

International Journal of Mathematics And its Applications

Cordiality of Transformation Graphs of Path

S. B. Chandrakala^{1,*}, K. Manjula² and B. Sooryanarayana³

1 Department of Mathematics, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India.

2 Department of Mathematics, Bangalore Institute of Technology, Bangalore, Karnataka, India.

3 Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka, India.

Abstract: A graph is said to be cordial if it has a 0-1 vertex labeling that satisfies certain properties. In this paper we show that transformation graphs of path are cordial.

MSC: 05C78.

Keywords: Total Graph, Transformation Graph, Cordial Graphs. © JS Publication.

1. Introduction

All graphs G considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notations. In 2001, Wu and Meng [3] introduced some new graphical transformations which generalizes the concept of the total graph. As is the case with the total graph, these generalizations referred to as *transformation graphs* G^{xyz} have $V(G) \cup E(G)$ as the vertex set. The adjacency of two of its vertices is determined by adjacency and incidence nature of the corresponding elements in G. Let α , β be two elements of $V(G) \cup E(G)$. Then associativity of α and β is taken as + if they are adjacent or incident in G, otherwise -. Let xyz be a 3-permutation of the set $\{+, -\}$. The pair α and β is said to correspond to xor y or z of xyz if α and β are both in V(G) or both are in E(G), or one is in V(G) and the other is in E(G) respectively. Thus the *transformation graph* G^{xyz} of G is the graph whose vertex set is $V(G) \cup E(G)$. Two of its vertices α and β are adjacent if and only if their associativity in G is consistent with the corresponding element of xyz.

In particular the transformation graph G^{++-} of G is the graph with vertex set $V(G) \cup E(G)$ in which the vertices u and v are joined by an edge if one of the following holds

- (1). both $u, v \in V(G)$ and u and v are adjacent in G
- (2). both $u, v \in E(G)$ and u and v are adjacent in G
- (3). one is in V(G) and the other is in E(G) and they are not incident with each other in G.

The transformation graphs are investigated in [4], [5] and [6].

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. A mapping $f: V(G) \to \{0,1\}$ is called a binary labeling of the graph G. For each $v \in V(G)$, f(v) is called the vertex label of the

vertex v under f and for an edge uv the induced edge labeling $g: E(G) \to \{0, 1\}$ is given by g(uv) = |f(u) - f(v)|. Then f is called a *cordial labeling* of G if the number of vertices labeled 0 and the number of vertices labeled 1 differs by at most 1, and, the number of edges labeled 0 and the number of edges labeled 1 differs by at most 1. A graph G is cordial if it admits a cordial labeling. This concept is introduced by Cahit [2].

For convenience, the transformation graph G^{xyz} is partitioned into $G^{xyz} = S_x(G) \cup S_y(G) \cup S_z(G)$ where $S_x(G)$, $S_y(G)$ and $S_z(G)$ are the edge-induced subgraphs of G^{xyz} . The edge set of each of which is respectively determined by x, y and z of the permutation xyz. $S_x(G) \cong G$ when x is + and $S_x(G) \cong \overline{G}$ when x is -. $S_y(G) \cong L(G)$ when y is + and $S_y(G) \cong \overline{L(G)}$ when y is -. When z is +, $\alpha, \beta \in V(G^{xyz})$ are adjacent in $S_z(G)$ if they are incident with each other in G. When z is -, α, β are adjacent in $S_z(G)$ if they are not incident in G.

The following notations are used in relation to labeling of G^{xyz} :

Let V_0 and V_1 denote the set of vertices of G^{xyz} labeled 0 and 1. E_0 and E_1 denote set of edges of G^{xyz} labeled 0 and 1 respectively. $E_0(S_x)$ and $E_1(S_x)$ denote set of edges labeled 0 and 1 in $S_x(G)$. Similar meanings are associates with $E_0(S_y)$, $E_1(S_y)$, $E_0(S_z)$ and $E_1(S_z)$.

For $P_n^{xyz} xyz \in \{++-,+-,-++,-+-,-+,++\}$ we define a vertex labeling $f: V(P_n^{xyz}) \to \{0,1\}$ and specify the induced edge labeling $g: E(P_n^{xyz}) \to \{0,1\}$ then show that f is a cordial labeling.

2. Cordiality of Transformation Graphs of Path

Let $P_n = v_1 - v_2 - v_3 - \ldots - v_n$ be the path on n vertices and $e_j = v_j v_{j+1}$ $(1 \le j \le n-1)$ be the edges of P_n .

Theorem 2.1.

(a). For any positive integer $n \ge 3$ the transformation graph P_n^{xyz} where $xyz \in \{++-, +--, -++, -+-, --+, ---, +++\}$ are cordial.

(b). For $3 \le n \le 10$ or $n \ge 11$ and $n \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$, P_n^{+-+} is cordial.

