Gel'fand Theory of the Commutative Banach Algebra $\mathcal{A} \times{ }_{c} \mathcal{I}$ with the Convolution Product

H. V. Dedania ${ }^{1, *}$ and H. J. Kanani ${ }^{2}$
Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
2 Department of Mathematics, Bahauddin Science College, Junagadh, Gujarat, India.

Abstract

Let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A}. Then $\mathcal{A} \times \mathcal{I}$ is an algebra with pointwise linear operations and the convolution product $(a, x)(b, y)=(a b+x y, a y+x b)((a, x),(b, y) \in \mathcal{A} \times \mathcal{I})$; it will be denoted by $\mathcal{A} \times_{c} \mathcal{I}$. If \mathcal{A} is a commutative Banach algebra and \mathcal{I} is a closed ideal in \mathcal{A}, then $\mathcal{A} \times{ }_{c} \mathcal{I}$ is also a commutative Banach algebra with some suitable norm. In this paper, we shall study the Gel'fand theory, uniqueness properties, and regularity of $\mathcal{A} \times{ }_{c} \mathcal{I}$. MSC: Primary 46J05; Secondary 46K05.

Keywords: Convolution product, UUNP, UC ${ }^{*}$ NP, regular algebra, uniform algebra (C) JS Publication

1. Introduction

Consider the group $\mathbb{Z}_{2}=\{0,1\}$ with the binary operation addition modulo 2. Then $\ell^{1}\left(\mathbb{Z}_{2}\right)$ is a Banach algebra with convolution product. For $f, g \in \ell^{1}\left(\mathbb{Z}_{2}\right)$, the convolution product of f and g is defined as

$$
f * g=(f(0) g(0)+f(1) g(1), f(0) g(1)+f(1) g(0)) .
$$

This motivates the following product. Let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A}. Then $\mathcal{A} \times{ }_{c} \mathcal{I}$ is an algebra with pointwise linear operations and the convolution product defined as $(a, x)(b, y)=(a b+x y, a y+x b)\left((a, x),(b, y) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right)$. It is commutative (resp. unital) iff \mathcal{A} is commutative (resp. unital). Further, If \mathcal{A} is a normed algebra (resp. Banach algebra), then $\mathcal{A} \times{ }_{c} \mathcal{I}$ is a normed algebra (resp. Banach algebra) with the norm $\|(a, x)\|_{1}=\|a\|+\|x\|\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right)$.

2. Basic Results

Throughout the paper, let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A}. Let \mathcal{A}_{-1} denote the set of all quasi invertible elements of \mathcal{A}. If \mathcal{A} is unital, \mathcal{A}^{-1} is the set of all invertible elements of \mathcal{A}. Further, $\sigma_{\mathcal{A}}(a)$ and $r_{\mathcal{A}}(a)$ denote the spectrum and the spectral radius of a in \mathcal{A}. Then we have the following.

Proposition 2.1. Let $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$. Then

[^0](1). $(a, x) \in\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)^{-1}$ iff $a+x, a-x \in \mathcal{A}^{-1}$;
(2). $(a, x) \in\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)_{-1}$ iff $a+x, a-x \in \mathcal{A}_{-1}$;
(3). $\sigma_{\mathcal{A} \times{ }_{c} \mathcal{I}}((a, x))=\sigma_{\mathcal{A}}(a+x) \cup \sigma_{\mathcal{A}}(a-x)$;

Proposition 2.2. Let \mathcal{A} be a normed algebra and \mathcal{I} be closed in \mathcal{A}. Then $\mathcal{A} \times{ }_{c} \mathcal{I}$ has a left approximate identity iff \mathcal{A} has a left approximate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let $\mathcal{A} \times_{c} \mathcal{I}$ has a left approximate identity $\left(\left(e_{\alpha}, x_{\alpha}\right)\right)_{\alpha \in \Lambda}$ and $a \in \mathcal{A}$. Then

$$
\left\|e_{\alpha} a-a\right\| \leq\left\|e_{\alpha} a-a\right\|+\left\|x_{\alpha} a\right\|=\left\|\left(e_{\alpha}, x_{\alpha}\right)(a, 0)-(a, 0)\right\|_{1}
$$

converges to 0 as $\alpha \rightarrow \infty$. Thus (e_{α}) is a left approximate identity for \mathcal{A}.
Conversely, suppose that \mathcal{A} has a left approximate identity (e_{α}). Then,

$$
\left\|\left(e_{\alpha}, 0\right)(a, x)-(a, x)\right\|_{1}=\left\|\left(e_{\alpha} a, e_{\alpha} x\right)-(a, x)\right\|_{1}=\left\|\left(e_{\alpha} a-a\right)+\left(e_{\alpha} x-x\right)\right\|_{1}
$$

converges to 0 as $\alpha \rightarrow \infty$ for every $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$. Thus $\left(e_{\alpha}, 0\right)$ is a left approximate identity for $\mathcal{A} \times{ }_{c} \mathcal{I}$. Therefore $\mathcal{A} \times{ }_{c} \mathcal{I}$ has a left approximate identity. The proof for the bounded approximate identity follows from the fact that a sequence $\left(\left(e_{\alpha}, x_{\alpha}\right)\right)$ in $\mathcal{A} \times_{c} \mathcal{I}$ is bounded then the sequence $\left(e_{\alpha}\right)$ is bounded in \mathcal{A} and if a sequence $\left(e_{\alpha}\right)$ is bounded in \mathcal{A}, then the sequence $\left(\left(e_{\alpha}, 0\right)\right)$ is bounded in $\mathcal{A} \times{ }_{c} \mathcal{I}$.

