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Abstract: Let A be an algebra and I be an ideal in A. Then A×I is an algebra with pointwise linear operations and the convolution
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1. Introduction

Consider the group Z2 = {0, 1} with the binary operation addition modulo 2. Then `1(Z2) is a Banach algebra with

convolution product. For f, g ∈ `1(Z2), the convolution product of f and g is defined as

f ∗ g = (f(0)g(0) + f(1)g(1), f(0)g(1) + f(1)g(0)).

This motivates the following product. Let A be an algebra and I be an ideal in A. Then A×c I is an algebra with pointwise

linear operations and the convolution product defined as (a, x)(b, y) = (ab + xy, ay + xb) ((a, x), (b, y) ∈ A ×c I). It is

commutative (resp. unital) iff A is commutative (resp. unital). Further, If A is a normed algebra (resp. Banach algebra),

then A×c I is a normed algebra (resp. Banach algebra) with the norm ‖(a, x)‖1 = ‖a‖+ ‖x‖ ((a, x) ∈ A×c I).

2. Basic Results

Throughout the paper, let A be an algebra and I be an ideal in A. Let A−1 denote the set of all quasi invertible elements

of A. If A is unital, A−1 is the set of all invertible elements of A. Further, σA(a) and rA(a) denote the spectrum and the

spectral radius of a in A. Then we have the following.

Proposition 2.1. Let (a, x) ∈ A×c I. Then
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(1). (a, x) ∈ (A×c I)−1 iff a+ x, a− x ∈ A−1;

(2). (a, x) ∈ (A×c I)−1 iff a+ x, a− x ∈ A−1;

(3). σA×cI((a, x)) = σA(a+ x) ∪ σA(a− x);

(4). rA×cI((a, x)) = max{rA(a+ x), rA(a− x)}.

Proposition 2.2. Let A be a normed algebra and I be closed in A. Then A×c I has a left approximate identity iff A has

a left approximate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let A×c I has a left approximate identity ((eα, xα))α∈Λ and a ∈ A. Then

‖eαa− a‖ ≤ ‖eαa− a‖+ ‖xαa‖ = ‖(eα, xα)(a, 0)− (a, 0)‖1

converges to 0 as α→∞. Thus (eα) is a left approximate identity for A.

Conversely, suppose that A has a left approximate identity (eα). Then,

‖(eα, 0)(a, x)− (a, x)‖1 = ‖(eαa, eαx)− (a, x)‖1 = ‖(eαa− a) + (eαx− x)‖1

converges to 0 as α→∞ for every (a, x) ∈ A×c I. Thus (eα, 0) is a left approximate identity for A×c I. Therefore A×c I

has a left approximate identity. The proof for the bounded approximate identity follows from the fact that a sequence

((eα, xα)) in A ×c I is bounded then the sequence (eα) is bounded in A and if a sequence (eα) is bounded in A, then the

sequence ((eα, 0)) is bounded in A×c I.

Remark 2.3. Let ‖ · ‖ be a norm on an algebra A and I be an ideal of A. Let ‖(a, x)‖∞ = max{‖a‖, ‖x‖} ((a, x) ∈ A×c I).

Then ‖ · ‖∞ is a linear norm but it may not be an algebra norm on A×c I.

Definition 2.4. Let A be an algebra. Then

(1). An algebra norm || · || on A is a uniform norm if ||a2|| = ||a||2 (a ∈ A).

(2). A is a uniform algebra if it admits a complete uniform norm.

(3). An algebra norm || · || on a ∗-algebra A is a C∗-norm if ||a∗a|| = ||a||2(a ∈ A).

Lemma 2.5. Let I be an ideal in a normed algebra (A, ‖ · ‖) and (a, x) ∈ A×c I. Define |(a, x)| := max{‖a+ x‖, ‖a− x‖}.

Then

(1). | · | is an algebra norm on A×c I;

(2). | · | is a uniform norm on A×c I iff ‖ · ‖ is a uniform norm on A;

(3). Let A be a ∗-algebra and I be a ∗-ideal in A. Then | · | is a C∗-norm on A×c I iff ‖ · ‖ is a C∗-norm on A.