Proof.

(a). In each case defined a binary labeling $f: V(P_n^{xyz}) \to \{0,1\}$ as follows:

Case 1: When xyz = + + -.

For $3 < n < 8$,	vertices are labeled as in Tak	ble 1, which admits	cordial labeling of P_n^{++-}

n	$f(v_1)f(v_2)f(v_n)$	$f(e_1)f(e_2)f(e_{n-1})$	$ V_0 \sim V_1 $	$ E_0 \sim E_1 $
3	100	01	$3 \sim 2 = 1$	$3 \sim 2 = 1$
4	1110	000	$4 \sim 3 = 1$	$6 \sim 5 = 1$
5	11110	0000	$5 \sim 4 = 1$	$9 \sim 10 = 1$
6	111110	00001	$5 \sim 6 = 1$	$15 \sim 14 = 1$
7	0111110	000001	$7 \sim 6 = 1$	$21 \sim 20 = 1$

Table 1. Cordial labeling of P_n^{++-} for the case $3 \le n \le 8$.

For $n \ge 8$, express n as $n \equiv 0, 1, 2, 3 \pmod{4}$ Let n = 4r, n = 4r + 1, n = 4r + 2 or n = 4r + 3). Then the vertices of P_n^{++-} are labeled as in Table 2.

n	$f(v_i)$	$f(e_i)$	$ V_0 \sim V_1 $
n = 4r	$\begin{bmatrix} 0 & i=1 \\ 0 & 2 & i & 2 \end{bmatrix} n-8 $		
n = 4r + 1	$\begin{bmatrix} 0 & r+3 \le i \le r+3 + \lfloor \frac{-2}{2} \rfloor \\ 0 & i=n \end{bmatrix}$		
n = 4r + 2	$\begin{bmatrix} 0 & t & h \\ 1 & otherwise \end{bmatrix}$	$\int_{0}^{\infty} \frac{1}{r \leq i \leq r+4} \int_{0}^{\infty} \frac{n-8}{2} \int_{0}^{\infty} \frac{1}{r \leq i \leq r+4} \int_{0}^{0$	1
n = 4r + 3	$\begin{cases} 0 & i=1 \\ 0 & r+4 \le i \le r+4 + \left\lfloor \frac{n-8}{2} \right\rfloor \\ 0 & i=n \\ 1 & otherwise \end{cases}$	1 otherwise	

Table 2. Cordial labeling of P_n^{++-} for the case $n \ge 8$.

where $|V_0| = \lceil (n-8)/2 \rceil + 7 + \lfloor (n-8)/2 \rfloor + 1 = n$ and $|V_1| = 2n - 9 - \lceil (n-8)/2 \rceil - \lfloor (n-8)/2 \rfloor = n - 1$ For $n \ge 8$, induced edge mapping $g : E(P_n^{++-}) \to \{0,1\}$ is given below:

 S_x receives the labeling :

$$g(v_i v_{i+1}) = \begin{cases} 1 & i = 1, n-1, r+2, r+3 + \lfloor \frac{n-8}{2} \rfloor \\ 0 & otherwise \end{cases}$$

S_y receives the labeling :

$$g(e_j e_{j+1}) = \begin{cases} 1 & j = r - 1 \\ 1 & j = r + 4 + \lceil \frac{n-8}{2} \rceil \\ 0 & otherwise \end{cases}$$

 S_z receives the labeling :

when $n \equiv 0, 1, 2 \pmod{4}$

$$\begin{aligned} \text{for each } 1 \leq j \leq r-1 \text{ ; } r+5 + \lceil \frac{n-8}{2} \rceil \leq j \leq n-1 \text{ and } i \neq j, \text{ } j+1 \\ g(e_j v_i) = \begin{cases} 1 & i=1,n \\ 1 & r+3 \leq i \leq r+3 + \lfloor \frac{n-8}{2} \rfloor \\ 0 & otherwise \end{cases} \\ \text{for each } r \leq j \leq r+4 + \lceil \frac{n-8}{2} \rceil \text{ and } i \neq j, \text{ } j+1 \\ g(e_j v_i) = \begin{cases} 0 & i=1,n \\ 0 & r+3 \leq i \leq r+3 + \lfloor \frac{n-8}{2} \rfloor \\ 1 & otherwise \end{cases} \end{aligned}$$

when $n \equiv 3 \pmod{4}$

 $for each 1 \le j \le r - 1; r + 5 + \left\lceil \frac{n-8}{2} \right\rceil \le j \le n - 1 \text{ and } i \ne j, j + 1$ $g(e_j v_i) = \begin{cases} 1 & i = 1, n \\ 1 & r + 4 \le i \le r + 4 + \lfloor \frac{n-8}{2} \rfloor \\ 0 & otherwise \end{cases}$ $for each r \le j \le r + 4 + \left\lceil \frac{n-8}{2} \right\rceil \text{ and } i \ne j, j + 1$ $g(e_j v_i) = \begin{cases} 0 & i = 1, n \\ 0 & r + 4 \le i \le r + 4 + \lfloor \frac{n-8}{2} \rfloor \\ 1 & otherwise \end{cases}$