Remark 2.3. Let $\|\cdot\|$ be a norm on an algebra \mathcal{A} and \mathcal{I} be an ideal of \mathcal{A}. Let $\|(a, x)\|_{\infty}=\max \{\|a\|,\|x\|\}\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right)$.
Then $\|\cdot\|_{\infty}$ is a linear norm but it may not be an algebra norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$.
Definition 2.4. Let \mathcal{A} be an algebra. Then
(1). An algebra norm $\|\cdot\|$ on \mathcal{A} is a uniform norm if $\left\|a^{2}\right\|=\|a\|^{2}(a \in \mathcal{A})$.
(2). \mathcal{A} is a uniform algebra if it admits a complete uniform norm.
(3). An algebra norm $\|\cdot\|$ on $a *$-algebra \mathcal{A} is a C^{*}-norm if $\left\|a^{*} a\right\|=\|a\|^{2}(a \in \mathcal{A})$.

Lemma 2.5. Let \mathcal{I} be an ideal in a normed algebra $(\mathcal{A},\|\cdot\|)$ and $(a, x) \in \mathcal{A} \times_{c} \mathcal{I}$. Define $|(a, x)|:=\max \{\|a+x\|,\|a-x\|\}$. Then
(1). $|\cdot|$ is an algebra norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$;
(2). $|\cdot|$ is a uniform norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$ iff $\|\cdot\|$ is a uniform norm on \mathcal{A};
(3). Let \mathcal{A} be $a *$-algebra and \mathcal{I} be $a *$-ideal in \mathcal{A}. Then $|\cdot|$ is a C^{*}-norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$ iff $\|\cdot\|$ is a C^{*}-norm on \mathcal{A}.

Corollary 2.6. Let \mathcal{I} be a closed ideal in a Banach algebra \mathcal{A}. Then $\mathcal{A} \times{ }_{c} \mathcal{I}$ is a uniform algebra iff \mathcal{A} is a uniform algebra.
Proof. Let \mathcal{I} be a closed ideal in a Banach algebra \mathcal{A}. Since $\mathcal{A} \cong \mathcal{A} \times\{0\}$ is a closed subalgebra of $\mathcal{A} \times{ }_{c} \mathcal{I}$, \mathcal{A} is a uniform algebra whenever $\mathcal{A} \times{ }_{c} \mathcal{I}$ is a uniform algebra. Conversely, let $\|\cdot\|$ be the complete uniform norm on \mathcal{A}. Then, by Lemma $2.5(2),|\cdot|$ is a uniform norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$. Next, let $\left(\left(a_{n}, x_{n}\right)\right)$ be a Cauchy sequence in $\left(\mathcal{A} \times{ }_{c} \mathcal{I},|\cdot|\right)$. Then, for each $n \in \mathbb{N}$,

$$
\left\|a_{n}\right\| \leq \frac{1}{2}\left\{\left\|a_{n}+x_{n}\right\|+\left\|a_{n}-x_{n}\right\|\right\} \leq \max \left\{\left\|a_{n}+x_{n}\right\|,\left\|a_{n}-x_{n}\right\|\right\}=\left|\left(a_{n}, x_{n}\right)\right| .
$$

This implies that $\left(a_{n}\right)$ is a Cauchy sequence in $(\mathcal{A},\|\cdot\|)$. Since $\|\cdot\|$ is a complete norm on \mathcal{A}, the sequence $\left(a_{n}\right)$ converges to some $a \in \mathcal{A}$. By the similar argument, it follows that the sequence $\left(x_{n}\right)$ converges to some $x \in \mathcal{I}$. Hence the sequence $\left(\left(a_{n}, x_{n}\right)\right)$ converges to $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$. Thus $|\cdot|$ is a complete uniform norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$.

3. Gel'fand Space and Shilov Boundary

Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A}. In this section, we calculate the Gel'fand space $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Note that the Gel'fand space of $\mathcal{A} \times{ }_{c} \mathcal{I}$ is very much different from the Gel'fand space of $\mathcal{A} \times \mathcal{B}$ (see [4]).

Notations 3.1. Let $\varphi \in \Delta(\mathcal{I})$ and $u \in \mathcal{I}$ such that $\varphi(u)=1$. Define $\varphi^{+}, \varphi^{-}: \mathcal{A} \times{ }_{c} \mathcal{I} \longrightarrow \mathbb{C}$ as $\varphi^{+}((a, x)):=\varphi(a u)+\varphi(x)$ and $\varphi^{-}((a, x)):=\varphi(a u)-\varphi(x)((a, x) \in \mathcal{A} \times c \mathcal{I})$. We note that φ^{+}, φ^{-}are independent of u. Let $F \subset \Delta(\mathcal{A})$. Define $F^{+}:=\left\{\varphi^{+}: \varphi \in F\right\}$ and $F^{-}:=\left\{\varphi^{-}: \varphi \in F\right\}$.

Lemma 3.2. Let $F \subset \Delta(\mathcal{A})$ and $G \subset \Delta(\mathcal{I})$. Then
(1). $F^{+}, F^{-} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$;
(2). $G^{+}, G^{-} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$;
(3). $G^{+} \cap G^{-}=F^{+} \cap G^{-}=F^{-} \cap G^{+}=\emptyset$.

