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1. Introduction

Consider the group Z> = {0,1} with the binary operation addition modulo 2. Then £'(Z>) is a Banach algebra with

convolution product. For f,g € £*(Z2), the convolution product of f and g is defined as

fxg=(f(0)g(0) + f(1)g(1), F(0)g(1) + f(1)g(0)).

This motivates the following product. Let A be an algebra and Z be an ideal in A. Then A x.Z is an algebra with pointwise
linear operations and the convolution product defined as (a,z)(b,y) = (ab + zy,ay + zb) ((a,z),(b,y) € A x:.I). It is
commutative (resp. unital) iff A is commutative (resp. unital). Further, If A is a normed algebra (resp. Banach algebra),

then A X.Z is a normed algebra (resp. Banach algebra) with the norm ||(a, z)||1 = ||a|| + ||z|| ((a,z) € A X T).

2. Basic Results

Throughout the paper, let A be an algebra and Z be an ideal in A. Let A_; denote the set of all quasi invertible elements
of A. If A is unital, A™" is the set of all invertible elements of A. Further, 0.4(a) and r4(a) denote the spectrum and the

spectral radius of a in A. Then we have the following.

Proposition 2.1. Let (a,z) € AX.Z. Then
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(1). (a,z) € (Ax.T) " iffat+za—zeA;
(2). (a,2) € (AxcT) 1 iffat+za—z€A;
(3). oax.z((a,x)) = cala+z)Uoala—z);
(4)- rax.z((a,x)) = max{ra(a+ z),ra(a —z)}.

Proposition 2.2. Let A be a normed algebra and I be closed in A. Then A x.ZT has a left approximate identity iff A has

a left approzimate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let A x.Z has a left approximate identity ((€a,Ta))aca and a € A. Then

leaa = a|| <leaa = al| + [[zaa] = [[(ea; 2a)(a, 0) = (a,0)]x

converges to 0 as a — co. Thus (eq) is a left approximate identity for A.

Conversely, suppose that A has a left approximate identity (eo). Then,

I(ea; 0)(a,2) = (@, 2) 1 = [[(eaa; eaz) = (a,2)[1 = [[(eaa —a) + (eaz — 2)|x

converges to 0 as a — oo for every (a,x) € A X.Z. Thus (eq,0) is a left approximate identity for A x.Z. Therefore A x.Z
has a left approximate identity. The proof for the bounded approximate identity follows from the fact that a sequence
((éa,za)) in A X Z is bounded then the sequence (en) is bounded in A and if a sequence (e,) is bounded in .4, then the

sequence ((eq,0)) is bounded in A x. Z. O

Remark 2.3. Let ||-|| be a norm on an algebra A and Z be an ideal of A. Let ||(a, )]0 = max{||a|, [|z]|} ((a,z) € AX.T).

Then || - ||o s a linear norm but it may not be an algebra norm on A x.Z.
Definition 2.4. Let A be an algebra. Then

(1). An algebra norm || - || on A is a uniform norm if ||a?|| = ||a||* (a € A).

(2). A is a uniform algebra if it admits a complete uniform norm.

(3). An algebra norm || - || on a *-algebra A is a C*-norm if ||a*al| = ||a||*(a € A).

Lemma 2.5. Let Z be an ideal in a normed algebra (A, || -]|) and (a,z) € AX.Z. Define |(a,z)| := max{|la + ||, ||la — z||}.

Then
(1). |- is an algebra norm on A X .ZI;
(2). | -] is a uniform norm on A x.Z iff || - || is a uniform norm on A;

(3). Let A be a *-algebra and I be a *-tdeal in A. Then |- | is a C*-norm on A X Z iff || - || is a C*-norm on A.
Corollary 2.6. Let T be a closed ideal in a Banach algebra A. Then A x.T is a uniform algebra iff A is a uniform algebra.