п	$ E_0(S_x) $	$E_0(S_y)$	$ E_0(S_z) $	$ E_1(S_x) $	$E_1(S_y)$	$ E_1(S_z) $	$ E_0 - E_1 $
n = 4r			2nr - n + 9 - 6r			2nr+n-7-6r	1
n = 4r + 1	<i>n</i> -5	n-4	2nr - n - 4r + 7	4	2	2nr + 2n - 8r - 8	1
n = 4r + 2	<i>n</i> 5		2nr-6r+6		2	2nr + 2n - 6r - 10	1
n = 4r + 3			2nr-4r+5			2nr+3n-8r-6	1

$ E_0 $	and	$ E_1 $	for	$_{\rm the}$	case	n	\geq	8	are	cal	culated	\mathbf{as}	in	Table	3.
---------	-----	---------	-----	--------------	------	---	--------	---	----------------------	----------------------	---------	---------------	----	-------	----

Table 3. $|E_0|$ and $|E_1|$ of P_n^{++-} for the case $n \ge 8$.

Therefore P_n^{++-} is cordial.

Case 2: When xyz = + + +.

 $f(v_i) = 1 \quad for \ 1 \le i \le n$

$$f(e_i) = 0 \quad for \ 1 \le i \le n-1$$

Therefore $|V_0| = n - 1$ and $|V_1| = n$ and hence $||V_0| - |V_1|| = 1$. The induced edge labeling $g: E(P_n^{+++}) \to \{0, 1\}$ for the edges of

- $S_x \cong P_n$: $g(v_i v_{i+1}) = 0, \ 1 \le i \le n-1$
- $S_y \cong L(P_n)$: $g(e_j e_{j+1}) = 0, 1 \le j \le n-2$ and
- S_z : $g(e_j v_i) = 1$ for $1 \le j \le n 1$ and i = j, j + 1.

Clearly,

$$|E_0| = |E_0(S_x)| + |E_0(S_y)| + |E_0(S_z)| = (n-1) + (n-2) + 0 = 2n - 3$$
$$|E_1| = |E_1(S_x)| + |E_1(S_y)| + |E_1(S_z)| = 0 + 0 + 2(n-1) = 2n - 2$$

and $|E_0| - |E_1| = -1$. Thus P_n^{+++} is cordial.

Case 3: When xyz = - + -.

For $3 \le n < 8$, the vertices of P_n^{-+-} are labeled as in Table 4 which admits cordial labeling.

n	$f(v_1)f(v_2)f(v_n)$	$f(e_1)f(e_2)f(e_{n-1})$	$ V_0 \sim V_1 $	$ E_0 \sim E_1 $
3	010	10	$3 \sim 2 = 1$	$2 \sim 2 = 0$
4	0101	101	$3 \sim 4 = 1$	$5 \sim 6 = 1$
5	01010	1010	$5 \sim 4 = 1$	$10 \sim 11 = 1$
6	010101	10010	$6 \sim 5 = 1$	$16 \sim 17 = 1$
7	0101010	100101	$7 \sim 6 = 1$	$25\sim 25=0$

Table 4. Cordial labeling of P_n^{-+-} for the case n < 8.

For $n \ge 8$ the vertices of P_n^{-+-} are labeled as in Table 5.

n	$f(e_i)$	$f(v_i)$	$ V_0 \sim V_1 $
n = 8r n = 8r + 1 n = 8r + 2 n = 8r + 3 n = 8r + 4 n = 8r + 5	$\begin{cases} 0 & r+2 \le i \le 2r+2 \\ 0 & 2r+4 \le i \equiv 0 \pmod{2} \le n-1 \\ 1 & otherwise \end{cases}$	$\begin{cases} 1 & i \equiv 0, 2, 4, 6 \pmod{8} \\ 0 & i = 0 \end{cases}$	1
n = 8r + 6 $n = 8r + 7$	$\begin{cases} 0 & r+2 \le i \le 2r+3 \\ 0 & 2r+5 \le i \equiv 1 \pmod{2} \le n-1 \\ 1 & otherwise \end{cases}$	0 otherwise	1

Table 5. Cordial labeling of P_n^{-+-} for the case $n \ge 8$.

