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Abstract: In this paper we introduce the new classes of operator namely quasi-class (Q) operator acting on a complex Hilbert space
H. An operator T ∈ quasi-class (Q) if T

(
T ∗2T 2

)
= (T ∗T )2 T where T ∗ is the adjoint of the operator T. We investigate

some basic properties of this operator.
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1. Introduction and Preliminaries

Throughout this paper H is a complex Hilbert Space and B(H) is the algebra of all bounded linear operators acting on H.

If T ∈ B(H) then T ∗ is its adjoint. An operator T is unitary if T ∗T = TT ∗ = I, T is isometry if T ∗T = I, T is normal

if T ∗T = TT ∗, T is quasi normal if TT ∗T = T ∗T 2. An operator T ∈ B(H) is called class (Q) if T ∗2T 2 = (T ∗T )2 [1].

Let T = U + iV , where U = ReT = T+T∗

2
and V = ImT = T−T∗

2i
are the real and imaginary parts of T. We shall write

B2 = T ∗2T 2 and C2 = (T ∗T )2, where B and C are non - negative definite [6]. In this paper we will study some properties of

quasi-class (Q) operators. Exactly we will give conditions under which an operator T is quasi-class (Q). Also, we shall show

that of T and S are quasi-class (Q) operators, we shall obtain conditions under which their sum and product are quasi-class

(Q).

Definition 1.1. An operator T ∈ B(H) is called class (Q) if T ∗2T 2 = (T ∗T )2.

Definition 1.2. An operator T ∈ B(H) is called quasi-class (Q) if T
(
T ∗2T 2

)
= (T ∗T )2 T .

2. Properties of Class (Q) Operator

Theorem 2.1. If T ∈ quasi-class (Q) then

(1). λT for any real number ‘λ’.

(2). Any S ∈ B(H) that is unitarily equivalent to T.

(3). The restriction T/M of T to any closed subspace M of H that reduces to T.
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Proof.

(1). It is obvious from the definition of quasi-class (Q).

(2). Let S ∈ B (H) be unitarily equivalent to T then there is a unitary operator U ∈ B (H) such that S = U∗TU which

implies that S∗ = U∗T ∗U . Thus

S
(
S∗2S2

)
= U∗TU

(
U∗T ∗UU∗T ∗US2)

= U∗TUU∗T ∗UU∗T ∗UU∗TUU∗TU

= U∗TT ∗T ∗TTU

= U∗TT ∗2T 2U

= U∗
(
T
(
T ∗2T 2

))
U

and

(S∗S)
2
S = (U∗T ∗UU∗TU)

2
S

= (U∗T ∗TU)
2
U∗TU

= U∗T ∗TUU∗T ∗TUU∗TU

= U∗(T ∗T )2TU

Since T (T ∗2T 2) = (T ∗T )2 T . We have S(S∗2S2) = (S∗S)2 S. Thus S ∈ quasi-class (Q).

(3). The restriction T/M of T to any closed subspace M of H that reduces to T. By [1] we have

(
T/M

)((
T/M

)∗2 (
T/M

)2)
=
(
T/M

)(
T ∗2T 2

/
M

)
=
(
T
(
T ∗2T 2

)/
M

)
=
(

(T ∗T )2 T
/
M

)
=
(

(T ∗T )2
/
M

)(
T/M

)
=
((
T/M

)∗ (
T/M

))2 (
T/M

)
Thus T/M ∈ quasi-class (Q).

Remark 2.2. If T ∈ quasi-class (Q) such that T 2 = 0 then it is not necessarily that T = 0, for a counter example

T =

 0 1

0 0

 acting on R2.

Theorem 2.3. If T is quasi-class (Q) operator which is a self adjoint operator if and only if T ∗ is quasi-class (Q) operator.

Proof. Case (i): T is quasi-class (Q) we have

T (T ∗2T 2) = (T ∗T )2T

Since T is a self adjoint we have T ∗ = T . Replace T ∗ by T, we get

(T ∗)
((

(T ∗)
∗)2

(T ∗)
2
)

= (T ∗)
(
T 2T ∗2

)
= T

(
T ∗2T 2

)
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and (
(T ∗)

∗
T ∗)2 (T ∗) = (TT ∗)

2
(T ∗) = (T ∗T )

2
T

From combing above T ∗ is quasi-class (Q) operator.