Proof. Let T be a closed ideal in a Banach algebra A. Since A 2 A x {0} is a closed subalgebra of A x.Z, A is a uniform
algebra whenever A X T is a uniform algebra. Conversely, let || - || be the complete uniform norm on .A. Then, by Lemma

2.5(2), | - | is a uniform norm on A x.Z. Next, let ((an,zn)) be a Cauchy sequence in (A x.Z,|-|). Then, for each n € N,

1
lanll < S{llan +@nll + llan = znll} < max{llan +zal lan = zal} = |(an, zn)l.
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This implies that (an) is a Cauchy sequence in (A, || - ||). Since || - || is a complete norm on A, the sequence (a,) converges
to some a € A. By the similar argument, it follows that the sequence (z,) converges to some x € Z. Hence the sequence

((an,zn)) converges to (a,z) € A x.Z. Thus | -| is a complete uniform norm on A x.Z. O

3. Gel’fand Space and Shilov Boundary

Let A be a commutative Banach algebra and Z be a closed ideal in A. In this section, we calculate the Gel’fand space

A(A x.Z). Note that the Gel’fand space of A x.Z is very much different from the Gel’fand space of A x B (see [4]).

Notations 3.1. Let p € A(Z) and u € T such that o(u) = 1. Define o7, 90~ : Ax. T — C as 91 ((a,2)) := p(au) + ¢(x)
and ¢~ ((a,2)) := ¢(au) — p(x) ((a,z) € A x.I).We note that ¢*,p~ are independent of u. Let F' C A(A). Define
Fri={¢t:pecFyand F~ :={p~ :p € F}.

Lemma 3.2. Let F C A(A) and G C A(Z). Then

(1). FT,F~ C A(A % T);

(2). GG~ C A(Ax.T);

(3). GFNG-=F"nG~ =F nG"=4.

Proof. (1) Let ¢ € F. Choose u € A such that ¢(u) = 1. Then ¢* ((u,0)) = 1 # 0. It is clear that ¢ is linear. We show

that " is multiplicative. Also, ¢(au) = p(a). So we have ¢ ((a,)) = ¢(a) + ¢(z). Let (a,z), (b,y) € A xcZ. Then

¢ ((a,2)(b,y)) = ¢ (ab+zy,ay+zb) = ¢(ab+ xy) + (ay + zb)
= w(a)p(d) + p(x)e(y) + w(a)p(y) + o(x)p(b)

(p(a) + (@) (e(®) + e¥) = ¢ ((a,2)) T ((b,y)).

Thus ¢t € A(A x.T). Hence, F* C A(A x. ). By similar arguments, it follows that F~ C A(A x. T).
(2) Let ¢ € G. Let u € T be such that ¢(u) = 1. Then it is clear that ¢~ is a nonzero linear function on A x.Z. To show

that ¢~ is multiplicative, let (a,z), (b,y) € A x.Z. Then

o ((a,2)(b,y)) = ¢ ((ab+ zy,ay + zb)) = ¢((ab+ zy)u) — p(ay + zb)
= p(au)p(bu) + o(x)e(y) — e(auw)o(y) — p(z)e(bu)

= (p(au) — o)) (plbu) — o)) = ¢ ((a,z))e ((b,y)).

Thus ¢~ € A(A x.T). Hence, G~ C A(A x.Z). By similar arguments, it follows that GT C A(A x. T).
(3) Suppose that 7 € F* N G~. Then there exist ¢ € F,9 € G such that ¢ = 7 = ¢~ on A x.Z. Then, 2¢(z) =
0" ((z,2)) = ¢ ((z,2)) =0 (x € T). Thus ¢ = 0 on Z. Therefore, 1(z) = ¥~ ((,0)) = ¢t ((x,0)) = o(z) =0 (z € I).

Thus ¢ = 0 on Z, a contradiction. Hence F™ NG~ = (). By similar arguments, it follows that GT NG~ = F NGT =0. O
Theorem 3.3. Let A be a commutative Banach algebra and T be a closed ideal of A. Then A(A x.T) = AT(A)HA(T).