Therefore $|V_0| = \frac{n}{2} + r + 1 + (n - 2r - 4)/2 = n - 1$ and $|V_1| = \frac{n}{2} + r + 1 + (n - 2r - 2)/2 = n$. For $n \ge 8$, the induced edge mapping $g : E(P_n^{-+-}) \to \{0, 1\}$ for the edges of

•
$$S_x \cong \overline{P_n}$$
: for each $1 \le i \le n$
 $g(v_i v_j) = \begin{cases} 0 & j = i+2, i+4, \dots, (n-1) \text{ or } n \\ 1 & j = i+3, i+5, \dots, n \text{ or}(n-1) \end{cases}$

•
$$S_y \cong L(P_n)$$
:

$$g(e_j e_{j+1}) = \begin{cases} 0 & 1 \le j \le r \\ 0 & r+2 \le j \le (2r+2) \text{ if } n \equiv 6,7 (mod \ 8) \\ 0 & r+2 \le j \le (2r+1) \text{ if } n \equiv 0,1,2,3,4,5 (mod \ 8) \\ 1 & otherwise \end{cases}$$

•
$$S_z$$
: when $n \equiv 6,7 \pmod{8}$ Let $n = 8r + 6$ or $n = 8r + 7$

for each $1 \le j \le r+1$ or $2r+4 \le j \equiv 0 \pmod{2} \le n-1$ and $i \ne j, j+1$ $g(e_j v_i) = \begin{cases} 0 & i \equiv 1 \pmod{2} \\ 1 & i \equiv 0 \pmod{2} \end{cases}$

$$for each (r + 2 \le j \le 2r + 3) \text{ or } (2r + 5 \le j \equiv 1 \pmod{2} \le n - 1) \text{ and } i \ne j, j + 1$$
$$g(e_j v_i) = \begin{cases} 0 & i \equiv 0 \pmod{2} \\ 1 & i \equiv 1 \pmod{2} \end{cases}$$

when
$$n \equiv 0, 1, 2, 3, 4, 5 \pmod{8}$$

$$\begin{array}{l} \text{Let } n = 8r + k \ \ 0 \leq k \leq 5 \\ \text{for each } (1 \leq j \leq r+1) \ \text{or } (2r+3 \leq j \equiv 1 (mod \ 2) \leq n-1) \ \text{and } i \neq j, j+1 \\ g(e_j v_i) = \begin{cases} 0 & i \equiv 1 (mod \ 2) \\ 1 & i \equiv 0 (mod \ 2) \\ \text{for each } (r+2 \leq j \leq 2r+2) \ \text{or } (2r+4 \leq j \equiv 0 (mod \ 2) \leq n-1) \ \text{and } i \neq j, j+1 \\ g(e_j v_i) = \begin{cases} 0 & i \equiv 0 (mod \ 2) \\ 1 & i \equiv 1 (mod \ 2) \\ 1 & i \equiv 1 (mod \ 2) \end{cases} \end{array}$$

 $|E_0|$ and $|E_1|$ in the above different cases are listed in the Tables 6, 7 and their difference in Table 8.

п	$ E_0(S_x) $	$ E_0(S_z) $	$ E_1(S_x) $	$ E_1(S_z) $
Even	$2\sum_{i=1}^{\frac{n-2}{2}}i$	(n-1)(n-2)	$\frac{n-2}{2} + 2\sum_{i=1}^{\frac{n-4}{2}}i$	(n-1)(n-2)
Odd	$\frac{n-1}{2} + 2\sum_{i=1}^{\frac{n-2}{2}}i$	2	$2\sum_{i=1}^{\frac{n-3}{2}}i$	2

 $\textbf{Table 6.} \quad |E_0| \text{ and } |E_1| \text{ of } S_x \text{ and } S_z \text{ in } P_n^{-+-} \text{ for the case } n \geq 8.$

п	$ E_0(S_y) $	$ E_1(S_y) $
$n \equiv 0, 1, 2, 3, 4, 5 \pmod{8}$	2 <i>r</i>	<i>n</i> -2 <i>r</i> -2
$n \equiv 6,7 \pmod{8}$	2 <i>r</i> +1	<i>n</i> -2 <i>r</i> -3

Table 7. $|E_0|$ and $|E_1|$ of S_y in P_n^{-+-} for the case $n \ge 8$.

	п	$ E_0 \sim E_1 $	$ E_0 \sim E_1 $
	n=8r		1
	n = 8r + 2	8r-n+2	0
Even	n = 8r + 4	2	1
	n = 8r + 6	$\frac{8r-n+6}{2}$	0
	n = 8r + 1		1
	n = 8r + 3	$\underline{8r-n+3}$	0
Odd	n = 8r + 5	2	1
	n = 8r + 7	$\frac{8r-n+7}{2}$	0

Table 8. $|E_0| \sim |E_1|$ in P_n^{-+-} for the case $n \ge 8$.

Therefore P_n^{-+-} is cordial.

