Cordiality of Transformation Graphs of Path

S. B. Chandrakala ${ }^{1, *}$, K. Manjula ${ }^{2}$ and B. Sooryanarayana ${ }^{3}$
1 Department of Mathematics, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India.
2 Department of Mathematics, Bangalore Institute of Technology, Bangalore, Karnataka, India.
3 Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka, India.

[^0]
1. Introduction

All graphs G considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notations. In 2001, Wu and Meng [3] introduced some new graphical transformations which generalizes the concept of the total graph. As is the case with the total graph, these generalizations referred to as transformation graphs $G^{x y z}$ have $V(G) \cup E(G)$ as the vertex set. The adjacency of two of its vertices is determined by adjacency and incidence nature of the corresponding elements in G. Let α, β be two elements of $V(G) \cup E(G)$. Then associativity of α and β is taken as + if they are adjacent or incident in G, otherwise -. Let $x y z$ be a 3 -permutation of the set $\{+,-\}$. The pair α and β is said to correspond to x or y or z of $x y z$ if α and β are both in $V(G)$ or both are in $E(G)$, or one is in $V(G)$ and the other is in $E(G)$ respectively. Thus the transformation graph $G^{x y z}$ of G is the graph whose vertex set is $V(G) \cup E(G)$. Two of its vertices α and β are adjacent if and only if their associativity in G is consistent with the corresponding element of $x y z$.
In particular the transformation graph G^{++-}of G is the graph with vertex set $V(G) \cup E(G)$ in which the vertices u and v are joined by an edge if one of the following holds
(1). both $u, v \in V(G)$ and u and v are adjacent in G
(2). both $u, v \in E(G)$ and u and v are adjacent in G
(3). one is in $V(G)$ and the other is in $E(G)$ and they are not incident with each other in G.

The transformation graphs are investigated in [4], [5] and [6].
A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. A mapping $f: V(G) \rightarrow\{0,1\}$ is called a binary labeling of the graph G. For each $v \in V(G), f(v)$ is called the vertex label of the

[^1]vertex v under f and for an edge $u v$ the induced edge labeling $g: E(G) \rightarrow\{0,1\}$ is given by $g(u v)=|f(u)-f(v)|$. Then f is called a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differs by at most 1 , and, the number of edges labeled 0 and the number of edges labeled 1 differs by at most 1 . A graph G is cordial if it admits a cordial labeling. This concept is introduced by Cahit [2].

For convenience, the transformation graph $G^{x y z}$ is partitioned into $G^{x y z}=S_{x}(G) \cup S_{y}(G) \cup S_{z}(G)$ where $S_{x}(G), S_{y}(G)$ and $S_{z}(G)$ are the edge-induced subgraphs of $G^{x y z}$. The edge set of each of which is respectively determined by x, y and z of the permutation $x y z . S_{x}(G) \cong G$ when x is + and $S_{x}(G) \cong \bar{G}$ when x is.$- S_{y}(G) \cong L(G)$ when y is + and $S_{y}(G) \cong \overline{L(G)}$ when y is - . When z is $+, \alpha, \beta \in V\left(G^{x y z}\right)$ are adjacent in $S_{z}(G)$ if they are incident with each other in G. When z is -, α, β are adjacent in $S_{z}(G)$ if they are not incident in G.

The following notations are used in relation to labeling of $G^{x y z}$:
Let V_{0} and V_{1} denote the set of vertices of $G^{x y z}$ labeled 0 and $1 . E_{0}$ and E_{1} denote set of edges of $G^{x y z}$ labeled 0 and 1 respectively. $E_{0}\left(S_{x}\right)$ and $E_{1}\left(S_{x}\right)$ denote set of edges labeled 0 and 1 in $S_{x}(G)$. Similar meanings are associates with $E_{0}\left(S_{y}\right)$, $E_{1}\left(S_{y}\right), E_{0}\left(S_{z}\right)$ and $E_{1}\left(S_{z}\right)$.
For $P_{n}^{x y z}$ xyz $\in\{++-,+--,-++,-+-,--+,---,+++\}$ we define a vertex labeling $f: V\left(P_{n}^{x y z}\right) \rightarrow\{0,1\}$ and specify the induced edge labeling $g: E\left(P_{n}^{x y z}\right) \rightarrow\{0,1\}$ then show that f is a cordial labeling.

2. Cordiality of Transformation Graphs of Path

Let $P_{n}=v_{1}-v_{2}-v_{3}-\ldots-v_{n}$ be the path on n vertices and $e_{j}=v_{j} v_{j+1}(1 \leq j \leq n-1)$ be the edges of P_{n}.

Theorem 2.1.

(a). For any positive integer $n \geq 3$ the transformation graph $P_{n}^{x y z}$ where $x y z \in\{++-,+--,-++,-+-,--+,---,+++\}$ are cordial.
(b). For $3 \leq n \leq 10$ or $n \geq 11$ and $n \equiv 0,1,2,3,4,5,6(\bmod 8), P_{n}^{+-+}$is cordial.