Corollary 2.6. Let I be a closed ideal in a Banach algebra A. Then A×c I is a uniform algebra iff A is a uniform algebra.

Proof. Let I be a closed ideal in a Banach algebra A. Since A ∼= A×{0} is a closed subalgebra of A×c I, A is a uniform

algebra whenever A×c I is a uniform algebra. Conversely, let ‖ · ‖ be the complete uniform norm on A. Then, by Lemma

2.5(2), | · | is a uniform norm on A×c I. Next, let ((an, xn)) be a Cauchy sequence in (A×c I, | · |). Then, for each n ∈ N,

‖an‖ ≤
1

2
{‖an + xn‖+ ‖an − xn‖} ≤ max{‖an + xn‖, ‖an − xn‖} = |(an, xn)|.
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This implies that (an) is a Cauchy sequence in (A, ‖ · ‖). Since ‖ · ‖ is a complete norm on A, the sequence (an) converges

to some a ∈ A. By the similar argument, it follows that the sequence (xn) converges to some x ∈ I. Hence the sequence

((an, xn)) converges to (a, x) ∈ A×c I. Thus | · | is a complete uniform norm on A×c I.

3. Gel’fand Space and Shilov Boundary

Let A be a commutative Banach algebra and I be a closed ideal in A. In this section, we calculate the Gel’fand space

∆(A×c I). Note that the Gel’fand space of A×c I is very much different from the Gel’fand space of A× B (see [4]).

Notations 3.1. Let ϕ ∈ ∆(I) and u ∈ I such that ϕ(u) = 1. Define ϕ+, ϕ− : A×c I −→ C as ϕ+((a, x)) := ϕ(au) + ϕ(x)

and ϕ−((a, x)) := ϕ(au) − ϕ(x) ((a, x) ∈ A ×c I).We note that ϕ+, ϕ− are independent of u. Let F ⊂ ∆(A). Define

F+ := {ϕ+ : ϕ ∈ F} and F− := {ϕ− : ϕ ∈ F}.

Lemma 3.2. Let F ⊂ ∆(A) and G ⊂ ∆(I). Then

(1). F+, F− ⊂ ∆(A×c I);

(2). G+, G− ⊂ ∆(A×c I);

(3). G+ ∩G− = F+ ∩G− = F− ∩G+ = ∅.

Proof. (1) Let ϕ ∈ F . Choose u ∈ A such that ϕ(u) = 1. Then ϕ+((u, 0)) = 1 6= 0. It is clear that ϕ+ is linear. We show

that ϕ+ is multiplicative. Also, ϕ(au) = ϕ(a). So we have ϕ+((a, x)) = ϕ(a) + ϕ(x). Let (a, x), (b, y) ∈ A×c I. Then

ϕ+((a, x)(b, y)) = ϕ+(ab+ xy, ay + xb) = ϕ(ab+ xy) + ϕ(ay + xb)

= ϕ(a)ϕ(b) + ϕ(x)ϕ(y) + ϕ(a)ϕ(y) + ϕ(x)ϕ(b)

= (ϕ(a) + ϕ(x))(ϕ(b) + ϕ(y)) = ϕ+((a, x))ϕ+((b, y)).

Thus ϕ+ ∈ ∆(A×c I). Hence, F+ ⊂ ∆(A×c I). By similar arguments, it follows that F− ⊂ ∆(A×c I).

(2) Let ϕ ∈ G. Let u ∈ I be such that ϕ(u) = 1. Then it is clear that ϕ− is a nonzero linear function on A×c I. To show

that ϕ− is multiplicative, let (a, x), (b, y) ∈ A×c I. Then

ϕ−((a, x)(b, y)) = ϕ−((ab+ xy, ay + xb)) = ϕ((ab+ xy)u)− ϕ(ay + xb)

= ϕ(au)ϕ(bu) + ϕ(x)ϕ(y)− ϕ(au)ϕ(y)− ϕ(x)ϕ(bu)

= (ϕ(au)− ϕ(x))(ϕ(bu)− ϕ(y)) = ϕ−((a, x))ϕ−((b, y)).

Thus ϕ− ∈ ∆(A×c I). Hence, G− ⊂ ∆(A×c I). By similar arguments, it follows that G+ ⊂ ∆(A×c I).

