{A} \times_c \mathcal{I}$ is regular.

References

- B. A. Barnes, The properties of *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. American Math. Soc., 279(2)(1983), 841-859.
- [2] S. J. Bhatt and H. V. Dedania, Uniqueness of uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci.(Math. Sci.), 105(4)(1995), 405-409.
- [3] S. J. Bhatt and H. V. Dedania, Banach algebras with unique uniform norm, Proc. American Math. Soc., 124(2)(1996), 579-584.
- [4] H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of Banach algebras, Annals of Funct. Anal., 5(1)(2014), 51-55.
- [5] H. J. Kanani, Spectral and uniqueness properties in various Banach algebra products, Sardar Patel University, (2016).
- [6] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, New York, (2009).