Proof.
(a). In each case defined a binary labeling $f: V\left(P_{n}^{x y z}\right) \rightarrow\{0,1\}$ as follows:

Case 1: When $x y z=++-$.
For $3 \leq n \leq 8$, vertices are labeled as in Table 1, which admits cordial labeling of P_{n}^{++-}.

n	$f\left(v_{1}\right) f\left(v_{2}\right) \ldots f\left(v_{n}\right)$	$f\left(e_{1}\right) f\left(e_{2}\right) \ldots f\left(e_{n-1}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
3	100	01	$3 \sim 2=1$	$3 \sim 2=1$
4	1110	000	$4 \sim 3=1$	$6 \sim 5=1$
5	11110	0000	$5 \sim 4=1$	$9 \sim 10=1$
6	111110	00001	$5 \sim 6=1$	$15 \sim 14=1$
7	0111110	000001	$7 \sim 6=1$	$21 \sim 20=1$

Table 1. Cordial labeling of P_{n}^{++-}for the case $3 \leq n \leq 8$.

For $n \geq 8$, express n as $n \equiv 0,1,2,3(\bmod 4)$ Let $n=4 r, n=4 r+1, n=4 r+2$ or $n=4 r+3)$. Then the vertices of P_{n}^{++-}are labeled as in Table 2.

n	$f\left(v_{i}\right)$	$f\left(e_{i}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$
$n=4 r$	(0 i ${ }^{0} 1$	$\begin{cases}0 & r \leq i \leq r+4+\left\lceil\frac{n-8}{2}\right\rceil \\ 1 & \text { otherwise }\end{cases}$	1
$n=4 r+1$	$\begin{cases}0 & r+3 \leq i \leq r+3+\left[\frac{n-8}{2}\right] \\ 0 & i=n\end{cases}$		
$n=4 r+2$	1 otherwise		
$n=4 r+3$	$\begin{cases}0 & i=1 \\ 0 & r+4 \leq i \leq r+4+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 0 & i=n \\ 1 & \text { otherwise }\end{cases}$		

Table 2. Cordial labeling of P_{n}^{++-}for the case $n \geq 8$.
where $\left|V_{0}\right|=\lceil(n-8) / 2\rceil+7+\lfloor(n-8) / 2\rfloor+1=n$ and $\left|V_{1}\right|=2 n-9-\lceil(n-8) / 2\rceil-\lfloor(n-8) / 2\rfloor=n-1$
For $n \geq 8$, induced edge mapping $g: E\left(P_{n}^{++-}\right) \rightarrow\{0,1\}$ is given below:
S_{x} receives the labeling :

$$
g\left(v_{i} v_{i+1}\right)= \begin{cases}1 & i=1, n-1, r+2, r+3+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 0 & \text { otherwise }\end{cases}
$$

S_{y} receives the labeling :

$$
g\left(e_{j} e_{j+1}\right)= \begin{cases}1 & j=r-1 \\ 1 & j=r+4+\left\lceil\frac{n-8}{2}\right\rceil \\ 0 & \text { otherwise }\end{cases}
$$

S_{z} receives the labeling :

$$
\text { when } n \equiv 0,1,2(\bmod 4)
$$

for each $1 \leq j \leq r-1 ; r+5+\left\lceil\frac{n-8}{2}\right\rceil \leq j \leq n-1$ and $i \neq j, j+1$

$$
g\left(e_{j} v_{i}\right)= \begin{cases}1 & i=1, n \\ 1 & r+3 \leq i \leq r+3+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 0 & \text { otherwise }\end{cases}
$$

for each $r \leq j \leq r+4+\left\lceil\frac{n-8}{2}\right\rceil$ and $i \neq j, j+1$

$$
g\left(e_{j} v_{i}\right)= \begin{cases}0 & i=1, n \\ 0 & r+3 \leq i \leq r+3+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 1 & \text { otherwise }\end{cases}
$$

when $n \equiv 3(\bmod 4)$
for each $1 \leq j \leq r-1 ; r+5+\left\lceil\frac{n-8}{2}\right\rceil \leq j \leq n-1$ and $i \neq j, j+1$

$$
g\left(e_{j} v_{i}\right)= \begin{cases}1 & i=1, n \\ 1 & r+4 \leq i \leq r+4+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 0 & \text { otherwise }\end{cases}
$$

for each $r \leq j \leq r+4+\left\lceil\frac{n-8}{2}\right\rceil$ and $i \neq j, j+1$

$$
g\left(e_{j} v_{i}\right)= \begin{cases}0 & i=1, n \\ 0 & r+4 \leq i \leq r+4+\left\lfloor\frac{n-8}{2}\right\rfloor \\ 1 & \text { otherwise }\end{cases}
$$

$\left|E_{0}\right|$ and $\left|E_{1}\right|$ for the case $n \geq 8$ are calculated as in Table 3.