Proof. (1) Let $\varphi \in F$. Choose $u \in \mathcal{A}$ such that $\varphi(u)=1$. Then $\varphi^{+}((u, 0))=1 \neq 0$. It is clear that φ^{+}is linear. We show that φ^{+}is multiplicative. Also, $\varphi(a u)=\varphi(a)$. So we have $\varphi^{+}((a, x))=\varphi(a)+\varphi(x)$. Let $(a, x),(b, y) \in \mathcal{A} \times{ }_{c} \mathcal{I}$. Then

$$
\begin{aligned}
\varphi^{+}((a, x)(b, y)) & =\varphi^{+}(a b+x y, a y+x b)=\varphi(a b+x y)+\varphi(a y+x b) \\
& =\varphi(a) \varphi(b)+\varphi(x) \varphi(y)+\varphi(a) \varphi(y)+\varphi(x) \varphi(b) \\
& =(\varphi(a)+\varphi(x))(\varphi(b)+\varphi(y))=\varphi^{+}((a, x)) \varphi^{+}((b, y))
\end{aligned}
$$

Thus $\varphi^{+} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Hence, $F^{+} \subset \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$. By similar arguments, it follows that $F^{-} \subset \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$.
(2) Let $\varphi \in G$. Let $u \in \mathcal{I}$ be such that $\varphi(u)=1$. Then it is clear that φ^{-}is a nonzero linear function on $\mathcal{A} \times{ }_{c} \mathcal{I}$. To show that φ^{-}is multiplicative, let $(a, x),(b, y) \in \mathcal{A} \times{ }_{c} \mathcal{I}$. Then

$$
\begin{aligned}
\varphi^{-}((a, x)(b, y)) & =\varphi^{-}((a b+x y, a y+x b))=\varphi((a b+x y) u)-\varphi(a y+x b) \\
& =\varphi(a u) \varphi(b u)+\varphi(x) \varphi(y)-\varphi(a u) \varphi(y)-\varphi(x) \varphi(b u) \\
& =(\varphi(a u)-\varphi(x))(\varphi(b u)-\varphi(y))=\varphi^{-}((a, x)) \varphi^{-}((b, y))
\end{aligned}
$$

Thus $\varphi^{-} \in \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$. Hence, $G^{-} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. By similar arguments, it follows that $G^{+} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$.
(3) Suppose that $\widetilde{\eta} \in F^{+} \cap G^{-}$. Then there exist $\varphi \in F, \psi \in G$ such that $\varphi^{+}=\widetilde{\eta}=\psi^{-}$on $\mathcal{A} \times{ }_{c} \mathcal{I}$. Then, $2 \varphi(x)=$ $\varphi^{+}((x, x))=\psi^{-}((x, x))=0(x \in \mathcal{I})$. Thus $\varphi \equiv 0$ on \mathcal{I}. Therefore, $\psi(x)=\psi^{-}((x, 0))=\varphi^{+}((x, 0))=\varphi(x)=0(x \in \mathcal{I})$. Thus $\psi \equiv 0$ on \mathcal{I}, a contradiction. Hence $F^{+} \cap G^{-}=\emptyset$. By similar arguments, it follows that $G^{+} \cap G^{-}=F^{-} \cap G^{+}=\emptyset$.

Theorem 3.3. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal of \mathcal{A}. Then $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \cong \Delta^{+}(\mathcal{A}) \biguplus \Delta^{-}(\mathcal{I})$.

Proof. It follows from Lemma 3.2 that $\Delta^{+}(\mathcal{A}) \biguplus \Delta^{-}(\mathcal{I}) \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$.
For the reverse inclusion, let $\widetilde{\eta} \in \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$. Define $\varphi(a)=\widetilde{\eta}((a, 0))$ on \mathcal{A} and $\psi(x)=\widetilde{\eta}((0, x))$ on \mathcal{I}. Then $\widetilde{\eta}((a, x))=$ $\varphi(a)+\psi(x)\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Also, if $\varphi \equiv 0$ on \mathcal{A}, then $\psi(x)^{2}=\widetilde{\eta}((0, x))^{2}=\widetilde{\eta}\left((0, x)^{2}\right)=\widetilde{\eta}((x, 0))^{2}=\varphi(x)^{2}=0(x \in \mathcal{I})$.

Hence $\widetilde{\eta} \equiv 0$ on $\mathcal{A} \times{ }_{c} \mathcal{I}$. This is not possible. Therefore, there exists $a \in \mathcal{A}$ such that $\varphi(a) \neq 0$. Also, $\varphi(a b)=\widetilde{\eta}((a b, 0))=$ $\widetilde{\eta}((a, 0)) \widetilde{\eta}((b, 0))=\varphi(a) \varphi(b)(a, b \in \mathcal{A})$. Hence $\varphi \in \Delta(\mathcal{A})$. Now, there are two cases.
Case -(i): $\widetilde{\eta}=0$ on $\{0\} \times \mathcal{I}$. So that $\psi=0$ on \mathcal{I}. Therefore, for every $x \in \mathcal{I}$,

$$
\varphi(x)^{2}=\widetilde{\eta}((x, 0))^{2}=\widetilde{\eta}\left((x, 0)^{2}\right)=\widetilde{\eta}\left((0, x)^{2}\right)=\widetilde{\eta}((0, x))^{2}=0 .
$$

So $\varphi(x)=0(x \in \mathcal{I})$. Hence, $\varphi=\psi$ on \mathcal{I}. Also, for $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$,

$$
\widetilde{\eta}((a, x))=\widetilde{\eta}((a, 0))+\widetilde{\eta}((0, x))=\varphi(a)+\psi(x)=\varphi(a)+\varphi(x)=\varphi^{+}((a, x)) .
$$

Thus we get $\widetilde{\eta}=\varphi^{+} \in \Delta^{+}(\mathcal{A})$.