Case 4: When xyz = -++ Here the binary labeling $f: V(P_n^{-++}) \to \{0,1\}$ is same as given to P_n^{-+-} . For $n \ge 8$, induced edge mapping $g: E(P_n^{-++}) \to \{0,1\}$ is given below:

 S_x and S_y of P_n^{-++} receives the labeling as mentioned in the case of P_n^{-+-} .

 S_z receives the labeling as below :

when $n \equiv 0, 1, 2, 3, 4, 5 \pmod{8}$

for
$$2r + 3 \le j \le n - 1$$
: $g(e_j v_{j+1}) = 0$ and $g(e_j v_j) = 1$
for $1 \le j \le r + 1$: $g(e_j v_{j+1}) = \begin{cases} 0 & j \text{ odd} \\ 1 & j \text{ even} \end{cases}$ and

$$g(e_j v_j) = \begin{cases} 1 & j \text{ odd} \\ 0 & j \text{ even} \end{cases}$$

for $r+2 \leq j \leq 2r+3$ (when $n \equiv 6, 7 \pmod{n}$) or 2r+2 (otherwise)

$$g(e_{j}v_{j+1}) = \begin{cases} 0 & j even \\ 1 & j odd \end{cases} \quad \text{and} \quad g(e_{j}v_{j}) = \begin{cases} 1 & j even \\ 0 & j odd \end{cases}$$

when $n \equiv 6 \pmod{8}$ let n = 8r + 6

for
$$2r + 4 \le j \le n - 1$$
: $g(e_j v_{j+1}) = 1$ and $g(e_j v_j) = 0$

when $n \equiv 7 \pmod{8}$ let n = 8r + 7

for $2r + 4 \le j \le n - 2$: $g(e_j v_{j+1}) = 0$ and $g(e_j v_j) = 1$

In P_n^{-++} , $|E_0(S_x)|, |E_1(S_x)|, |E_0(S_y)|$ and $|E_1(S_y)|$ are same as P_n^{-+-} mentioned in Case 3 but $|E_0(S_z)| = |E_1(S_z)| = n$, so that $|E_0|$ and $|E_1|$ for different cases satisfies $|E_0| \sim |E_1| \leq 1$.

Therefore P_n^{-++} is cordial.

Case 5: When xyz = - - +

For $3 \le n \le 7$ the vertices of P_n^{--+} are labeled as in Table 9 which admits cordial labeling.

	n	$f(v_1)f(v_2)f(v_n)$	$f(e_1)f(e_2)f(e_{n-1})$	$ V_0 \sim V_1 $	$ E_0 \sim E_1 $
ĺ	3	101	10	$2 \sim 3 = 1$	$3 \sim 2 = 1$
	4	1010	110	$3 \sim 4 = 1$	$5 \sim 5 = 0$
	5	10101	1100	$4 \sim 5 = 1$	$8 \sim 9 = 1$
	6	101010	11001	$5 \sim 6 = 1$	$13 \sim 13 = 0$
Į	7	0101010	110011	$6 \sim 7 = 1$	$17 \sim 17 = 0$

Table 9. Cordial labeling of P_n^{--+} for the case $n \leq 7$.

For $n \ge 8$ the vertices of P_n^{--+} are labeled as follows:

$$for \ all x \in V(P_n^{--+}), \ f(x) == \begin{cases} 0 & if \ x = v_i, \ i \equiv 0, 2 \pmod{4} \\ 0 & if \ x = e_i \ i \equiv 0, 3 \pmod{4} \\ 1 & otherwise \end{cases}$$

For $n \ge 8$, induced edge mapping $g: E(P_n^{-+}) \to \{0,1\}$ for the edges of

•
$$S_x$$
: for each $1 \le i \le n$
 $g(v_i v_j) = \begin{cases} 1 & j = i+2, i+4, \dots, (n-1) \text{ orn } \\ 0 & j = i+3, i+5, \dots, n \text{ or}(n-1) \end{cases}$
• S_y : for each $j \equiv 0, 3 \pmod{4}$
 $g(e_j e_k) = \begin{cases} 0 & j+3 \le k \equiv 0, 3 \pmod{4} \le n-1 \\ 1 & otherwise \end{cases}$
for each $j \equiv 1, 2 \pmod{4}$
 $g(e_j e_k) = \begin{cases} 0 & j+3 \le k \equiv 1, 2 \pmod{4} \le n-1 \\ 1 & otherwise \end{cases}$
• S_z : $g(e_j v_{j+1}) = \begin{cases} 0 & j \equiv 2, 3 \pmod{4} \\ 1 & otherwise \end{cases}$
 $g(e_j v_j) = \begin{cases} 0 & j \equiv 0, 1 \pmod{4} \\ 1 & otherwise \end{cases}$