(3) Suppose that η̃ ∈ F+ ∩ G−. Then there exist ϕ ∈ F,ψ ∈ G such that ϕ+ = η̃ = ψ− on A ×c I. Then, 2ϕ(x) =

ϕ+((x, x)) = ψ−((x, x)) = 0 (x ∈ I). Thus ϕ ≡ 0 on I. Therefore, ψ(x) = ψ−((x, 0)) = ϕ+((x, 0)) = ϕ(x) = 0 (x ∈ I).

Thus ψ ≡ 0 on I, a contradiction. Hence F+ ∩G− = ∅. By similar arguments, it follows that G+ ∩G− = F− ∩G+ = ∅.

Theorem 3.3. Let A be a commutative Banach algebra and I be a closed ideal of A. Then ∆(A×c I) ∼= ∆+(A)
⊎

∆−(I).

Proof. It follows from Lemma 3.2 that ∆+(A)
⊎

∆−(I) ⊂ ∆(A×c I).

For the reverse inclusion, let η̃ ∈ ∆(A ×c I). Define ϕ(a) = η̃((a, 0)) on A and ψ(x) = η̃((0, x)) on I. Then η̃((a, x)) =

ϕ(a) + ψ(x) ((a, x) ∈ A ×c I). Also, if ϕ ≡ 0 on A, then ψ(x)2 = η̃((0, x))2 = η̃((0, x)2) = η̃((x, 0))2 = ϕ(x)2 = 0 (x ∈ I).
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Hence η̃ ≡ 0 on A×c I. This is not possible. Therefore, there exists a ∈ A such that ϕ(a) 6= 0. Also, ϕ(ab) = η̃((ab, 0)) =

η̃((a, 0))η̃((b, 0)) = ϕ(a)ϕ(b) (a, b ∈ A). Hence ϕ ∈ ∆(A). Now, there are two cases.

Case -(i): η̃ = 0 on {0} × I. So that ψ = 0 on I. Therefore, for every x ∈ I,

ϕ(x)2 = η̃((x, 0))2 = η̃((x, 0)2) = η̃((0, x)2) = η̃((0, x))2 = 0.

So ϕ(x) = 0 (x ∈ I). Hence, ϕ = ψ on I. Also, for (a, x) ∈ A×c I,

η̃((a, x)) = η̃((a, 0)) + η̃((0, x)) = ϕ(a) + ψ(x) = ϕ(a) + ϕ(x) = ϕ+((a, x)).

Thus we get η̃ = ϕ+ ∈ ∆+(A).

Case-(ii): η̃ 6= 0 on {0} × I. So that ψ 6= 0 on I. Since ψ is linear, there exists y ∈ I such that ψ(y) = 1. Then, for each

x ∈ I,

ϕ(x) = ϕ(x)ψ(y) = η̃((x, 0))η̃((0, y)) = η̃((x, 0)(0, y))

= η̃((0, xy)) = η̃((y, 0)(0, x)) = ϕ(y)ψ(x) (1)

Now, ϕ(y)2 = η̃((y, 0))2 = η̃((y, 0)2) = η̃((0, y)2) = ψ(y)2 = 1 implies that ϕ(y) = ±1. If ϕ(y) = 1, then from equation (1),

ϕ(x) = ψ(x)(x ∈ I). So that

η̃((a, x)) = ϕ(a) + ψ(x) = ϕ(a)ϕ(y) + ϕ(x)

= ϕ(ay) + ϕ(x) = ϕ+((a, x)) ((a, x) ∈ A×c I).

Thus η̃ = ϕ+ ∈ ∆+(A). If ϕ(y) = −1, then from equation (1), we get ϕ(x) = −ψ(x) (x ∈ I) and ϕ(u) = 1, where u = −y.

So that

η̃((a, x)) = ϕ(a) + ψ(x) = ϕ(a)ϕ(u)− ϕ(x)

= ϕ(au)− ϕ(x) = ϕ−((a, x)) ((a, x) ∈ A×c I).

Thus, η̃ = ϕ− ∈ ∆−(I). Hence ∆(A×c I) ⊂ ∆+(A)
⊎

∆−(I). Thus ∆(A×c I) and ∆+(A)
⊎

∆−(I) are set theoretically

same. By arguments as in [4, Theorem 2.2], we can show that they are homeomorphic.