Case-(ii): $\widetilde{\eta} \neq 0$ on $\{0\} \times \mathcal{I}$. So that $\psi \neq 0$ on \mathcal{I}. Since ψ is linear, there exists $y \in \mathcal{I}$ such that $\psi(y)=1$. Then, for each $x \in \mathcal{I}$,

$$
\begin{align*}
\varphi(x) & =\varphi(x) \psi(y)=\widetilde{\eta}((x, 0)) \widetilde{\eta}((0, y))=\widetilde{\eta}((x, 0)(0, y)) \\
& =\widetilde{\eta}((0, x y))=\widetilde{\eta}((y, 0)(0, x))=\varphi(y) \psi(x) \tag{1}
\end{align*}
$$

Now, $\varphi(y)^{2}=\widetilde{\eta}((y, 0))^{2}=\widetilde{\eta}\left((y, 0)^{2}\right)=\widetilde{\eta}\left((0, y)^{2}\right)=\psi(y)^{2}=1$ implies that $\varphi(y)= \pm 1$. If $\varphi(y)=1$, then from equation (1), $\varphi(x)=\psi(x)(x \in \mathcal{I})$. So that

$$
\begin{aligned}
\widetilde{\eta}((a, x)) & =\varphi(a)+\psi(x)=\varphi(a) \varphi(y)+\varphi(x) \\
& =\varphi(a y)+\varphi(x)=\varphi^{+}((a, x)) \quad\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right) .
\end{aligned}
$$

Thus $\widetilde{\eta}=\varphi^{+} \in \Delta^{+}(\mathcal{A})$. If $\varphi(y)=-1$, then from equation (1), we get $\varphi(x)=-\psi(x)(x \in \mathcal{I})$ and $\varphi(u)=1$, where $u=-y$. So that

$$
\begin{aligned}
\widetilde{\eta}((a, x)) & =\varphi(a)+\psi(x)=\varphi(a) \varphi(u)-\varphi(x) \\
& =\varphi(a u)-\varphi(x)=\varphi^{-}((a, x)) \quad\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right) .
\end{aligned}
$$

Thus, $\tilde{\eta}=\varphi^{-} \in \Delta^{-}(\mathcal{I})$. Hence $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \subset \Delta^{+}(\mathcal{A}) \biguplus \Delta^{-}(\mathcal{I})$. Thus $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$ and $\Delta^{+}(\mathcal{A}) \biguplus \Delta^{-}(\mathcal{I})$ are set theoretically same. By arguments as in [4, Theorem 2.2], we can show that they are homeomorphic.

Theorem 3.4 ([6, Corollary 3.3.4]). Let X be a locally compact Hausdorff space, and let \mathcal{A} be a subalgebra of $C_{0}(X)$ which strongly separates the points of X. Then a point $x \in X$ belongs to the Shilov boundary of \mathcal{A} if and only if given any open neighbourhood U of x, there exist $f \in \mathcal{A}$ such that $\left\|\left.f\right|_{X \backslash U}\right\|_{\infty}<\left\|\left.f\right|_{U}\right\|_{\infty}$.

Theorem 3.5. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal of \mathcal{A}. Then $\partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)=\partial^{+}(\mathcal{A}) \biguplus \partial^{-}(\mathcal{I})$.
Proof. Let $\varphi_{0} \in \partial \mathcal{A}$. Let \widetilde{U} be a neighborhood of φ_{0}^{+}. Set $U=\left\{\varphi \in \Delta(\mathcal{A}): \varphi^{+} \in \widetilde{U}\right\} \cup\left\{\psi \in \Delta(\mathcal{I}): \psi^{-} \in \widetilde{U}\right\}$. Then U is a neighborhood of φ_{0}. Therefore, by Theorem 3.4, there exists $a \in \mathcal{A}$ such that $\left\|\left.\widehat{a}\right|_{\Delta(\mathcal{A}) \backslash U}\right\|_{\infty}<\left\|\left.\widehat{a}\right|_{U}\right\|_{\infty}$. If $\psi^{-} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{U}$, then $\psi \in \Delta(\mathcal{A}) \backslash U$. If $\varphi^{+} \in \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right) \backslash \widetilde{U}$, then $\varphi \in \Delta(\mathcal{A}) \backslash U$. This gives $\left\|\left.(a, 0)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{U}}\right\|_{\infty}=\left\|\left.\widehat{a}\right|_{\Delta(\mathcal{A}) \backslash U}\right\|_{\infty}$. Also $(a, 0)^{\wedge}\left(\varphi^{+}\right)=\widehat{a}(\varphi)$ for every $\varphi^{+} \in \widetilde{U}$. Hence

$$
\left\|\left.(a, 0)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{U}}\right\|_{\infty}=\left\|\left.\widehat{a}\right|_{\Delta(\mathcal{A}) \backslash U}\right\|_{\infty}<\left\|\left.\widehat{a}\right|_{U}\right\|_{\infty}=\left\|\left.(a, 0)^{\wedge}\right|_{\tilde{U}}\right\|_{\infty}
$$

Therefore, by Theorem 3.4, $\varphi_{0}^{+} \in \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Thus $\partial^{+}(\mathcal{A}) \subset \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Let $\psi_{0} \in \partial \mathcal{I}$. Let \tilde{V} be a neighborhood of ψ_{0}^{-}. Set $V=\left\{\varphi \in \Delta(\mathcal{A}): \varphi^{+} \in \tilde{V}\right\} \cup\left\{\psi \in \Delta(\mathcal{I}): \psi^{-} \in \tilde{V}\right\}$. Then V is a neighborhood of ψ_{0}. Therefore, by Theorem 3.4, there exists $x \in \mathcal{I}$ such that $\left\|\left.\widehat{x}\right|_{\Delta(\mathcal{I}) \backslash V}\right\|_{\infty}<\left\|\left.\widehat{x}\right|_{V}\right\|_{\infty}$. If $\psi^{-} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{V}$, then $(x,-x)^{\wedge}\left(\psi^{-}\right)=2 \widehat{x}(\psi)$. If $\varphi^{+} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \widetilde{V}$, then $(x,-x)^{\wedge}\left(\varphi^{+}\right)=0$. This gives $\left\|\left.(x,-x)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{V}}\right\|_{\infty}=2\left\|\left.\widehat{x}\right|_{\Delta(\mathcal{I}) \backslash V}\right\|_{\infty}$. Hence

$$
\left\|\left.(x,-x)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{V}}\right\|_{\infty}=2\left\|\left.\widehat{x}\right|_{\Delta(\mathcal{I}) \backslash V}\right\|_{\infty}<2\left\|\left.\widehat{x}\right|_{V}\right\|_{\infty}=\left\|\left.(x,-x)^{\wedge}\right|_{\tilde{V}}\right\|_{\infty}
$$