п	$ E_0(S_x) $	$ E_0(S_y) $	$ E_0(S_z) $	$ E_1(S_x) $	$ E_1(S_y) $	$ E_1(S_z) $	$\left E_{0}\right \sim \left E_{1}\right $
Even	$2\sum^{\frac{n-2}{2}}i$	$2\sum^{\frac{n-4}{2}}i$		$\frac{n-2}{2} + 2\sum_{i=1}^{\frac{n-4}{2}} i$	$\frac{n-2}{2} + 2\sum_{i=1}^{\frac{n-4}{2}} i$		0
$\begin{array}{c} O \\ d \end{array} n = 3 + 4n \end{array}$	$\frac{n-1}{2} + 2\sum_{i=1}^{\frac{n-3}{2}} i$	$4\sum_{i=1}^r (2i-1)$	<i>n</i> -1	n - 3	$2\sum_{i=1}^{2r-1}i + n - 3$	<i>n</i> -1	1
d $n = 1 + 4r$	$2 \qquad \sum_{i=1}^{n}$	$4\sum_{i=1}^{r} 2i$		$2\sum_{i=1}^{l}l$	$2\sum_{i=1}^{2r}i+n-2$		1

 $|E_0|$ and $|E_1|$ of P_n^{--+} for the case $n \ge 7$ are given in Table 10

Table 10. $|E_0|$ and $|E_1|$ of P_n^{--+} for the case $n \ge 7$

Therefore P_n^{--+} is cordial.

Case 6: When xyz = - - -

Define a binary labeling $f: V(P_n^{---}) \to \{0, 1\}$ same as given to P_n^{--+} in Case 5 which admits cordiality.

For $n \ge 8$, induced edge mapping $g: E(P_n^{---}) \to \{0,1\}$ is:

 S_x and S_y of receives the labeling same as in case of P_n^{-+} .

 S_z receives the labeling :

for each
$$j \equiv 1, 2 \pmod{4}$$
 $g(e_j v_i) = \begin{cases} 0 & i \equiv 0, 2 \pmod{4} \\ 1 & otherwise \end{cases}$
for each $j \equiv 0, 3 \pmod{4}$ $g(e_j v_i) = \begin{cases} 0 & i \equiv 1, 3 \pmod{4} \\ 1 & otherwise \end{cases}$

In P_n^{---} , $|E_0(S_x)|, |E_1(S_x)|, |E_0(S_y)|$ and $|E_1(S_y)|$ are same as P_n^{-+-} mentioned in Case 3 but $|E_0(S_z)| = n\left(\lfloor \frac{n}{2} - 1 \rfloor, \text{ so that } |E_0| \text{ and } |E_1| \text{ for different cases satisfies } ||E_0| - |E_1|| \in \{0, 1\}$

Case 7: When xyz = + - -

For $3 \le n < 11$, the vertices of P_n^{+--} are labeled as in Table 11 which admits cordial labeling.

n	$f(v_1)f(v_2)f(v_n)$	$f(e_1)f(e_2)f(e_{n-1})$	$ V_0 \sim V_1 $	$ E_0 \sim E_1 $
3	000	11	$3 \sim 2 = 1$	$2 \sim 2 = 0$
5	01100	0101	$5 \sim 4 = 1$	$10\sim9=0$
6	011001	01010	$6 \sim 7 = 1$	$16\sim 15=1$
7	0111001	010101	$6 \sim 7 = 1$	$23\sim 24=1$
8	0111001	010101	$8 \sim 7 = 1$	$32\sim 32=0$
9	011100101	0101010	$8 \sim 9 = 1$	$42\sim 43=1$
10	0111001010	010101010	$10 \sim 9 = 1$	$54 \sim 55 = 1$

Table 11. Cordial labeling of P_n^{+--} for the case n < 11.

For $n \ge 11$

(i). When n is odd and $n \equiv 3, 5, 7, 1 \pmod{8}$, each n is expressed in the form $n - 11 \equiv 0, 2, 4, 6 \pmod{8}$ respectively. (i.e., n = 11 + 8r, n = 11 + 8r + 2, n = 11 + 8r + 4, n = 11 + 8r + 6) $f(v_1) = 0$

$$f(v_i) = \begin{cases} 0 & i = 1 \\ 0 & r+5 \le i \le 2r+7 \\ 0 & i = 2r+9, 2r+11, 2r+13, \dots, n \\ 1 & otherise \end{cases}$$

when $n \equiv 3(mod \ 8), \ f(e_1) = 1$ and when $n \equiv 5, 7, 1(mod \ 8), \ f(e_1) = 0$
$$f(e_i) = \begin{cases} 0 & i = 3, 5, 7, \dots, n-1 \\ 1 & otherise \end{cases}$$