Proof. Tt follows from Lemma 3.2 that A1 (A)HA™(Z) C A(A x. I).
For the reverse inclusion, let 7 € A(A x.Z). Define ¢(a) = 17((a,0)) on A and (z) = 7((0,z)) on Z. Then 7((a,z)) =
p(a) +9(z) ((a,2) € AxI). Also, if p =0 on A, then ¥(z)* = 7((0,2))* = 7((0,2)*) = 7((2,0))* = p(x)* = 0 (z € I).
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Hence 7 = 0 on A x.Z. This is not possible. Therefore, there exists a € A such that ¢(a) # 0. Also, p(ab) = 1((ab,0)) =
7((a,0))77((b,0)) = w(a)p(b) (a,b € A). Hence ¢ € A(A). Now, there are two cases.

Case -(i): 77 = 0 on {0} x Z. So that ¢ = 0 on Z. Therefore, for every z € Z,
p()” =17((,0))* = 7((x,0)*) = 7((0,2)*) = 7((0,z))* = 0.
So ¢(z) = 0 (z € ). Hence, ¢ = ¢ on Z. Also, for (a,z) € A x. T,
7((a,x)) = i((a,0)) +7((0,2)) = p(a) + ¥(z) = p(a) + p(z) = ¢ ((a,2)).

Thus we get 7 = ¢ € A1 (A).

Case-(ii): 7 # 0 on {0} x Z. So that ¢ # 0 on Z. Since 1 is linear, there exists y € Z such that ¢)(y) = 1. Then, for each

rel,

px) = ¢@)p(y) = n((z,0)n((0,y)) = 7((x,0)(0,y))

= 7((0,zy)) = 1((y,0)(0,2)) = @(y)¥(x) (1)

Now, ¢(y)* = 7((y,0))* = 1((y,0)*) = 7((0,1)*) = ¥ (y)?
o(z) =¢¥(x)(z € 7). So that

1 implies that p(y) = £1. If p(y) = 1, then from equation (1),

n(a,2)) = wla) +P(x) = e(a)p(y) + ¢ (z)

= ¢lay) +9(@) = ¢ ((a,2)) ((a,2) € Ax.T).

Thus 77 = ¢ € AT(A). If ¢(y) = —1, then from equation (1), we get ¢(z) = —¢(z) (x € T) and ¢(u) = 1, where u = —y.

So that

n((a,z)) = ¢la) +9P(z) = pla)p(u) - p(z)

= plaw) - (@) = ¢ ((0,2) ((a,x) € Ax.T).

Thus, 77 = ¢~ € A™(Z). Hence A(A x.Z) C AT(A) WA~ (Z). Thus A(A x.Z) and AT(A) Y A~ (Z) are set theoretically

same. By arguments as in [4, Theorem 2.2], we can show that they are homeomorphic. (I

Theorem 3.4 ([6, Corollary 3.3.4]). Let X be a locally compact Hausdorff space, and let A be a subalgebra of Co(X) which
strongly separates the points of X. Then a point x € X belongs to the Shilov boundary of A if and only if given any open

neighbourhood U of x, there exist f € A such that || f|x\vuleo < ||flU]oo-
Theorem 3.5. Let A be a commutative Banach algebra and I be a closed ideal of A. Then O(A x.T) =0T (A) Yo~ (T).

Proof. Let o € dA. Let U be a neighborhood of ¢ . Set U = {p € A(A): ot € UYyU{ € A(Z) :9p~ € U}. Then U is a
neighborhood of ¢g. Therefore, by Theorem 3.4, there exists a € A such that [[@|aapvlleo < [@]u]loc. If 9™ € A(Ax . T\U,
then ¢ € A(A)\U. If ot € A(A x.Z)\ U, then ¢ € A(A)\ U. This gives ||(a, 0" aax.onglloe = l[@lacanullo. Also