Therefore, by Theorem 3.4, $\psi_{0}^{-} \in \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Thus $\partial^{-}(\mathcal{I}) \subset \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$.
For the reverse inclusion, let $\varphi_{0}^{+} \in \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Let U be a neighborhood of $\varphi_{0} \in \Delta(\mathcal{A})$. Then $\widetilde{U}=U^{+}$is a neighborhood of φ_{0}^{+}in $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Since $\varphi_{0}^{+} \in \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$, by Theorem 3.4, there exists $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$ such that $\left\|\left.(a, x)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \widetilde{U}}\right\|_{\infty}<$ $\left\|\left.(a, x)^{\wedge}\right|_{\tilde{U}}\right\|_{\infty}$. This gives $\left\|\left.(a+x)^{\wedge}\right|_{\Delta(\mathcal{A}) \backslash U}\right\|_{\infty}<\left\|\left.(a+x)^{\wedge}\right|_{U}\right\|_{\infty}$. Therefore $\varphi_{0} \in \partial \mathcal{A}$.
Let $\psi_{0}^{-} \in \partial\left(\mathcal{A} \times_{c} \mathcal{I}\right)$. Let V be a neighborhood of $\psi_{0} \in \Delta(\mathcal{I})$. Then V^{-}is a neighborhood of ψ_{0}^{-}in $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Since $\psi_{0}^{-} \in \partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$, by Theorem 3.4 , there exists $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$ such that $\left\|\left.(a, x)^{\wedge}\right|_{\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash \tilde{V}}\right\|_{\infty}<\left\|\left.(a, x)^{\wedge}\right|_{\tilde{V}}\right\|_{\infty}$. Hence $\left\|\left.(a-x)^{\wedge}\right|_{\Delta(\mathcal{I}) \backslash V}\right\|_{\infty} \leq\left\|\left.(a-x)^{\wedge}\right|_{V}\right\|_{\infty}$. Therefore, by Theorem 3.4, $\psi_{0} \in \partial \mathcal{I}$. Hence $\partial\left(\mathcal{A} \times_{c} \mathcal{I}\right) \subset \partial^{+}(\mathcal{A}) \biguplus \partial^{-}(\mathcal{I})$.

Remark 3.6. Let $\varphi \in \Delta(\mathcal{I})$. Then there exists $u \in \mathcal{I}$ such that $\varphi(u)=1$. Define Opt. Lett. $\varphi(a):=\varphi($ au). Then Opt. Lett. $\varphi \in \Delta(\mathcal{A})$. Thus every $\varphi \in \Delta(\mathcal{I})$ can be extended to $\Delta(\mathcal{A})$. Therefore, $\Delta(\mathcal{I}) \subset \Delta(\mathcal{A})$. Also, it is clear that $\Delta(\mathcal{A})=\Delta(\mathcal{I}) \cup\{\varphi \in \Delta(\mathcal{A}): \mathcal{I} \subset \operatorname{ker} \varphi\}$. Hence $\Delta^{+}(\mathcal{A}) \cup \Delta^{-}(\mathcal{I})=\Delta^{+}(\mathcal{A}) \cup \Delta^{-}(\mathcal{A})$ as sets

Theorem 3.7. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be closed ideal in \mathcal{A}. Then $\mathcal{A} \times{ }_{c} \mathcal{I}$ is semisimple if and only if \mathcal{A} is semisimple.

Proof. Suppose that $\mathcal{A} \times{ }_{c} \mathcal{I}$ is semisimple. Let $a \in \mathcal{A}$ such that $\varphi(a)=0 \quad(\varphi \in \Delta(\mathcal{A}))$. Let $\psi \in \Delta(\mathcal{A})$ and $u \in \mathcal{A}$ such that $\psi(u)=1$. Then $\psi^{+}((a, 0))=\psi(a u)+\psi(0)=\psi(a) \psi(u)+0=0$. Now let $\psi \in \Delta(\mathcal{I})$. Then, by Remark 3.6, Opt. Lett. $\psi \in \Delta(\mathcal{A})$. So, by the assumption, $\psi(a v)=$ Opt. Lett. $\psi(a)=0$. Hence $\psi^{-}((a, 0))=\psi(a v)=0$. Thus $\widetilde{\eta}((a, 0))=0$ for all $\widetilde{\eta} \in \Delta^{+}(\mathcal{A}) \uplus \Delta^{-}(\mathcal{I})$. Since $\mathcal{A} \times{ }_{c} \mathcal{I}$ is semisimple, $(a, 0)=(0,0)$ gives $a=0$. Thus \mathcal{A} is semisimple.

Conversely, suppose that \mathcal{A} is semisimple. Let $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$ be such that $\widetilde{\eta}((a, x))=0\left(\widetilde{\eta} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)\right.$. Let $\varphi \in \Delta(\mathcal{A})$. Then $\varphi^{+}, \varphi^{-} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. So that $\varphi^{+}((a, x))=\varphi^{-}((a, x))=0$. Then $\varphi(a)+\varphi(x)=\varphi(a)-\varphi(x)=0$. Hence $\varphi(a)=\varphi(x)=0$. Since $\varphi \in \Delta(\mathcal{A})$ is arbitrary and \mathcal{A} is semisimple, we get $a=x=0$. Hence $\mathcal{A} \times{ }_{c} \mathcal{I}$ is semisimple.