Theorem 3.4 ([6, Corollary 3.3.4]). Let X be a locally compact Hausdorff space, and let A be a subalgebra of C0(X) which

strongly separates the points of X. Then a point x ∈ X belongs to the Shilov boundary of A if and only if given any open

neighbourhood U of x, there exist f ∈ A such that ‖f |X\U‖∞ < ‖f |U‖∞.

Theorem 3.5. Let A be a commutative Banach algebra and I be a closed ideal of A. Then ∂(A×c I) = ∂+(A)
⊎
∂−(I).

Proof. Let ϕ0 ∈ ∂A. Let Ũ be a neighborhood of ϕ+
0 . Set U = {ϕ ∈ ∆(A) : ϕ+ ∈ Ũ}∪{ψ ∈ ∆(I) : ψ− ∈ Ũ}. Then U is a

neighborhood of ϕ0. Therefore, by Theorem 3.4, there exists a ∈ A such that ‖â|∆(A)\U‖∞ < ‖â|U‖∞. If ψ− ∈ ∆(A×cI)\Ũ ,

then ψ ∈ ∆(A) \ U . If ϕ+ ∈ ∆(A ×c I) \ Ũ , then ϕ ∈ ∆(A) \ U . This gives ‖(a, 0)∧|∆(A×cI)\Ũ‖∞ = ‖â|∆(A)\U‖∞. Also

(a, 0)∧(ϕ+) = â(ϕ) for every ϕ+ ∈ Ũ . Hence

‖(a, 0)∧|∆(A×cI)\Ũ‖∞ = ‖â|∆(A)\U‖∞ < ‖â|U‖∞ = ‖(a, 0)∧|Ũ‖∞.
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Therefore, by Theorem 3.4, ϕ+
0 ∈ ∂(A×c I). Thus ∂+(A) ⊂ ∂(A×c I). Let ψ0 ∈ ∂I. Let Ṽ be a neighborhood of ψ−0 . Set

V = {ϕ ∈ ∆(A) : ϕ+ ∈ Ṽ } ∪ {ψ ∈ ∆(I) : ψ− ∈ Ṽ }. Then V is a neighborhood of ψ0. Therefore, by Theorem 3.4, there

exists x ∈ I such that ‖x̂|∆(I)\V ‖∞ < ‖x̂|V ‖∞. If ψ− ∈ ∆(A×c I) \ Ṽ , then (x,−x)∧(ψ−) = 2x̂(ψ). If ϕ+ ∈ ∆(A×c I) \ Ṽ ,

then (x,−x)∧(ϕ+) = 0. This gives ‖(x,−x)∧|∆(A×cI)\Ṽ ‖∞ = 2‖x̂|∆(I)\V ‖∞. Hence

‖(x,−x)∧|∆(A×cI)\Ṽ ‖∞ = 2‖x̂|∆(I)\V ‖∞ < 2‖x̂|V ‖∞ = ‖(x,−x)∧|Ṽ ‖∞.

Therefore, by Theorem 3.4, ψ−0 ∈ ∂(A×c I). Thus ∂−(I) ⊂ ∂(A×c I).

For the reverse inclusion, let ϕ+
0 ∈ ∂(A×c I). Let U be a neighborhood of ϕ0 ∈ ∆(A). Then Ũ = U+ is a neighborhood of

ϕ+
0 in ∆(A ×c I). Since ϕ+

0 ∈ ∂(A ×c I),by Theorem 3.4, there exists (a, x) ∈ A ×c I such that ‖(a, x)∧|∆(A×cI)\Ũ‖∞ <

‖(a, x)∧|Ũ‖∞. This gives ‖(a+ x)∧|∆(A)\U‖∞ < ‖(a+ x)∧|U‖∞. Therefore ϕ0 ∈ ∂A.