(a,0)" (™) = @(yp) for every p* € U. Hence

[1(@,0)" | aax.znlloe = @lacanullee < lfalullse = ll(a;0)" |z loo-
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Therefore, by Theorem 3.4, of € A(A X, T). Thus 8" (A) C O(A x. T). Let ¢ € dZ. Let V be a neighborhood of 15 . Set
V={pecA):¢te ‘7} U{y e AZ) : ¢~ € \7} Then V is a neighborhood of 1. Therefore, by Theorem 3.4, there
exists € Z such that ||Z]a@)\v]co < [|Z]v|loo- I p™ € A(A xI)\ V, then (z, —a) (™) = 28()). If o7 € A(Ax.T)\V,

then (x, ~2)"\ (") = 0. This gives [|(, ~)" | s 4.2, e = 2[Z|a@v [loo- Hence
(@, ~2) s aon i lloe = 2 a@nvlloe < 20E vl = (2, ~2) g loo-

Therefore, by Theorem 3.4, ¢, € (A X.Z). Thus 07 (Z) C 9(A x.I).

For the reverse inclusion, let ¢ € 9(A x.I). Let U be a neighborhood of ¢y € A(A). Then U = U* is a neighborhood of
oF in A(A x.T). Since ¢F € (A x. T),by Theorem 3.4, there exists (a,z) € A x. Z such that ||(a, ) acax.onille <
(@, )" ]loo- This gives ||(a + z)"|acanvlles < [[(a+ 2)"|u]loo. Therefore @o € DA.

Let ¢, € O(A x.TI). Let V be a neighborhood of 9o € A(Z). Then V™ is a neighborhood of ¢5 in A(A x.Z). Since
1y € I(A x.I),by Theorem 3.4, there exists (a,z) € A X Z such that ||(a,glc)A|A(AXCI)\‘7||OO < ||(a,z)"| |l Hence

[(a —2)"|a@nv e < |l(a—2)"|v|lo. Therefore, by Theorem 3.4, ¢o € 9Z. Hence (A x.T) C 0 (A) Y9~ (T). O

Remark 3.6. Let ¢ € A(Z). Then there exists u € I such that p(u) = 1. Define Opt. Lett. (a) := p(au). Then
Opt. Lett. ¢ € A(A). Thus every ¢ € A(Z) can be extended to A(A). Therefore, A(Z) C A(A). Also, it is clear that
A(A) =AZ)U{p € A(A) : T Ckerp}. Hence AT(A)UA(Z) = AT(A)UA™ (A) as sets.

Theorem 3.7. Let A be a commutative Banach algebra and T be closed ideal in A. Then A x.Z is semisimple if and only

if A is semisimple.

Proof. Suppose that A x. Z is semisimple. Let a € A such that p(a) = 0 (¢ € A(A)). Let v € A(A) and u € A
such that ¥ (u) = 1. Then ¥*((a,0)) = ¥(au) + ¥(0) = ¥(a)(u) + 0 = 0. Now let ¥» € A(Z). Then, by Remark 3.6,
Opt. Lett. v € A(A). So, by the assumption, ¥(av) = Opt. Lett. y(a) = 0. Hence 9~ ((a,0)) = ¢(av) = 0. Thus
7i((a,0)) = 0 for all 7 € A*(A) W A~ (T). Since A x. Z is semisimple, (a,0) = (0,0) gives a = 0. Thus A is semisimple.

Conversely, suppose that 4 is semisimple. Let (a,z) € AX.Z be such that 7((a,z)) =0 (7 € A(Ax.Z). Let ¢ € A(A). Then
ot 07 € A(A %X T). So that T ((a,z)) = ¢~ ((a,x)) = 0. Then p(a) + ¢(z) = ¢(a) — p(x) = 0. Hence ¢(a) = ¢(x) = 0.

Since ¢ € A(A) is arbitrary and A is semisimple, we get a = z = 0. Hence A X Z is semisimple. O

4. Uniqueness and Separation Properties

We start with the following lemma which will be used in the proofs of main results.

Lemma 4.1. Let A be a semisimple, commutative Banach algebra and T be a closed ideal in A. Let F C A(Ax.T). Define
Fa={peA(A) :¢" €F orop~ €F}. Then

(1). Fy UF, =F;
(2). If F is closed, then Fa is closed in A(A);
(3). Ifﬁ is a set of uniqueness for A x.Z, then so is Fa for A.