4. Uniqueness and Separation Properties

We start with the following lemma which will be used in the proofs of main results.
Lemma 4.1. Let \mathcal{A} be a semisimple, commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A}. Let $\widetilde{F} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Define $F_{\mathcal{A}}=\left\{\varphi \in \Delta(\mathcal{A}): \varphi^{+} \in \widetilde{F}\right.$ or $\left.\varphi^{-} \in \widetilde{F}\right\}$. Then
(1). $F_{\mathcal{A}}^{+} \cup F_{\mathcal{A}}^{-}=\widetilde{F}$;
(2). If \widetilde{F} is closed, then $F_{\mathcal{A}}$ is closed in $\Delta(\mathcal{A})$;
(3). If \widetilde{F} is a set of uniqueness for $\mathcal{A} \times{ }_{c} \mathcal{I}$, then so is $F_{\mathcal{A}}$ for \mathcal{A}.

Proof. (1) This is trivial.
(2) Suppose that $\widetilde{F} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$ is closed. Let $\varphi \in O p t$. Lett. $F_{\mathcal{A}}$. Then there exists a net $\left(\varphi_{\alpha}\right)$ in $F_{\mathcal{A}}$ such that $\varphi_{\alpha} \longrightarrow \varphi$. Then we get a subnet $\left(\varphi_{\alpha_{i}}\right)$ of $\left(\varphi_{\alpha}\right)$ such that either $\left\{\varphi_{\alpha_{i}}^{+}\right\} \subset \widetilde{F}$ or $\left\{\varphi_{\alpha_{i}}^{-}\right\} \subset \widetilde{F}$. Also, $\varphi_{\alpha_{i}}^{+} \longrightarrow \varphi^{+}$and $\varphi_{\alpha_{i}}^{-} \longrightarrow \varphi^{-}$. Since \widetilde{F} is closed, either $\varphi^{+} \in \widetilde{F}$ or $\varphi^{-} \in \widetilde{F}$. So that $\varphi \in F_{\mathcal{A}}$. Thus $F_{\mathcal{A}}$ is closed in $\Delta(\mathcal{A})$.
(3) Suppose that \widetilde{F} is a set of uniqueness for $\mathcal{A} \times{ }_{c} \mathcal{I}$. Let $a \in \mathcal{A}$ such that $\left.\widehat{a}\right|_{F_{\mathcal{A}}}=0$. Then $(a, 0)^{\wedge}\left(\varphi^{+}\right)=\varphi(a)=\widehat{a}(\varphi)=$ $0=(a, 0)^{\wedge}\left(\varphi^{-}\right)\left(\varphi \in F_{\mathcal{A}}\right)$. Thus $(a, 0)^{\wedge}=0$ on \widetilde{F}. This implies that $(a, 0)=(0,0)$ as \widetilde{F} is a set of uniqueness for $\mathcal{A} \times{ }_{c} \mathcal{I}$. Thus $a=0$. Hence $F_{\mathcal{A}}$ is a set of uniqueness for \mathcal{A}.

Definition 4.2 ([1, 3]). An algebra \mathcal{A} has unique uniform norm property (UUNP) if \mathcal{A} has exactly one uniform norm.
Theorem 4.3. Let \mathcal{A} be a semisimple, commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A}. Then $\mathcal{A} \times{ }_{c} \mathcal{I}$ has UUNP if and only if \mathcal{A} has UUNP.

Proof. Let $\mathcal{A} \times{ }_{c} \mathcal{I}$ have UUNP. Let $F \subset \Delta(\mathcal{A})$ be a closed set of uniqueness for \mathcal{A}. Then $F^{+} \uplus F^{-}$is a closed subset of $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Moreover, it is also a set of uniqueness for $\mathcal{A} \times_{c} \mathcal{I}$. Since $\mathcal{A} \times{ }_{c} \mathcal{I}$ has UUNP, by [3, Theorem 2.3], $\partial^{+}(\mathcal{A}) \uplus \partial^{-}(\mathcal{I}) \subset F^{+} \uplus F^{-}$. Since $\Delta^{+}(\mathcal{A})$ and $\Delta^{-}(\mathcal{I})$ are disjoint, $\partial^{+}(\mathcal{A}) \subset F^{+}$. So, $\partial \mathcal{A} \subset F$. Thus $\partial \mathcal{A}$ is the smallest closed set of uniqueness for \mathcal{A}. Hence, by [3, Theorem 2.3], \mathcal{A} has UUNP.

Conversely, suppose that \mathcal{A} has UUNP. Since \mathcal{A} is semisimple, $\mathcal{A} \times{ }_{c} \mathcal{I}$ is also semisimple by Theorem 3.7. Let $\widetilde{F} \subset \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$ be a closed set of uniqueness for $\mathcal{A} \times{ }_{c} \mathcal{I}$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a closed set of uniqueness for \mathcal{A} and $F_{\mathcal{A}}^{+} \uplus F_{\mathcal{A}}^{-}=\widetilde{F}$. Since \mathcal{A} has UUNP, by $\left[3\right.$, Theorem 2.3], $\partial \mathcal{A} \subset F_{\mathcal{A}}$. Hence $\partial^{+}(\mathcal{A}) \subset F_{\mathcal{A}}^{+}$. Also we may assume that \mathcal{A} has identity due to [2, Theorem 3.1]. Then, by [6, Theorem 3.4.13], $\partial I \subset \partial A$. Therefore $\partial I \subset F_{\mathcal{A}}$. Which implies that Hence $\partial^{-}(I) \subset F_{\mathcal{A}}^{-}$. Hence

$$
\partial\left(\mathcal{A} \times_{c} \mathcal{I}\right)=\partial^{+}(\mathcal{A}) \uplus \partial^{-}(\mathcal{I}) \subset F_{\mathcal{A}}^{+} \uplus F_{\mathcal{A}}^{-}=\widetilde{F} .
$$

Thus $\partial\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$ is the smallest closed set of uniqueness for $\mathcal{A} \times{ }_{c} \mathcal{I}$. Hence, again by [3, Theorem 2.3], $\mathcal{A} \times{ }_{c} \mathcal{I}$ has UUNP.
Definition $4.4([1,3])$. $A *$-algebra \mathcal{A} has unique C^{*}-norm property ($\mathrm{U} C^{*} \mathrm{NP}$) if \mathcal{A} has exactly one C^{*} norm.
Theorem 4.5. Let \mathcal{A} be a-semisimple, Banach $*$-algebra and \mathcal{I} be a closed $*$-ideal of \mathcal{A}. Then
(1). If $\mathcal{A} \times{ }_{c} \mathcal{I}$ has $U C^{*} N P$, then \mathcal{A} has $U C^{*} N P$;
(2). Suppose that \mathcal{A} is commutative. If \mathcal{A} has $U C^{*} N P$, then $\mathcal{A} \times{ }_{c} \mathcal{I}$ has $U C^{*} N P$.