Let ψ−0 ∈ ∂(A ×c I). Let V be a neighborhood of ψ0 ∈ ∆(I). Then V − is a neighborhood of ψ−0 in ∆(A ×c I). Since

ψ−0 ∈ ∂(A ×c I),by Theorem 3.4, there exists (a, x) ∈ A ×c I such that ‖(a, x)∧|∆(A×cI)\Ṽ ‖∞ < ‖(a, x)∧|Ṽ ‖∞. Hence

‖(a− x)∧|∆(I)\V ‖∞ ≤ ‖(a− x)∧|V ‖∞. Therefore, by Theorem 3.4, ψ0 ∈ ∂I. Hence ∂(A×c I) ⊂ ∂+(A)
⊎
∂−(I).

Remark 3.6. Let ϕ ∈ ∆(I). Then there exists u ∈ I such that ϕ(u) = 1. Define Opt. Lett. ϕ(a) := ϕ(au). Then

Opt. Lett. ϕ ∈ ∆(A). Thus every ϕ ∈ ∆(I) can be extended to ∆(A). Therefore, ∆(I) ⊂ ∆(A). Also, it is clear that

∆(A) = ∆(I) ∪ {ϕ ∈ ∆(A) : I ⊂ kerϕ}. Hence ∆+(A) ∪∆−(I) = ∆+(A) ∪∆−(A) as sets.

Theorem 3.7. Let A be a commutative Banach algebra and I be closed ideal in A. Then A×c I is semisimple if and only

if A is semisimple.

Proof. Suppose that A ×c I is semisimple. Let a ∈ A such that ϕ(a) = 0 (ϕ ∈ ∆(A)). Let ψ ∈ ∆(A) and u ∈ A

such that ψ(u) = 1. Then ψ+((a, 0)) = ψ(au) + ψ(0) = ψ(a)ψ(u) + 0 = 0. Now let ψ ∈ ∆(I). Then, by Remark 3.6,

Opt. Lett. ψ ∈ ∆(A). So, by the assumption, ψ(av) = Opt. Lett. ψ(a) = 0. Hence ψ−((a, 0)) = ψ(av) = 0. Thus

η̃((a, 0)) = 0 for all η̃ ∈ ∆+(A) ]∆−(I). Since A×c I is semisimple, (a, 0) = (0, 0) gives a = 0. Thus A is semisimple.

Conversely, suppose that A is semisimple. Let (a, x) ∈ A×cI be such that η̃((a, x)) = 0 (η̃ ∈ ∆(A×cI). Let ϕ ∈ ∆(A). Then

ϕ+, ϕ− ∈ ∆(A×c I). So that ϕ+((a, x)) = ϕ−((a, x)) = 0. Then ϕ(a) + ϕ(x) = ϕ(a)− ϕ(x) = 0. Hence ϕ(a) = ϕ(x) = 0.

Since ϕ ∈ ∆(A) is arbitrary and A is semisimple, we get a = x = 0. Hence A×c I is semisimple.

4. Uniqueness and Separation Properties

We start with the following lemma which will be used in the proofs of main results.

Lemma 4.1. Let A be a semisimple, commutative Banach algebra and I be a closed ideal in A. Let F̃ ⊂ ∆(A×c I). Define

FA = {ϕ ∈ ∆(A) : ϕ+ ∈ F̃ or ϕ− ∈ F̃}. Then

(1). F+
A ∪ F

−
A = F̃ ;

(2). If F̃ is closed, then FA is closed in ∆(A);

(3). If F̃ is a set of uniqueness for A×c I, then so is FA for A.

Proof. (1) This is trivial.
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(2) Suppose that F̃ ⊂ ∆(A×c I) is closed. Let ϕ ∈ Opt. Lett. FA. Then there exists a net (ϕα) in FA such that ϕα−→ϕ.

Then we get a subnet (ϕαi) of (ϕα) such that either {ϕ+
αi
} ⊂ F̃ or {ϕ−αi

} ⊂ F̃ . Also, ϕ+
αi
−→ϕ+ and ϕ−αi

−→ϕ−. Since F̃ is

closed, either ϕ+ ∈ F̃ or ϕ− ∈ F̃ . So that ϕ ∈ FA. Thus FA is closed in ∆(A).

(3) Suppose that F̃ is a set of uniqueness for A ×c I. Let a ∈ A such that â|FA = 0. Then (a, 0)∧(ϕ+) = ϕ(a) = â(ϕ) =

0 = (a, 0)∧(ϕ−) (ϕ ∈ FA). Thus (a, 0)∧ = 0 on F̃ . This implies that (a, 0) = (0, 0) as F̃ is a set of uniqueness for A ×c I.