Case (ii): Since T ∗ is a self adjoint of T, we have T ∗ = T . Now

T (T ∗2T 2) = T
(
T 2T 2) = T 5

(T ∗T )2T =
(
T 2)2 (T ) = T 5

and hence T (T ∗2T 2) = (T ∗T )2T . Therefore T is quasi-class (Q) operator.

Theorem 2.4. If T ∈ quasi-class (Q) then
(
T 2T ∗2)T ∗ = T ∗ (T ∗T )2.

Proof. Since T ∈ quasi-class (Q), T ∗ ∈ quasi-class (Q). Thus we have

T ∗
(

(T ∗)
∗2

(T ∗)
2
)

=
(
(T ∗)

∗
(T ∗)

)2
T ∗

which implies that T ∗ (T 2T ∗2) = (T ∗T )2 T ∗.

Theorem 2.5. Let T be any operator on a Hilbert space H. Then

(1). (T + T ∗) is quasi-class (Q)

(2). TT ∗ is quasi-class (Q)

(3). T ∗T is quasi-class (Q)

(4). (I + T ∗T ) , (I + TT ∗) are quasi-class (Q)

Theorem 2.6. If T ∈ quasi-class (Q) then T
(
T 2T ∗2

)
= (TT ∗)2 T .

Proof. If T ∈ quasi-class (Q) then if T ∗ ∈ quasi-class (Q). Thus we have T ∗ (T ∗2T ∗∗2) = (T ∗∗T ∗)2 T ∗. Which implies

that T
(
T 2T ∗2) = (TT ∗)2 T (since T ∗ = T ).

Theorem 2.7. If T is a self adjoint operator and T ∈ quasi-class (Q) and T−1 exists, then T−1is a quasi-class (Q) operator.

Proof. Since T is a self adjoint operator, we have T ∗ = T (i.e.)
(
T−1

)∗
= (T ∗)−1 = (T )−1. From the above we have T−1

is self adjoint operator. Further we have

(
T−1)(((T−1)∗)2 (T−1)2) =

(
T−1)(((T ∗)

−1
)2 (

T−1)2)
=
(
T−1) ((T−1)2 (T−1)2)

=
(
T−1)5(((

T−1)∗) (T−1))2 (T−1) =
(

(T ∗)
−1 (

T−1))2 (T−1)
=
((
T−1) (T−1))2 (T−1)

=
(
T−1)5 (Since T ∗ = T )

Already we have proved that every self adjoint operator is quasi-class (Q) and T−1 is also self adjoint operator. Therefore

T−1 is quasi-class (Q) operator.
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Theorem 2.8. Let T be a quasi-class (Q) on H. Let S be the self adjoint operator for which T & S commute, then ST is

also quasi-class (Q) operator.

Proof. Since S is a self adjoint operator, we have S∗ = S. Since T & S commute, we get ST = TS. Also (ST )∗ = (TS)∗.

This implies that T ∗S∗ = S∗T ∗ and T ∗S = ST ∗. Also (ST )∗ = T ∗S = ST ∗. Since T is quasi-class (Q) operator, we get

T
(
T 2T ∗2

)
= (TT ∗)

2
T

From ST = TSandS∗ = S, we can easily prove that

(ST )∗ = T ∗S = ST ∗;

ST ∗2 = T ∗2S;

TS∗2 = S∗2T ;

ST 2 = T 2S and

(ST )2 = S2T 2.

Now

(ST )
(

(ST )∗
2

(ST )2
)

= STT ∗2S∗2S2T 2

= ST ∗2TS∗2S2T 2

= T ∗2SS∗2TS2T 2

= T ∗2S∗2SS2TT 2

= T ∗2S∗2S2ST 2T

= T ∗2S∗2S2T 2ST

= ((ST )∗ (ST ))
2

(ST )

Hence ST ∈ quasi-class (Q) operator.

Theorem 2.9. If T ∈ B(H) is quasi normal, then T ∈ quasi-class (Q) operator.

Proof. Since T is quasi-normal then TT ∗T = T ∗TT (i.e.) TT ∗T = T ∗T 2. Multiply the above by TT ∗, we get

TT ∗TT ∗T = TT ∗T ∗T 2

T (T ∗T )2 = T (T ∗2T 2)

T (T ∗2T 2) = T (T ∗T )2

Therefore T ∈ quasi-class (Q) operator.

Theorem 2.10. If T ∈ B(H) is isometry, then T ∈ quasi-class (Q).