Proof. (1) Suppose that $\mathcal{A} \times{ }_{c} \mathcal{I}$ has $U C^{*}$ NP. Let $|\cdot|_{\mathcal{A}}$ be the largest C^{*}-norm on \mathcal{A}. Define $|(a, x)|=\max \left\{|a+x|_{\mathcal{A}}, \mid a-\right.$ $\left.\left.x\right|_{\mathcal{A}}\right\}\left((a, x) \in \mathcal{A} \times_{c} \mathcal{I}\right)$. Then, by Lemma $2.5(3),|\cdot|$ is a C^{*}-norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$. Now, let $\left\|\left.\|\cdot\|\right|_{\mathcal{A}}\right.$ be any C^{*}-norm on \mathcal{A}. Define $\|\|(a, x)\|\|=\max \left\{\left\|\left|\left\|a+x\left|\left\|_{\mathcal{A}},\right\|\right|\right\| a-x \|_{\mathcal{A}}\right\}\left((a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}\right)\right.\right.$. Then, by Lemma 2.5 (3), ||| $\left.\cdot\right\| \mid$ is also a C^{*}-norm on $\mathcal{A} \times{ }_{c} \mathcal{I}$. Hence, by the hypothesis, $|\cdot|=\| \| \cdot \| \mid$ on $\mathcal{A} \times{ }_{c} \mathcal{I}$. Now,

$$
\left\|\left|\left\|a | \| _ { \mathcal { A } } = \operatorname { m a x } \{ \| | | a | \| _ { \mathcal { A } } , \| | | a | \| _ { \mathcal { A } } \} = \| | (a , 0) \left|\|=|(a, 0)|=|a|_{\mathcal{A}} \quad(a \in \mathcal{A})\right.\right.\right.\right.
$$

Thus \mathcal{A} has $\mathrm{U} C^{*} \mathrm{NP}$.
(2) Suppose that \mathcal{A} is commutative and it has $U C^{*} N P$. Since \mathcal{I} is a closed $*$-ideal in \mathcal{A}, by Theorem 2.2 of [1], \mathcal{I} has $\mathrm{U} C^{*}$ NP. Let $\Delta^{h}(\mathcal{A})$ denote the Hermitian Gel'fand space of \mathcal{A}. Let \widetilde{F} be a proper closed subset of $\Delta^{h}\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Set $F_{\mathcal{A}}=\left\{\varphi \in \Delta^{h}(\mathcal{A}): \varphi^{+} \in \widetilde{F}\right.$ or $\left.\varphi^{-} \in \widetilde{F}\right\}$. Then $F_{\mathcal{A}}$ is a proper closed subset of $\Delta^{h}(\mathcal{A})$ such that $F_{\mathcal{A}}^{+} \uplus F_{\mathcal{A}}^{-}=\widetilde{F}$. Since \mathcal{A} has $U C^{*} \mathrm{NP}$, by [1, Proposition 1.3], there exists a nonzero element $a \in \mathcal{A}$ such that $\left.\widehat{a}\right|_{F_{\mathcal{A}}}=0$. Then $\left.(a, 0)^{\wedge}\right|_{\tilde{F}}=\left.\widehat{a}\right|_{F_{\mathcal{A}}}=0$. Therefore, by [1, Proposition 1.3], $\mathcal{A} \times{ }_{c} \mathcal{I}$ has $U C^{*} \mathrm{NP}$.

Definition 4.6. A semisimple, commutative algebra \mathcal{A} is weakly regular if for each proper closed set $F \subset \Delta(\mathcal{A})$, there exists $a \in \mathcal{A}$ such that $\left.\widehat{a}\right|_{F}=0$.

Theorem 4.7. $\mathcal{A} \times{ }_{c} \mathcal{I}$ is weakly regular if and only if \mathcal{A} is weakly regular.

Proof. Let $\mathcal{A} \times{ }_{c} \mathcal{I}$ be weakly regular. Let F be a proper closed subset of $\Delta(\mathcal{A})$. Then $F^{+} \cup F^{-}$is a proper closed subset of $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$. Hence, by the hypothesis, there exists a non-zero element $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$ such that $\left.(a, x)^{\wedge}\right|_{F^{+} \cup F^{-}}=0$. This implies that $\left.(a, x)^{\wedge}\right|_{F^{+}}=0$ and $\left.(a, x)^{\wedge}\right|_{F^{-}}=0$. Then $(a+x)^{\wedge}(\varphi)=(a, x)^{\wedge}\left(\varphi^{+}\right)=0$ and $(a-x)^{\wedge}(\varphi)=(a, x)^{\wedge}\left(\varphi^{-}\right)=$ $0(\varphi \in F)$. Thus $\left.(a+x)^{\wedge}\right|_{F}=\left.(a-x)^{\wedge}\right|_{F}=0$. Also, note that either $a+x \neq 0$ or $a-x \neq 0$ as (a, x) is non-zero. Hence \mathcal{A} is weakly regular.