Proof. (1) This is trivial.
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(2) Suppose that F' C A(A x.T) is closed. Let ¢ € Opt. Lett. F4. Then there exists a net (o) in Fia such that oo —sp.
Then we get a subnet (¢a;) of (pa) such that either {¢F } C F or {5, } C F. Also, pf, —¢" and @5, —s¢ . Since F is
closed, either ¢ € F or ¢~ € F. So that ¢ € Fa. Thus F4 is closed in A(A).

(3) Suppose that F' is a set of uniqueness for A x,Z. Let a € A such that |z, = 0. Then (a,0)"(¢") = p(a) = a(p) =
0= (a,0)"(¢~) (¢ € Fa). Thus (a,0)" =0 on F. This implies that (a,0) = (0,0) as F is a set of uniqueness for A x, Z.

Thus a = 0. Hence F4 is a set of uniqueness for A. O

Definition 4.2 ([1, 3]). An algebra A has unique uniform norm property (UUNP) if A has ezactly one uniform norm.

Theorem 4.3. Let A be a semisimple, commutative Banach algebra and T be a closed ideal in A. Then A x.Z has UUNP

if and only if A has UUNP.

Proof. Let A x.Z have UUNP. Let F C A(A) be a closed set of uniqueness for A. Then F* w F~ is a closed subset
of A(A X, Z). Moreover, it is also a set of uniqueness for A X, Z. Since A X, Z has UUNP, by [3, Theorem 2.3],
Ot (A)WO (I) C FTw F~. Since AT(A) and A~ (Z) are disjoint, 07 (A) C F'. So, A C F. Thus A is the smallest
closed set of uniqueness for A. Hence, by [3, Theorem 2.3], A has UUNP.

Conversely, suppose that .4 has UUNP. Since A is semisimple, A X .Z is also semisimple by Theorem 3.7. Let Fc A(AX.T)
be a closed set of uniqueness for A x.Z. Then, by Lemma 4.1, F4 is a closed set of uniqueness for .4 and F:{ W, = F.
Since A has UUNP, by [3, Theorem 2.3], DA C F4. Hence 97(A) C F}. Also we may assume that A has identity due to
[2, Theorem 3.1]. Then, by [6, Theorem 3.4.13], I C 0A. Therefore 0I C F.a. Which implies that Hence 0~ (1) C Fj.
Hence

IAX.T)=0 (A Wo (I)C F{wF, =F.
Thus 9(A x.T) is the smallest closed set of uniqueness for A x.Z. Hence, again by [3, Theorem 2.3], A x.Z has UUNP. [
Definition 4.4 ([1, 3]). A *-algebra A has unique C*-norm property (UC*NP) if A has ezactly one C* norm.
Theorem 4.5. Let A be a x-semisimple, Banach x-algebra and T be a closed %-ideal of A. Then
(1). If A x.Z has UC* NP, then A has UC* NP;
(2). Suppose that A is commutative. If A has UC* NP, then A x.Z has UC™ NP.

Proof. (1) Suppose that A X.Z has UC*NP. Let |- |4 be the largest C*-norm on A. Define |(a, z)| = max{ |a + z|4, |a —

z|a} ((a,z) € A x.TI). Then, by Lemma 2.5 (3), | - | is a C*-norm on A x.Z. Now, let ||| - |||4 be any C*-norm on A.
Define |||(a, z)||| = max{|||a + z|||4, ||la — z|||la } ((a,z) € A X Z). Then, by Lemma 2.5 (3), ||| - ||| is also a C*-norm on
A x.Z. Hence, by the hypothesis, | -| = ||| - ||| on A x.Z. Now,

llallla = max{][|al[|.a; [[lallla} = [[(a,O[]| = |(a,0)] = lala (a € A).

Thus A has UC*NP.