n	$\left\|E_{0}\left(S_{x}\right)\right\|$	$\left\|E_{0}\left(S_{y}\right)\right\|$	$E_{0}\left(S_{z}\right) \mid$	$\left\|E_{1}\left(S_{x}\right)\right\|$	$\left\|E_{1}\left(S_{y}\right)\right\|$	$E_{1}\left(S_{z}\right)$	$\left\|\left\|E_{0}\right\|-\left\|E_{1}\right\|\right.$
$n=4 r$	$n-5$	$n-4$	$2 n r-n+9-6 r$	4	2	$2 n r+n-7-6 r$	1
$n=4 r+1$			$2 n r-n-4 r+7$			$2 n r+2 n-8 r-8$	1
$n=4 r+2$			$2 n r-6 r+6$			$2 n r+2 n-6 r-10$	1
$n=4 r+3$			$2 n r-4 r+5$			$2 n r+3 n-8 r-6$	1

Table 3. $\left|E_{0}\right|$ and $\left|E_{1}\right|$ of P_{n}^{++-}for the case $n \geq 8$.

Therefore P_{n}^{++-}is cordial.
Case 2: When $x y z=+++$.
$f\left(v_{i}\right)=1 \quad$ for $1 \leq i \leq n$
$f\left(e_{i}\right)=0 \quad$ for $1 \leq i \leq n-1$
Therefore $\left|V_{0}\right|=n-1$ and $\left|V_{1}\right|=n$ and hence $\| V_{0}\left|-\left|V_{1}\right|\right|=1$. The induced edge labeling $g: E\left(P_{n}^{+++}\right) \rightarrow\{0,1\}$ for the edges of

- $S_{x} \cong P_{n}: \quad g\left(v_{i} v_{i+1}\right)=0,1 \leq i \leq n-1$
- $S_{y} \cong L\left(P_{n}\right): g\left(e_{j} e_{j+1}\right)=0,1 \leq j \leq n-2$ and
- $S_{z}: g\left(e_{j} v_{i}\right)=1$ for $1 \leq j \leq n-1$ and $i=j, j+1$.

Clearly,

$$
\begin{aligned}
& \left|E_{0}\right|=\left|E_{0}\left(S_{x}\right)\right|+\left|E_{0}\left(S_{y}\right)\right|+\left|E_{0}\left(S_{z}\right)\right|=(n-1)+(n-2)+0=2 n-3 \\
& \left|E_{1}\right|=\left|E_{1}\left(S_{x}\right)\right|+\left|E_{1}\left(S_{y}\right)\right|+\left|E_{1}\left(S_{z}\right)\right|=0+0+2(n-1)=2 n-2
\end{aligned}
$$

and $\left|E_{0}\right|-\left|E_{1}\right|=-1$. Thus P_{n}^{+++}is cordial.
Case 3: When $x y z=-+-$.
For $3 \leq n<8$, the vertices of P_{n}^{-+-}are labeled as in Table 4 which admits cordial labeling.

n	$f\left(v_{1}\right) f\left(v_{2}\right) \ldots f\left(v_{n}\right)$	$f\left(e_{1}\right) f\left(e_{2}\right) \ldots f\left(e_{n-1}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
3	010	10	$3 \sim 2=1$	$2 \sim 2=0$
4	0101	101	$3 \sim 4=1$	$5 \sim 6=1$
5	01010	1010	$5 \sim 4=1$	$10 \sim 11=1$
6	010101	10010	$6 \sim 5=1$	$16 \sim 17=1$
7	0101010	100101	$7 \sim 6=1$	$25 \sim 25=0$

Table 4. Cordial labeling of P_{n}^{-+-}for the case $n<8$.

For $n \geq 8$ the vertices of P_{n}^{-+-}are labeled as in Table 5 .

n	$f\left(e_{i}\right)$	$f\left(v_{i}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$
$\begin{aligned} & n=8 r \\ & n=8 r+1 \\ & n=8 r+2 \\ & n=8 r+3 \\ & n=8 r+4 \\ & n=8 r+5 \\ & \hline \end{aligned}$	$\begin{cases}0 & r+2 \leq i \leq 2 r+2 \\ 0 & 2 r+4 \leq i \equiv 0(\bmod \quad 2) \leq n-1 \\ 1 & \text { otherwise }\end{cases}$	$\begin{cases}1 & i \equiv 0,2,4,6(\bmod 8) \\ 0 & \text { otherwise }\end{cases}$	1
$\begin{aligned} & n=8 r+6 \\ & n=8 r+7 \end{aligned}$	$\begin{cases}0 & r+2 \leq i \leq 2 r+3 \\ 0 & 2 r+5 \leq i \equiv 1(\bmod 2) \leq n-1 \\ 1 & \text { otherwise }\end{cases}$		1

Table 5. Cordial labeling of P_{n}^{-+-}for the case $n \geq 8$.