(ii). When n is even and $n \equiv 4, 6, 0, 2, (mod \ 8)$, each n is expressed in the form $n - 11 \equiv 1, 3, 5, 7 \pmod{8}$ (i.e.,

$$n = 11 + 8r + 1$$
, $n = 11 + 8r + 3$, $n = 11 + 8r + 5$, $n = 11 + 8r + 7$)

$$\begin{split} f(v_1) &= 0 \\ \text{when } n \equiv 4(mod \; 8), \; f(v_{r+5}) = 1 \; \text{and} \\ \text{when } n \equiv 6, 0, 2(mod \; 8) \;, \; f(v_{r+5}) = 0 \\ f(v_i) &= \begin{cases} 0 & r+6 \leq i \leq 2r+7 \\ 0 & i=2r+9, 2r+11, \dots, n \\ 1 & otherise \end{cases} \\ f(e_i) &= \begin{cases} 0 & i=3, 5, 7, \dots, n-1 \\ 1 & otherise \end{cases} \end{split}$$

For both odd and even n, $||V_0| - V_1|| = 1$.

For $n \geq 11$, induced edge mapping $g: E(P_n^{+--}) \to \{0,1\}$ for the edges of

•
$$S_x$$
: $g(v_i v_{i+1}) = \begin{cases} 0 & 2 \le i \le r+3 \text{ if } n \text{ is odd} \\ 0 & 2 \le i \le r+4 \text{ if } n \text{ is even} \\ 0 & r+5 \le i \le 2r+6 \\ 1 & \text{otherwise} \end{cases}$
• S_y : When $n-11 \equiv 4, 5, 6, 7, 0, 1 \pmod{8}$
for each $1 \le j \le n-1, \ k \ne j, j+1$
 $g(e_j e_k) = \begin{cases} 0 & k=j+2, j+4, j+6, \dots, (n-1) \text{ or } (n-2) \\ 1 & \text{otherwise} \end{cases}$
When $n-11 \equiv 0 \pmod{8}$
 $g(e_1 e_k) = \begin{cases} 0 & k=4, 6, 8, \dots, (n-1) \\ 1 & k=3, 5, 7, 9, \dots, (n-2) \end{cases}$
for each $2 \le j \le n-1, \ k \ne j, j+1$
 $\begin{pmatrix} 0 & k=j+2, j+4, j+6, \dots, (n-1) \text{ or } (n-2) \end{pmatrix}$

$$g(e_j e_k) = \begin{cases} 0 & k = j+2, j+4, j+6, \dots, (n-1) \text{ or } (n-1) \\ 1 & otherwise \end{cases}$$

S_z: When $n-11 \equiv 1, 2, 3, 4, 5, 6 \pmod{8}$
for each $i \equiv 1 \pmod{2}$ $k \neq i, j+1$

$$\begin{aligned} \text{for each } j \equiv 1 \pmod{2}, \quad k \neq j, j+1 \\ g(e_j v_k) = \begin{cases} 0 & r+5 \leq k \leq 2r+7 \\ 0 & 2r+9 \leq k \equiv 1 \pmod{2} \leq n \\ 1 & otherwise \end{cases} \end{aligned}$$

for each $j \equiv 0 \pmod{2}$, $k \neq j, j + 1$

٠

$$g(e_j v_k) = \begin{cases} 1 & r+5 \le k \le 2r+7 \\ 1 & 2r+9 \le k \equiv 1 \pmod{2} \le n \\ 0 & otherwise \end{cases}$$

When $n-11 \equiv 0 \pmod{8}$

for each
$$j = 3, 5, 7, \dots, (n-2)$$
 $k \neq j, j+1$
$$g(e_j v_k) = \begin{cases} 0 & r+5 \le k \le 2r+7\\ 0 & 2r+9 \le k \equiv 1 \pmod{2} \le n\\ 1 & otherwise \end{cases}$$

for each
$$j = 1, 2, 4, 6, 8, ..., (n-1)$$
 $k \neq j, j+1$
$$g(e_j v_k) = \begin{cases} 1 & r+5 \le k \le 2r+7\\ 0 & 2r+9 \le k \equiv 1 \pmod{2} \le n\\ 0 & otherwise \end{cases}$$

When $n-11 \equiv 1 \pmod{8}$

$$\begin{aligned} \text{for each } j &= 1, 3, 5, 7, \dots, (n-1) \quad k \neq j, j+1 \\ g(e_j v_k) &= \begin{cases} 0 & r+6 \leq k \leq 2r+7 \\ 0 & 2r+9 \leq k \equiv 1 \pmod{2} \leq n \\ 1 & otherwise \end{cases} \end{aligned}$$

for each
$$j = 2, 4, 6, 8, \dots, (n-2)$$
 $k \neq j, j+1$
$$g(e_j v_k) = \begin{cases} 1 & r+6 \le k \le 2r+7\\ 1 & 2r+9 \le k \equiv 1 \pmod{2} \le n\\ 0 & otherwise \end{cases}$$

For odd n, $|E_0|$ and $|E_1|$ can be calculated as in the above cases and $|E_0| - |E_1| = 0$.