(2) Suppose that A is commutative and it has UC*NP. Since Z is a closed *-ideal in A, by Theorem 2.2 of [1], Z has
UC*NP. Let A"(A) denote the Hermitian Gel’fand space of A. Let F be a proper closed subset of A"(A x.Z). Set
Fa={peA"(A): T € Forp~ € F}. Then F4 is a proper closed subset of A"(A) such that FrwFy = F. Since A
has UC*NP, by [1, Proposition 1.3], there exists a nonzero element a € A such that @|r, = 0. Then (a,0)"|z = @|r, = 0.

Therefore, by [1, Proposition 1.3], A x.Z has UC*NP. O
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Definition 4.6. A semisimple, commutative algebra A is weakly regular if for each proper closed set ' C A(A), there

exists a € A such that a|lp = 0.
Theorem 4.7. A X.7T is weakly regular if and only if A is weakly regular.

Proof. Let A x.T be weakly regular. Let F be a proper closed subset of A(A). Then F* U F~ is a proper closed subset
of A(A x.T). Hence, by the hypothesis, there exists a non-zero element (a,z) € A X.Z such that (a,z)"|p+_p- = 0. This
implies that (a,2)"|p+ = 0 and (a,z)"|r— = 0. Then (a + 2)"(¢) = (a,2)"(¢") = 0 and (a — )" (¢) = (a,2)"(p~) =
0 (p € F). Thus (¢ + z)"|r = (a — x)"|F = 0. Also, note that either a + x # 0 or @ — = # 0 as (a, x) is non-zero. Hence A
is weakly regular.

Conversely, assume that A is weakly regular. Let F be a proper closed subset of A(A X.Z). Then, by Lemma 4.1, F4
is a proper closed subset of A(A) such that Fj{ UF, = F. Therefore, by the hypothesis, there exists a € A such that
alr, = 0. Now let 77 € F. Then either 77 = ¢T or 7 = ¢~ for some ¢ € F4. Suppose that 77 = ¢T for some ¢ € Fa.
Then (a,0)"(7) = (a,0)"(p") = ¢(a) = @(p) = 0. Similarly, if 7 = ¢, then also (a,0)"(77) = 0. Thus, in each case,
(a,0)"(7) = 0. Therefore (a,0)"|z = 0. Hence A x. T is weakly regular. O

Definition 4.8. A is regular if for every closed set F' C A(A) and an element ¢ € A(A)\ F, there exists an element a € A

such that a(p) =1 and alr = 0.
Theorem 4.9. A X.ZT is reqular if and only if A is reqular.

Proof. Let A x.T be regular. Let F be a closed subset of A(A) and ¢ € A(A) \ F. Then F7 is a closed subset of
A(Ax.T)and YT € A(Ax.T)\ (F'). Hence, by the hypothesis, there exists (a,z) € A x.Z such that (a,z)"|p+ = 0 and
(a,x)"(¢") = 1. This implies that (a +x)" () = ¢"((a,2)) = (a,z2)" (7)) =0 (p € F) and (a +z) () = (a, )" (") = 1.
Thus A is regular.

Conversely, assume that A is regular. Since A is semisimple, A X. Z is also semisimple. Let F be a closed subsets of
A(Ax.T) and ¢ € A(A x.T)\ F. Then, by Lemma 4.1, F4 is a proper closed subset of A(A) such that FiUF = F.
Also, either ¥ = ¢ or ¢ = ¢~ for some 1 € A(A) \ Fa, by Remark 3.6. Therefore, by the hypothesis, there exists a € A
such that @|r, = 0 and @(¢) = 1. Now let 7 € F. Then either 7 = o1 or 77 = ¢~ for some ¢ € F4. Suppose that 7 = ¢+
for some ¢ € F4. Then (a,0)"(7) = (a,0)"(¢1) = ¢(a) = @(p) = 0. Similarly, if 7 = ¢, then also (a,0)"(77) = 0. Thus, in

each case, (a,0)" (1) = 0. Therefore (a,0)"|7 = 0. Also, (a,0)"(x)) = 1. Hence A x. T is regular. O
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