Therefore $\left|V_{0}\right|=\frac{n}{2}+r+1+(n-2 r-4) / 2=n-1$ and $\left|V_{1}\right|=\frac{n}{2}+r+1+(n-2 r-2) / 2=n$.
For $n \geq 8$, the induced edge mapping $g: E\left(P_{n}^{-+-}\right) \rightarrow\{0,1\}$ for the edges of

- $S_{x} \cong \overline{P_{n}}$: for each $1 \leq i \leq n$

$$
g\left(v_{i} v_{j}\right)= \begin{cases}0 & j=i+2, i+4, \ldots,(n-1) \text { or } n \\ 1 & j=i+3, i+5, \ldots, n \text { or }(n-1)\end{cases}
$$

- $S_{y} \cong L\left(P_{n}\right)$:
$g\left(e_{j} e_{j+1}\right)= \begin{cases}0 & 1 \leq j \leq r \\ 0 & r+2 \leq j \leq(2 r+2) \text { if } n \equiv 6,7(\bmod 8) \\ 0 & r+2 \leq j \leq(2 r+1) \text { if } n \equiv 0,1,2,3,4,5(\bmod 8) \\ 1 & \text { otherwise }\end{cases}$
- $S_{z}: \quad$ when $n \equiv 6,7(\bmod 8)$ Let $n=8 r+6$ or $n=8 r+7$
for each $1 \leq j \leq r+1$ or $2 r+4 \leq j \equiv 0(\bmod 2) \leq n-1$ and $i \neq j, j+1$
$g\left(e_{j} v_{i}\right)=\left\{\begin{array}{cc}0 & i \equiv 1(\bmod 2) \\ 1 & i \equiv 0(\bmod 2)\end{array}\right.$
for each $(r+2 \leq j \leq 2 r+3)$ or $(2 r+5 \leq j \equiv 1(\bmod 2) \leq n-1)$ and $i \neq j, j+1$
$g\left(e_{j} v_{i}\right)=\left\{\begin{array}{rr}0 & i \equiv 0(\bmod 2) \\ 1 & i \equiv 1(\bmod 2)\end{array}\right.$
when $n \equiv 0,1,2,3,4,5(\bmod 8)$
Let $n=8 r+k \quad 0 \leq k \leq 5$
for each $(1 \leq j \leq r+1)$ or $(2 r+3 \leq j \equiv 1(\bmod 2) \leq n-1)$ and $i \neq j, j+1$
$g\left(e_{j} v_{i}\right)=\left\{\begin{array}{cc}0 & i \equiv 1(\bmod 2) \\ 1 & i \equiv 0(\bmod 2)\end{array}\right.$
for each $(r+2 \leq j \leq 2 r+2)$ or $(2 r+4 \leq j \equiv 0(\bmod 2) \leq n-1)$ and $i \neq j, j+1$
$g\left(e_{j} v_{i}\right)=\left\{\begin{array}{cc}0 & i \equiv 0(\bmod 2) \\ 1 & i \equiv 1(\bmod 2)\end{array}\right.$
$\left|E_{0}\right|$ and $\left|E_{1}\right|$ in the above different cases are listed in the Tables 6, 7 and their difference in Table 8.

n	$\left\|E_{0}\left(S_{x}\right)\right\|$	$\left\|E_{0}\left(S_{z}\right)\right\|$	$\left\|E_{1}\left(S_{x}\right)\right\|$	$\left\|E_{1}\left(S_{z}\right)\right\|$
Even	$2 \sum_{i=1}^{\frac{n-2}{2}} i$		$\frac{(n-1)(n-2)}{2}$	$\frac{n-2}{2}+2 \sum_{i=1}^{\frac{n-4}{2}} i$
Odd	$\frac{n-1}{2}+2 \sum_{i=1}^{\frac{n-2}{2}} i$		$2 \sum_{i=1}^{\frac{n-3}{2}} i$	

Table 6. $\left|E_{0}\right|$ and $\left|E_{1}\right|$ of S_{x} and S_{z} in P_{n}^{-+-}for the case $n \geq 8$.

n	$\left\|E_{0}\left(S_{y}\right)\right\|$	$\left\|E_{1}\left(S_{y}\right)\right\|$
$n \equiv 0,1,2,3,4,5(\bmod 8)$	$2 r$	$n-2 r-2$
$n \equiv 6,7(\bmod 8)$	$2 r+1$	$n-2 r-3$

Table 7. $\left|E_{0}\right|$ and $\left|E_{1}\right|$ of S_{y} in P_{n}^{-+-}for the case $n \geq 8$.

n		$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
Even	$\begin{gathered} n=8 r \\ n=8 r+2 \\ n=8 r+4 \end{gathered}$	$\frac{8 r-n+2}{2}$	1
			0
			1
	$n=8 r+6$	$\frac{8 r-n+6}{2}$	0
Odd	$\begin{aligned} & n=8 r+1 \\ & n=8 r+3 \\ & n=8 r+5 \end{aligned}$	$\frac{8 r-n+3}{2}$	1
			0
			1
	$n=8 r+7$	$\frac{8 r-n+7}{2}$	0

Table 8. $\left|E_{0}\right| \sim\left|E_{1}\right|$ in P_{n}^{-+-}for the case $n \geq 8$.