Conversely, assume that \mathcal{A} is weakly regular. Let \widetilde{F} be a proper closed subset of $\Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a proper closed subset of $\Delta(\mathcal{A})$ such that $F_{\mathcal{A}}^{+} \cup F_{\mathcal{A}}^{-}=\widetilde{F}$. Therefore, by the hypothesis, there exists $a \in \mathcal{A}$ such that $\left.\widehat{a}\right|_{F_{\mathcal{A}}}=0$. Now let $\widetilde{\eta} \in \widetilde{F}$. Then either $\widetilde{\eta}=\varphi^{+}$or $\widetilde{\eta}=\varphi^{-}$for some $\varphi \in F_{\mathcal{A}}$. Suppose that $\widetilde{\eta}=\varphi^{+}$for some $\varphi \in F_{\mathcal{A}}$. Then $(a, 0)^{\wedge}(\widetilde{\eta})=(a, 0)^{\wedge}\left(\varphi^{+}\right)=\varphi(a)=\widehat{a}(\varphi)=0$. Similarly, if $\widetilde{\eta}=\varphi^{-}$, then also $(a, 0)^{\wedge}(\widetilde{\eta})=0$. Thus, in each case, $(a, 0)^{\wedge}(\widetilde{\eta})=0$. Therefore $\left.(a, 0)^{\wedge}\right|_{\widetilde{F}}=0$. Hence $\mathcal{A} \times{ }_{c} \mathcal{I}$ is weakly regular.

Definition 4.8. \mathcal{A} is regular if for every closed set $F \subset \Delta(\mathcal{A})$ and an element $\varphi \in \Delta(\mathcal{A}) \backslash F$, there exists an element $a \in \mathcal{A}$ such that $\widehat{a}(\varphi)=1$ and $\left.\widehat{a}\right|_{F}=0$.

Theorem 4.9. $\mathcal{A} \times{ }_{c} \mathcal{I}$ is regular if and only if \mathcal{A} is regular.
Proof. Let $\mathcal{A} \times_{c} \mathcal{I}$ be regular. Let F be a closed subset of $\Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{A}) \backslash F$. Then F^{+}is a closed subset of $\Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right)$ and $\psi^{+} \in \Delta\left(\mathcal{A} \times{ }_{c} \mathcal{I}\right) \backslash\left(F^{+}\right)$. Hence, by the hypothesis, there exists $(a, x) \in \mathcal{A} \times{ }_{c} \mathcal{I}$ such that $\left.(a, x)^{\wedge}\right|_{F^{+}}=0$ and $(a, x)^{\wedge}\left(\psi^{+}\right)=1$. This implies that $(a+x)^{\wedge}(\varphi)=\varphi^{+}((a, x))=(a, x)^{\wedge}\left(\varphi^{+}\right)=0(\varphi \in F)$ and $(a+x)^{\wedge}(\psi)=(a, x)^{\wedge}\left(\psi^{+}\right)=1$. Thus \mathcal{A} is regular.
Conversely, assume that \mathcal{A} is regular. Since A is semisimple, $\mathcal{A} \times_{c} \mathcal{I}$ is also semisimple. Let \widetilde{F} be a closed subsets of $\Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right)$ and $\widetilde{\psi} \in \Delta\left(\mathcal{A} \times_{c} \mathcal{I}\right) \backslash \widetilde{F}$. Then, by Lemma 4.1, $F_{\mathcal{A}}$ is a proper closed subset of $\Delta(\mathcal{A})$ such that $F_{\mathcal{A}}^{+} \cup F_{\mathcal{A}}^{-}=\widetilde{F}$. Also, either $\widetilde{\psi}=\psi^{+}$or $\widetilde{\psi}=\psi^{-}$for some $\psi \in \Delta(\mathcal{A}) \backslash F_{\mathcal{A}}$, by Remark 3.6. Therefore, by the hypothesis, there exists $a \in \mathcal{A}$ such that $\left.\widehat{a}\right|_{F_{\mathcal{A}}}=0$ and $\widehat{a}(\psi)=1$. Now let $\widetilde{\eta} \in \widetilde{F}$. Then either $\widetilde{\eta}=\varphi^{+}$or $\widetilde{\eta}=\varphi^{-}$for some $\varphi \in F_{\mathcal{A}}$. Suppose that $\widetilde{\eta}=\varphi^{+}$ for some $\varphi \in F_{\mathcal{A}}$. Then $(a, 0)^{\wedge}(\widetilde{\eta})=(a, 0)^{\wedge}\left(\varphi^{+}\right)=\varphi(a)=\widehat{a}(\varphi)=0$. Similarly, if $\widetilde{\eta}=\varphi^{-}$, then also $(a, 0)^{\wedge}(\widetilde{\eta})=0$. Thus, in each case, $(a, 0)^{\wedge}(\widetilde{\eta})=0$. Therefore $\left.(a, 0)^{\wedge}\right|_{\widetilde{F}}=0$. Also, $(a, 0)^{\wedge}(\widetilde{\psi})=1$. Hence $\mathcal{A} \times{ }_{c} \mathcal{I}$ is regular.

References

[1] B. A. Barnes, The properties of $*$-regularity and uniqueness of C^{*}-norm in a general $*$-algebra, Trans. American Math. Soc., 279(2)(1983), 841-859.
[2] S. J. Bhatt and H. V. Dedania, Uniqueness of uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci.(Math. Sci.), 105(4)(1995), 405-409.
[3] S. J. Bhatt and H. V. Dedania, Banach algebras with unique uniform norm, Proc. American Math. Soc., 124(2)(1996), 579-584.
[4] H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of Banach algebras, Annals of Funct. Anal., 5(1)(2014), 51-55.
[5] H. J. Kanani, Spectral and uniqueness properties in various Banach algebra products, Sardar Patel University, (2016).
[6] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, New York, (2009).

[^0]: * E-mail: hvdedania@yahoo.com