Similar to the above discussion , $||E_0| - |E_1|| \le 1$ when *n* is even. Therefore P_n^{+--} is cordial.

(b). When xyz = + - +

Here we show that P_n^{+-+} is cordial for $n \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$.

Here we express $n \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$ as $n - 11 \equiv 0, 1, 2, 3, 5, 6, 7 \pmod{8}$.

For
$$4 \le n < 11$$
 we label the vertices as in Table12 which admits cordial labeling of P_n^{+-+}

n	$f(v_1)f(v_2)f(v_n)$	$f(e_1)f(e_2)f(e_{n-1})$	$ V_0 \sim V_1 $	$ E_0 \sim E_1 $
4	0110	110	$4 \sim 3 = 1$	$5 \sim 6 = 1$
5	01100	0101	$5 \sim 4 = 1$	$8 \sim 7 = 1$
6	011001	01010	$6 \sim 5 = 1$	$11\sim 10=1$
7	0110010	010101	$7 \sim 6 = 1$	$14\sim 14=0$
8	01100101	0101010	$8 \sim 7 = 1$	$18\sim 18=0$
9	011001010	01010101	$9 \sim 8 = 1$	$22\sim 23=1$
10	0110010101	010101010	$10\sim9=1$	$27\sim 28=1$

Table 12. Cordial labeling of P_n^{+-+} for the case n < 7.

(i) When $n \equiv 3 \pmod{8}$ we express n as $n - 11 \equiv 0 \pmod{8}$ Let n = 11 + 8r.

$$f(v_i) = \begin{cases} 0 & i = 1 \\ 0 & r+5 \le i \le 2r+7 \\ 0 & i = 2r+9, 2r+11, 2r+13, \dots, n \\ 1 & otherise \end{cases}$$
$$f(e_i) = \begin{cases} 0 & i = 1, 3, 5, 7, \dots, n-4 \\ 0 & i = n-2 \\ 1 & otherise \end{cases}$$

which admits cordial labeling.

(ii) When $n \equiv 0, 1, 2, 5, 6 \pmod{8}$ we express n as $n - 11 \equiv 5, 6, 7, 0, 1 \pmod{8}$. Let n = 13 + 8r, 14 + 8r, 15 + 8r, 16 + 8r, 17 + 8r. We define binary labeling for these n values same as defined in case of P_n^{+--} which admits cordial labeling.

References

- [1] Frank Harary, Graph theory, Narosa Publishing House, New Delhi, (1969).
- [2] I. Cahit, Cordial graphs: a weaker version of graceful andharmonious graphs, Ars Combin., 23(1987), 201-207.
- [3] B. Wu and J. Meng, Basic properties of total transformation graphs, J.Math. Study, 34(2)(2001), 109-116.
- [4] Baoyindureng Wu, Li Zhang and Zhao Zhang, *The transformation graph* G^{xyz} when xyz = -++, Discrete Mathematics, 296(2005), 263-270.
- [5] Lan Xu and Baoyindureng Wu, The transformation graph G^{-+-} , Discrete Mathematics, 308(2008), 5144-5148.
- [6] S. B. Chandrakala, K. Manjula and B. Sooryanarayana, *The Transformation graph* G^{xyz} when xyz = ++-, International Journal of Mathematical Sciences And Engineering Applications, I(3)(2009), 249-259.
- [7] S. B. Chandrakala and K. Manjula, Cordiality of Transformation Graphs of Cycle, International Journal of Mathematics Research, Accepted.
- [8] A. T. Diab, Study of some problems of cordial graphs, Ars Combin., 92(2009), 255-261.
- [9] A. T. Diab, On cordial labelings of the second power of paths with other graphs, Ars Combin., 97A(2010), 327-343.
- [10] A. T. Diab, Generalization of Some Results on cordial graphs, Ars Combin., XCIX(2011), 161-173.
- [11] Xi. Yue, Yang Yuansheng and Wang Liping, One edge union of k shell gaph is cordial, Ars Combinatoria, 86(2008), 403-408.
- [12] G. Sethuraman and P. Selvaraju, One edge union of shell gaphs and one vertex union of complete bipartite graphs are cordial, Discrete Mathematics, 259(2002), 343-350.
- [13] S. Vaidya, G. Ghodasara, S. Srivastav and V. Kaneria, Some new cordial graphs, Int. J. Scientific Computing, 2(1), 81-92.
- [14] S. Vaidya, G. Ghodasara, S. Srivastav and V. Kaneria, Cordial and 3-equitable labeling of star of a cycle, Mathematics Today 24, 237-246.
- [15] S. B. Chandrakala, A Study On Certain Functional Invariants Of Graph Structures, Ph.D Thesis, VTU, Belgaum, (2015).