Therefore P_{n}^{-+-}is cordial.
Case 4: When $x y z=-++$ Here the binary labeling $f: V\left(P_{n}^{-++}\right) \rightarrow\{0,1\}$ is same as given to P_{n}^{-+-}.
For $n \geq 8$, induced edge mapping $g: E\left(P_{n}^{-++}\right) \rightarrow\{0,1\}$ is given below:
S_{x} and S_{y} of P_{n}^{-++}receives the labeling as mentioned in the case of P_{n}^{-+-}.
S_{z} receives the labeling as below:
when $n \equiv 0,1,2,3,4,5(\bmod 8)$
for $2 r+3 \leq j \leq n-1: \quad g\left(e_{j} v_{j+1}\right)=0$ and $g\left(e_{j} v_{j}\right)=1$
for $1 \leq j \leq r+1: g\left(e_{j} v_{j+1}\right)=\left\{\begin{array}{ll}0 & j \text { odd } \\ 1 & j \text { even }\end{array}\right.$ and

$$
g\left(e_{j} v_{j}\right)=\left\{\begin{array}{cc}
1 & j \text { odd } \\
0 & j \text { even }
\end{array}\right.
$$

for $r+2 \leq j \leq 2 r+3(w h e n ~ n \equiv 6,7(\bmod n))$ or $2 r+2$ (otherwise)
$g\left(e_{j} v_{j+1}\right)=\left\{\begin{array}{ll}0 & j \text { even } \\ 1 & j \text { odd }\end{array} \quad\right.$ and $\quad g\left(e_{j} v_{j}\right)= \begin{cases}1 & j \text { even } \\ 0 & j \text { odd }\end{cases}$

$$
\text { when } n \equiv 6(\bmod 8) \text { let } n=8 r+6
$$

for $2 r+4 \leq j \leq n-1: g\left(e_{j} v_{j+1}\right)=1$ and $g\left(e_{j} v_{j}\right)=0$
when $n \equiv 7(\bmod 8)$ let $n=8 r+7$
for $2 r+4 \leq j \leq n-2: g\left(e_{j} v_{j+1}\right)=0$ and $g\left(e_{j} v_{j}\right)=1$
In $P_{n}^{-++},\left|E_{0}\left(S_{x}\right)\right|,\left|E_{1}\left(S_{x}\right)\right|,\left|E_{0}\left(S_{y}\right)\right|$ and $\left|E_{1}\left(S_{y}\right)\right|$ are same as P_{n}^{-+-}mentioned in Case 3 but $\left|E_{0}\left(S_{z}\right)\right|=$ $\left|E_{1}\left(S_{z}\right)\right|=n$, so that $\left|E_{0}\right|$ and $\left|E_{1}\right|$ for different cases satisfies $\left|E_{0}\right| \sim\left|E_{1}\right| \leq 1$.

Therefore P_{n}^{-++}is cordial.
Case 5: When $x y z=--+$
For $3 \leq n \leq 7$ the vertices of P_{n}^{--+}are labeled as in Table 9 which admits cordial labeling.

n	$f\left(v_{1}\right) f\left(v_{2}\right) \ldots f\left(v_{n}\right)$	$f\left(e_{1}\right) f\left(e_{2}\right) \ldots f\left(e_{n-1}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
3	101	10	$2 \sim 3=1$	$3 \sim 2=1$
4	1010	110	$3 \sim 4=1$	$5 \sim 5=0$
5	10101	1100	$4 \sim 5=1$	$8 \sim 9=1$
6	101010	11001	$5 \sim 6=1$	$13 \sim 13=0$
7	0101010	110011	$6 \sim 7=1$	$17 \sim 17=0$

Table 9. Cordial labeling of P_{n}^{--+}for the case $n \leq 7$.

For $n \geq 8$ the vertices of P_{n}^{--+}are labeled as follows:
for allx $\in V\left(P_{n}^{--+}\right), f(x)== \begin{cases}0 & \text { if } x=v_{i}, \quad i \equiv 0,2(\bmod 4) \\ 0 & \text { if } x=e_{i} \quad i \equiv 0,3(\bmod 4) \\ 1 & \text { otherwise }\end{cases}$
For $n \geq 8$, induced edge mapping $g: E\left(P_{n}^{--+}\right) \rightarrow\{0,1\}$ for the edges of

- S_{x} : for each $1 \leq i \leq n$

$$
g\left(v_{i} v_{j}\right)= \begin{cases}1 & j=i+2, i+4, \ldots,(n-1) \text { orn } \\ 0 & j=i+3, i+5, \ldots, n \text { or }(n-1)\end{cases}
$$

- S_{y} : for each $j \equiv 0,3(\bmod 4)$

$$
g\left(e_{j} e_{k}\right)= \begin{cases}0 & j+3 \leq k \equiv 0,3(\bmod 4) \leq n-1 \\ 1 & \text { otherwise }\end{cases}
$$

for each $j \equiv 1,2(\bmod 4)$

$$
g\left(e_{j} e_{k}\right)= \begin{cases}0 & j+3 \leq k \equiv 1,2(\bmod 4) \leq n-1 \\ 1 & \text { otherwise }\end{cases}
$$