Thus a = 0. Hence FA is a set of uniqueness for A.

Definition 4.2 ([1, 3]). An algebra A has unique uniform norm property (UUNP) if A has exactly one uniform norm.

Theorem 4.3. Let A be a semisimple, commutative Banach algebra and I be a closed ideal in A. Then A×c I has UUNP

if and only if A has UUNP.

Proof. Let A ×c I have UUNP. Let F ⊂ ∆(A) be a closed set of uniqueness for A. Then F+ ] F− is a closed subset

of ∆(A ×c I). Moreover, it is also a set of uniqueness for A ×c I. Since A ×c I has UUNP, by [3, Theorem 2.3],

∂+(A) ] ∂−(I) ⊂ F+ ] F−. Since ∆+(A) and ∆−(I) are disjoint, ∂+(A) ⊂ F+. So, ∂A ⊂ F . Thus ∂A is the smallest

closed set of uniqueness for A. Hence, by [3, Theorem 2.3], A has UUNP.

Conversely, suppose that A has UUNP. Since A is semisimple, A×cI is also semisimple by Theorem 3.7. Let F̃ ⊂ ∆(A×cI)

be a closed set of uniqueness for A ×c I. Then, by Lemma 4.1, FA is a closed set of uniqueness for A and F+
A ] F

−
A = F̃ .

Since A has UUNP, by [3, Theorem 2.3], ∂A ⊂ FA. Hence ∂+(A) ⊂ F+
A . Also we may assume that A has identity due to

[2, Theorem 3.1]. Then, by [6, Theorem 3.4.13], ∂I ⊂ ∂A. Therefore ∂I ⊂ FA. Which implies that Hence ∂−(I) ⊂ F−A .

Hence

∂(A×c I) = ∂+(A) ] ∂−(I) ⊂ F+
A ] F

−
A = F̃ .

Thus ∂(A×c I) is the smallest closed set of uniqueness for A×c I. Hence, again by [3, Theorem 2.3], A×c I has UUNP.

Definition 4.4 ([1, 3]). A ∗-algebra A has unique C∗-norm property (UC∗NP) if A has exactly one C∗ norm.

Theorem 4.5. Let A be a ∗-semisimple, Banach ∗-algebra and I be a closed ∗-ideal of A. Then

(1). If A×c I has UC∗NP, then A has UC∗NP;

(2). Suppose that A is commutative. If A has UC∗NP, then A×c I has UC∗NP.

Proof. (1) Suppose that A×c I has UC∗NP. Let | · |A be the largest C∗-norm on A. Define |(a, x)| = max{ |a+x|A, |a−

x|A } ((a, x) ∈ A ×c I). Then, by Lemma 2.5 (3), | · | is a C∗-norm on A ×c I. Now, let ||| · |||A be any C∗-norm on A.

Define |||(a, x)||| = max{ |||a + x|||A, |||a − x|||A } ((a, x) ∈ A ×c I). Then, by Lemma 2.5 (3), ||| · ||| is also a C∗-norm on

A×c I. Hence, by the hypothesis, | · | = ||| · ||| on A×c I. Now,

|||a|||A = max{|||a|||A, |||a|||A} = |||(a, 0)||| = |(a, 0)| = |a|A (a ∈ A).

Thus A has UC∗NP.

(2) Suppose that A is commutative and it has UC∗NP. Since I is a closed ∗-ideal in A, by Theorem 2.2 of [1], I has

UC∗NP. Let ∆h(A) denote the Hermitian Gel’fand space of A. Let F̃ be a proper closed subset of ∆h(A ×c I). Set

FA = {ϕ ∈ ∆h(A) : ϕ+ ∈ F̃ or ϕ− ∈ F̃}. Then FA is a proper closed subset of ∆h(A) such that F+
A ] F

−
A = F̃ . Since A

has UC∗NP, by [1, Proposition 1.3], there exists a nonzero element a ∈ A such that â|FA = 0. Then (a, 0)∧|F̃ = â|FA = 0.