Proof. Since T is isometry, T ∗T = I

(T ∗T )
2

= I and T ∗2T 2 = I
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From the above T ∗2T 2 = (T ∗T )2. Now multiply (??) by T

T (T ∗2T 2) = (T ∗T )
2
T

Therefore T ∈ quasi-class (Q) operator.

Theorem 2.11. Let T be a self adjoint operator on a Hilbert space H and S be any operator on H, then S∗TS is a quasi-class

(Q) operator.

Proof. Since T is self adjoint, then T ∗ = T . Consider

(S∗TS)
∗

= S∗T ∗S∗∗ = S∗T ∗S = S∗TS

S∗TS is a self adjoint operator then by Theorem 2.7, S∗TS is quasi-class (Q).

i.e., (S∗TS)
(

(S∗TS)
∗2

(S∗TS)
2
)

= (S∗TS)
(

(S∗T ∗S∗∗)
2

(S∗TS)
2
)

= (S∗TS)
(

(S∗T ∗S)
2

(S∗TS)
2
)

= (S∗TS) (S∗T ∗S)
4

= (S∗T ∗S)
5

(
(S∗TS)

∗
(S∗TS)

)2
(S∗TS) = ((S∗T ∗S∗∗) (S∗TS))

2
(S∗TS)

= ((S∗T ∗S) (S∗TS))
2

(S∗TS)

= ((S∗TS) (S∗TS))
2

(S∗TS)

= (S∗TS)
4

(S∗TS)

= (S∗TS)
5

It is proved that S∗TS is quasi-class (Q) operator.

Theorem 2.12. If T ∈ quasi-class (Q), then

(1). If T and S are of quasi-class (Q) such that ST = TS = T ∗S = ST ∗ = 0. Then TS is of quasi-class (Q).

(2). If T and S are of quasi-class (Q). Then T+S is of quasi-class (Q).

Proof.

(1). (TS)
(

(TS)∗
2

(TS)2
)

= TSS∗2T ∗2T 2S2

= TT ∗2T 2SS∗2S2

= T ∗2T 3S∗2S3

= (TS)∗
2

(TS)3

Hence TS is of quasi-class (Q).

(2). (T + S)
(

(T + S)∗
2

(T + S)2
)

= (T + S)
(
T ∗2T 2 + S∗2S2

)
= TT ∗2T 2 + SS∗2S2

= T ∗2T 3 + S∗2S3

(T + S)
(

(T + S)∗
2

(T + S)2
)

= (T + S)∗
2

(T + S)3

Which implies that T+S is of quasi-class (Q).
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Theorem 2.13. Let T be a quasi- class (Q) operator and TB2 = C2T . Then

(1). B commutes with U and V.

(2). C commutes with U and V.

Proof. Since TB2 = C2T . We have T
(
T ∗2T 2

)
= (T ∗T )2 T . Hence

(
T ∗2T 2

)
T ∗ = T ∗ (T ∗T )2. Since T is quasi-class (Q)

operator, we have

(1). B2U =
(
T ∗2T 2

)(T + T ∗

2

)
=

(
T ∗2T 2

)
T +

(
T ∗2T 2

)
T ∗

2

=
T ∗ (T ∗2T 2

)
+ T

(
T ∗2T 2

)
2

=

(
T + T ∗

2

)(
T ∗2T 2

)
= UB2

Since B is non negative definite, it follows that BU = UB, similarly BV = V B.

(2). C2U = (T ∗T )
2

(
T + T ∗

2

)
=

(
T ∗2T 2

)
T +

(
T ∗2T 2

)
T ∗

2

=
T ∗ (T ∗2T 2

)
+ T

(
T ∗2T 2

)
2

=

(
T + T ∗

2

)
(T ∗T )

2

= UC2

Since C is non negative definite, it follows that CU = UC, similarly CV = V C.

Theorem 2.14. If T be quasi-class (Q) operator and TB2 = C2T . Then

(1). C2U = UC2.

(2). C2V = V C2.

Proof. Since TB2 = C2T

⇒ T
(
T ∗2T 2

)
= (T ∗T )

2
T

⇒
(
T ∗2T 2

)
T ∗ = T ∗ (T ∗T )

2

Since T is quasi-class (Q) operator, we have

(1). C2U = (T ∗T )
2

(
T + T ∗

2

)
=

(
T ∗2T 2

)
T +

(
T ∗2T 2

)
T ∗

2

=
T ∗ (T ∗2T 2

)
+ T

(
T ∗2T 2

)
2

=

(
T + T ∗

2

)
(T ∗T )

2

= UC2

(2). Similarly, C2V = V C2.
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