- $S_{z}: g\left(e_{j} v_{j+1}\right)= \begin{cases}0 & j \equiv 2,3(\bmod 4) \\ 1 & \text { otherwise }\end{cases}$

$$
g\left(e_{j} v_{j}\right)=\left\{\begin{array}{cc}
0 & j \equiv 0,1(\bmod 4) \\
1 & \text { otherwise }
\end{array}\right.
$$

$\left|E_{0}\right|$ and $\left|E_{1}\right|$ of P_{n}^{--+}for the case $n \geq 7$ are given in Table 10

	n	$\left\|E_{0}\left(S_{x}\right)\right\|$	$\left\|E_{0}\left(S_{y}\right)\right\|$	$\left\|E_{0}\left(S_{z}\right)\right\|$	$\left\|E_{1}\left(S_{x}\right)\right\|$	$E_{1}\left(S_{y}\right) \mid$	$\left\|E_{1}\left(S_{z}\right)\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
	Even	$2 \sum^{\frac{n-2}{2}} i$	$2 \sum^{\frac{n-4}{2} i}$	$n-1$	$\frac{n-2}{2}+2 \sum^{\frac{n-4}{2}} i$	$\frac{n-2}{2}+2 \sum^{\frac{n-4}{2}} i$	$n-1$	0
O	$n=3+4 r$	$\frac{n-1}{2}+2 \sum_{i=1}^{\frac{n-3}{2}} i$	$4 \sum_{i=1}^{r}(2 i-1)$		$2 \sum_{i=1}^{\frac{n-3}{2}} i$	$2 \sum_{i=1}^{2 r-1} i+n-3$		1
d	$n=1+4 r$		$4 \sum_{i=1}^{1} 2 i$			$2 \sum_{i=1}^{2 r} i+n-2$		1

Table 10. $\left|E_{0}\right|$ and $\left|E_{1}\right|$ of P_{n}^{--+}for the case $n \geq 7$

Therefore P_{n}^{--+}is cordial.
Case 6: When $x y z=---$
Define a binary labeling $f: V\left(P_{n}^{---}\right) \rightarrow\{0,1\}$ same as given to P_{n}^{--+}in Case 5 which admits cordiality.
For $n \geq 8$, induced edge mapping $g: E\left(P_{n}^{---}\right) \rightarrow\{0,1\}$ is:
S_{x} and S_{y} of receives the labeling same as in case of P_{n}^{--+}.
S_{z} receives the labeling :
for each $j \equiv 1,2(\bmod 4) g\left(e_{j} v_{i}\right)= \begin{cases}0 & i \equiv 0,2(\bmod 4) \\ 1 & \text { otherwise }\end{cases}$
for each $j \equiv 0,3(\bmod 4) g\left(e_{j} v_{i}\right)= \begin{cases}0 & i \equiv 1,3(\bmod 4) \\ 1 & \text { otherwise }\end{cases}$

In $P_{n}^{---},\left|E_{0}\left(S_{x}\right)\right|,\left|E_{1}\left(S_{x}\right)\right|,\left|E_{0}\left(S_{y}\right)\right|$ and $\left|E_{1}\left(S_{y}\right)\right|$ are same as P_{n}^{-+-}mentioned in Case 3 but $\left|E_{0}\left(S_{z}\right)\right|=$ $n\left(\left\lfloor\frac{n}{2}\right)-1\left|E_{1}\left(S_{z}\right)\right|=n\left(\left\lceil\frac{n}{2}-1\right)\right.\right.$, so that $\left|E_{0}\right|$ and $\left|E_{1}\right|$ for different cases satisfies $\| E_{0}\left|-\left|E_{1}\right|\right| \in\{0,1\}$

Case 7: When $x y z=+--$
For $3 \leq n<11$, the vertices of P_{n}^{+--}are labeled as in Table 11 which admits cordial labeling.

n	$f\left(v_{1}\right) f\left(v_{2}\right) \ldots f\left(v_{n}\right)$	$f\left(e_{1}\right) f\left(e_{2}\right) \ldots f\left(e_{n-1}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
3	000	11	$3 \sim 2=1$	$2 \sim 2=0$
5	01100	0101	$5 \sim 4=1$	$10 \sim 9=0$
6	011001	01010	$6 \sim 7=1$	$16 \sim 15=1$
7	0111001	010101	$6 \sim 7=1$	$23 \sim 24=1$
8	0111001	010101	$8 \sim 7=1$	$32 \sim 32=0$
9	011100101	0101010	$8 \sim 9=1$	$42 \sim 43=1$
10	0111001010	010101010	$10 \sim 9=1$	$54 \sim 55=1$

Table 11. Cordial labeling of P_{n}^{+--}for the case $n<11$.