Therefore, by [1, Proposition 1.3], A×c I has UC∗NP.
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Definition 4.6. A semisimple, commutative algebra A is weakly regular if for each proper closed set F ⊂ ∆(A), there

exists a ∈ A such that â|F = 0.

Theorem 4.7. A×c I is weakly regular if and only if A is weakly regular.

Proof. Let A×c I be weakly regular. Let F be a proper closed subset of ∆(A). Then F+ ∪ F− is a proper closed subset

of ∆(A×c I). Hence, by the hypothesis, there exists a non-zero element (a, x) ∈ A×c I such that (a, x)∧|F+∪F− = 0. This

implies that (a, x)∧|F+ = 0 and (a, x)∧|F− = 0. Then (a + x)∧(ϕ) = (a, x)∧(ϕ+) = 0 and (a − x)∧(ϕ) = (a, x)∧(ϕ−) =

0 (ϕ ∈ F ). Thus (a+ x)∧|F = (a− x)∧|F = 0. Also, note that either a+ x 6= 0 or a− x 6= 0 as (a, x) is non-zero. Hence A

is weakly regular.

Conversely, assume that A is weakly regular. Let F̃ be a proper closed subset of ∆(A ×c I). Then, by Lemma 4.1, FA

is a proper closed subset of ∆(A) such that F+
A ∪ F

−
A = F̃ . Therefore, by the hypothesis, there exists a ∈ A such that

â|FA = 0. Now let η̃ ∈ F̃ . Then either η̃ = ϕ+ or η̃ = ϕ− for some ϕ ∈ FA. Suppose that η̃ = ϕ+ for some ϕ ∈ FA.

Then (a, 0)∧(η̃) = (a, 0)∧(ϕ+) = ϕ(a) = â(ϕ) = 0. Similarly, if η̃ = ϕ−, then also (a, 0)∧(η̃) = 0. Thus, in each case,

(a, 0)∧(η̃) = 0. Therefore (a, 0)∧|F̃ = 0. Hence A×c I is weakly regular.

Definition 4.8. A is regular if for every closed set F ⊂ ∆(A) and an element ϕ ∈ ∆(A)\F , there exists an element a ∈ A

such that â(ϕ) = 1 and â|F = 0.

Theorem 4.9. A×c I is regular if and only if A is regular.

Proof. Let A ×c I be regular. Let F be a closed subset of ∆(A) and ψ ∈ ∆(A) \ F . Then F+ is a closed subset of

∆(A×c I) and ψ+ ∈ ∆(A×c I) \ (F+). Hence, by the hypothesis, there exists (a, x) ∈ A×c I such that (a, x)∧|F+ = 0 and

(a, x)∧(ψ+) = 1. This implies that (a+ x)∧(ϕ) = ϕ+((a, x)) = (a, x)∧(ϕ+) = 0 (ϕ ∈ F ) and (a+ x)∧(ψ) = (a, x)∧(ψ+) = 1.

Thus A is regular.

Conversely, assume that A is regular. Since A is semisimple, A ×c I is also semisimple. Let F̃ be a closed subsets of

∆(A ×c I) and ψ̃ ∈ ∆(A ×c I) \ F̃ . Then, by Lemma 4.1, FA is a proper closed subset of ∆(A) such that F+
A ∪ F

−
A = F̃ .

Also, either ψ̃ = ψ+ or ψ̃ = ψ− for some ψ ∈ ∆(A) \ FA, by Remark 3.6. Therefore, by the hypothesis, there exists a ∈ A

such that â|FA = 0 and â(ψ) = 1. Now let η̃ ∈ F̃ . Then either η̃ = ϕ+ or η̃ = ϕ− for some ϕ ∈ FA. Suppose that η̃ = ϕ+

for some ϕ ∈ FA. Then (a, 0)∧(η̃) = (a, 0)∧(ϕ+) = ϕ(a) = â(ϕ) = 0. Similarly, if η̃ = ϕ−, then also (a, 0)∧(η̃) = 0. Thus, in

each case, (a, 0)∧(η̃) = 0. Therefore (a, 0)∧|F̃ = 0. Also, (a, 0)∧(ψ̃) = 1. Hence A×c I is regular.
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