For $n \geq 11$
(i). When n is odd and $n \equiv 3,5,7,1(\bmod 8)$, each n is expressed in the form $n-11 \equiv 0,2,4,6(\bmod 8)$ respectively. (i.e., $n=11+8 r, \quad n=11+8 r+2, \quad n=11+8 r+4, \quad n=11+8 r+6$)
$f\left(v_{1}\right)=0$
$f\left(v_{i}\right)= \begin{cases}0 & i=1 \\ 0 & r+5 \leq i \leq 2 r+7 \\ 0 & i=2 r+9,2 r+11,2 r+13, \ldots, n \\ 1 & \text { otherise }\end{cases}$
when $n \equiv 3(\bmod 8), f\left(e_{1}\right)=1$ and when $n \equiv 5,7,1(\bmod 8), f\left(e_{1}\right)=0$
$f\left(e_{i}\right)= \begin{cases}0 & i=3,5,7, \ldots, n-1 \\ 1 & \text { otherise }\end{cases}$
(ii). When n is even and $n \equiv 4,6,0,2,(\bmod 8)$, each n is expressed in the form $n-11 \equiv 1,3,5,7(\bmod 8)$ (i.e.,
$n=11+8 r+1, \quad n=11+8 r+3, \quad n=11+8 r+5, \quad n=11+8 r+7)$
$f\left(v_{1}\right)=0$
when $n \equiv 4(\bmod 8), f\left(v_{r+5}\right)=1$ and
when $n \equiv 6,0,2(\bmod 8), f\left(v_{r+5}\right)=0$
$f\left(v_{i}\right)= \begin{cases}0 & r+6 \leq i \leq 2 r+7 \\ 0 & i=2 r+9,2 r+11, \ldots, n \\ 1 & \text { otherise }\end{cases}$
$f\left(e_{i}\right)= \begin{cases}0 & i=3,5,7, \ldots, n-1 \\ 1 & \text { otherise }\end{cases}$
For both odd and even $n,\left\|V_{0} \mid-V_{1}\right\|=1$.
For $n \geq 11$, induced edge mapping $g: E\left(P_{n}^{+--}\right) \rightarrow\{0,1\}$ for the edges of

- $S_{x}: \quad g\left(v_{i} v_{i+1}\right)= \begin{cases}0 & 2 \leq i \leq r+3 \text { if } n \text { is odd } \\ 0 & 2 \leq i \leq r+4 \text { ifn is even } \\ 0 & r+5 \leq i \leq 2 r+6 \\ 1 & \text { otherwise }\end{cases}$
- S_{y} : When $\quad n-11 \equiv 4,5,6,7,0,1(\bmod 8)$
for each $1 \leq j \leq n-1, \quad k \neq j, j+1$

$$
g\left(e_{j} e_{k}\right)= \begin{cases}0 & k=j+2, j+4, j+6, \ldots,(n-1) \text { or }(n-2) \\ 1 & \text { otherwise }\end{cases}
$$

When $\quad n-11 \equiv 0(\bmod 8)$

$$
g\left(e_{1} e_{k}\right)= \begin{cases}0 & k=4,6,8, \ldots,(n-1) \\ 1 & k=3,5,7,9, \ldots,(n-2)\end{cases}
$$

for each $2 \leq j \leq n-1, \quad k \neq j, j+1$

$$
g\left(e_{j} e_{k}\right)= \begin{cases}0 & k=j+2, j+4, j+6, \ldots,(n-1) \text { or }(n-2) \\ 1 & \text { otherwise }\end{cases}
$$

- S_{z} : When $\quad n-11 \equiv 1,2,3,4,5,6(\bmod 8)$
for each $j \equiv 1(\bmod 2), \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)=\left\{\begin{array}{cc}
0 & r+5 \leq k \leq 2 r+7 \\
0 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\
1 & \text { otherwise }
\end{array}\right.
$$

for each $j \equiv 0(\bmod 2), \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)=\left\{\begin{array}{cc}
1 & r+5 \leq k \leq 2 r+7 \\
1 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

When $\quad n-11 \equiv 0(\bmod 8)$
for each $j=3,5,7, \ldots,(n-2) \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)=\left\{\begin{array}{cc}
0 & r+5 \leq k \leq 2 r+7 \\
0 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\
1 & \text { otherwise }
\end{array}\right.
$$

for each $j=1,2,4,6,8, \ldots,(n-1) \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)=\left\{\begin{array}{cc}
1 & r+5 \leq k \leq 2 r+7 \\
0 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

When $\quad n-11 \equiv 1(\bmod 8)$
for each $j=1,3,5,7, \ldots,(n-1) \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)= \begin{cases}0 & r+6 \leq k \leq 2 r+7 \\ 0 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\ 1 & \text { otherwise }\end{cases}
$$

for each $j=2,4,6,8, \ldots,(n-2) \quad k \neq j, j+1$

$$
g\left(e_{j} v_{k}\right)=\left\{\begin{array}{cc}
1 & r+6 \leq k \leq 2 r+7 \\
1 & 2 r+9 \leq k \equiv 1(\bmod 2) \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

For odd $n,\left|E_{0}\right|$ and $\left|E_{1}\right|$ can be calculated as in the above cases and $\left|E_{0}\right|-\left|E_{1}\right|=0$.

Similar to the above discussion, $\| E_{0}\left|-\left|E_{1}\right|\right| \leq 1$ when n is even.
Therefore P_{n}^{+--}is cordial.
(b). When $x y z=+-+$

Here we show that P_{n}^{+-+}is cordial for $n \equiv 0,1,2,3,4,5,6(\bmod 8)$.
Here we express $n \equiv 0,1,2,3,4,5,6(\bmod 8)$ as $n-11 \equiv 0,1,2,3,5,6,7(\bmod 8)$.
For $4 \leq n<11$ we label the vertices as in Table12 which admits cordial labeling of P_{n}^{+-+}

n	$f\left(v_{1}\right) f\left(v_{2}\right) \ldots f\left(v_{n}\right)$	$f\left(e_{1}\right) f\left(e_{2}\right) \ldots f\left(e_{n-1}\right)$	$\left\|V_{0}\right\| \sim\left\|V_{1}\right\|$	$\left\|E_{0}\right\| \sim\left\|E_{1}\right\|$
4	0110	110	$4 \sim 3=1$	$5 \sim 6=1$
5	01100	0101	$5 \sim 4=1$	$8 \sim 7=1$
6	011001	01010	$6 \sim 5=1$	$11 \sim 10=1$
7	0110010	010101	$7 \sim 6=1$	$14 \sim 14=0$
8	01100101	0101010	$8 \sim 7=1$	$18 \sim 18=0$
9	011001010	01010101	$9 \sim 8=1$	$22 \sim 23=1$
10	0110010101	010101010	$10 \sim 9=1$	$27 \sim 28=1$

Table 12. Cordial labeling of P_{n}^{+-+}for the case $n<7$.
(i) When $n \equiv 3(\bmod 8)$ we express n as $n-11 \equiv 0(\bmod 8)$ Let $n=11+8 r$.
$f\left(v_{i}\right)= \begin{cases}0 & i=1 \\ 0 & r+5 \leq i \leq 2 r+7 \\ 0 & i=2 r+9,2 r+11,2 r+13, \ldots, n \\ 1 & \text { otherise }\end{cases}$
$f\left(e_{i}\right)= \begin{cases}0 & i=1,3,5,7, \ldots, n-4 \\ 0 & i=n-2 \\ 1 & \text { otherise }\end{cases}$
which admits cordial labeling.
(ii) When $n \equiv 0,1,2,5,6(\bmod 8)$ we express n as $n-11 \equiv 5,6,7,0,1(\bmod 8)$. Let $n=13+8 r, 14+8 r, 15+8 r, 16+$ $8 r, 17+8 r$. We define binary labeling for these n values same as defined in case of P_{n}^{+--}which admits cordial labeling.

References

[1] Frank Harary, Graph theory, Narosa Publishing House, New Delhi, (1969).
[2] I. Cahit, Cordial graphs: a weaker version of graceful andharmonious graphs, Ars Combin., 23(1987), 201-207.
[3] B. Wu and J. Meng, Basic properies of total transformation graphs, J.Math. Study, 34(2)(2001), 109-116.
[4] Baoyindureng Wu, Li Zhang and Zhao Zhang, The transformation graph $G^{x y z}$ when $x y z=-++$, Discrete Mathematics, 296(2005), 263-270.
[5] Lan Xu and Baoyindureng Wu, The transformation graph G^{-+-}, Discrete Mathematics, 308(2008), 5144-5148.
[6] S. B. Chandrakala, K. Manjula and B. Sooryanarayana, The Transformation graph $G^{x y z}$ when $x y z=++-$, International Journal of Mathematical Sciences And Engineering Applications, I(3)(2009), 249-259.
[7] S. B. Chandrakala and K. Manjula, Cordiality of Transformation Graphs of Cycle, International Journal of Mathematics Research, Accepted.
[8] A. T. Diab, Study of some problems of cordial graphs, Ars Combin., 92(2009), 255-261.
[9] A. T. Diab, On cordial labelings of the second power of paths with other graphs, Ars Combin., 97A(2010), 327-343.
[10] A. T. Diab, Generalization of Some Results on cordial graphs, Ars Combin., XCIX(2011), 161-173.
[11] Xi. Yue, Yang Yuansheng and Wang Liping, One edge union of k shell gaph is cordial, Ars Combinatoria, 86(2008), 403-408.
[12] G. Sethuraman and P. Selvaraju, One edge union of shell gaphs and one vertex union of complete bipartite graphs are cordial, Discrete Mathematics, 259(2002), 343-350.
[13] S. Vaidya, G. Ghodasara, S. Srivastav and V. Kaneria, Some new cordial graphs, Int. J. Scientific Computing, 2(1), 81-92.
[14] S. Vaidya, G. Ghodasara, S. Srivastav and V. Kaneria, Cordial and 3-equitable labeling of star of a cycle, Mathematics Today 24, 237-246.
[15] S. B. Chandrakala, A Study On Certain Functional Invariants Of Graph Structures, Ph.D Thesis, VTU, Belgaum, (2015).

[^0]: Abstract: A graph is said to be cordial if it has a $0-1$ vertex labeling that satisfies certain properties. In this paper we show that transformation graphs of path are cordial.

 MSC: 05C78.
 Keywords: Total Graph, Transformation Graph, Cordial Graphs.
 (C) JS Publication.

[^1]: * E-mail: chandrakalasb14@gmail.com

