

International Journal of Mathematics And its Applications

On Quasi-class (Q) Operator

V. Revathi^{1,*} and P. Maheswari Naik¹

1 Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.

Abstract: In this paper we introduce the new classes of operator namely quasi-class (Q) operator acting on a complex Hilbert space H. An operator $T \in$ quasi-class (Q) if $T(T^{*2}T^2) = (T^*T)^2 T$ where T^* is the adjoint of the operator T. We investigate some basic properties of this operator. MSC: 47A63.

Keywords: Operator, Hilbert Space, Normal, class (Q), quasi-class (Q).© JS Publication.

1. Introduction and Preliminaries

Throughout this paper H is a complex Hilbert Space and B(H) is the algebra of all bounded linear operators acting on H. If $T \in B(H)$ then T^* is its adjoint. An operator T is unitary if $T^*T = TT^* = I$, T is isometry if $T^*T = I$, T is normal if $T^*T = TT^*$, T is quasi normal if $TT^*T = T^*T^2$. An operator $T \in B(H)$ is called class (Q) if $T^{*2}T^2 = (T^*T)^2$ [1]. Let T = U + iV, where $U = ReT = \frac{T+T^*}{2}$ and $V = ImT = \frac{T-T^*}{2i}$ are the real and imaginary parts of T. We shall write $B^2 = T^{*2}T^2$ and $C^2 = (T^*T)^2$, where B and C are non - negative definite [6]. In this paper we will study some properties of quasi-class (Q) operators. Exactly we will give conditions under which an operator T is quasi-class (Q). Also, we shall show that of T and S are quasi-class (Q) operators, we shall obtain conditions under which their sum and product are quasi-class (Q).

Definition 1.1. An operator $T \in B(H)$ is called class (Q) if $T^{*2}T^2 = (T^*T)^2$.

Definition 1.2. An operator $T \in B(H)$ is called quasi-class (Q) if $T(T^{*2}T^{2}) = (T^{*}T)^{2}T$.

2. Properties of Class (Q) Operator

Theorem 2.1. If $T \in quasi-class(Q)$ then

- (1). λT for any real number ' λ '.
- (2). Any $S \in B(H)$ that is unitarily equivalent to T.
- (3). The restriction T_M of T to any closed subspace M of H that reduces to T.

^{*} E-mail: revathikrishna79@gmail.com (Research Scholar)

Proof.

- (1). It is obvious from the definition of quasi-class (Q).
- (2). Let $S \in B(H)$ be unitarily equivalent to T then there is a unitary operator $U \in B(H)$ such that $S = U^*TU$ which implies that $S^* = U^*T^*U$. Thus

$$S(S^{*2}S^{2}) = U^{*}TU(U^{*}T^{*}UU^{*}T^{*}US^{2})$$

= $U^{*}TUU^{*}T^{*}UU^{*}T^{*}UU^{*}TUU^{*}TU$
= $U^{*}TT^{*}T^{*}TTU$
= $U^{*}TT^{*2}T^{2}U$
= $U^{*}(T(T^{*2}T^{2}))U$

and

$$(S^*S)^2 S = (U^*T^*UU^*TU)^2 S$$

= $(U^*T^*TU)^2 U^*TU$
= $U^*T^*TUU^*T^*TUU^*TU$
= $U^*(T^*T)^2TU$

Since $T(T^{*2}T^2) = (T^*T)^2 T$. We have $S(S^{*2}S^2) = (S^*S)^2 S$. Thus $S \in$ quasi-class (Q).

(3). The restriction T_M of T to any closed subspace M of H that reduces to T. By [1] we have

$$\begin{pmatrix} T_{/M} \end{pmatrix} \left(\begin{pmatrix} T_{/M} \end{pmatrix}^{*2} \begin{pmatrix} T_{/M} \end{pmatrix}^{2} \right) = \begin{pmatrix} T_{/M} \end{pmatrix} \begin{pmatrix} T^{*2}T^{2}/M \end{pmatrix}$$

$$= \begin{pmatrix} T (T^{*2}T^{2})/M \end{pmatrix}$$

$$= \begin{pmatrix} (T^{*T})^{2}T/M \end{pmatrix}$$

$$= \begin{pmatrix} (T^{*T})^{2}/M \end{pmatrix} \begin{pmatrix} T_{/M} \end{pmatrix}$$

$$= \begin{pmatrix} (T/M)^{*} \begin{pmatrix} T_{/M} \end{pmatrix} \end{pmatrix}^{2} \begin{pmatrix} T_{/M} \end{pmatrix}$$

Thus $T_M \in$ quasi-class (Q).

Remark 2.2. If $T \in quasi-class (Q)$ such that $T^2 = 0$ then it is not necessarily that T = 0, for a counter example $T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ acting on R^2 .

Theorem 2.3. If T is quasi-class (Q) operator which is a self adjoint operator if and only if T^* is quasi-class (Q) operator. *Proof.* **Case (i):** T is quasi-class (Q) we have

$$T(T^{*2}T^{2}) = (T^{*}T)^{2}T$$

Since T is a self adjoint we have $T^* = T$. Replace T^* by T, we get

$$(T^*)\left(\left((T^*)^*\right)^2(T^*)^2\right) = (T^*)\left(T^2T^{*2}\right) = T\left(T^{*2}T^2\right)$$

and

$$((T^*)^*T^*)^2(T^*) = (TT^*)^2(T^*) = (T^*T)^2T$$

From combing above T^* is quasi-class (Q) operator.

Case (ii): Since T^* is a self adjoint of T, we have $T^* = T$. Now

$$T(T^{*^{2}}T^{2}) = T(T^{2}T^{2}) = T^{5}$$
$$(T^{*}T)^{2}T = (T^{2})^{2}(T) = T^{5}$$

and hence $T(T^{*2}T^2) = (T^*T)^2T$. Therefore T is quasi-class (Q) operator.

Theorem 2.4. If $T \in quasi-class(Q)$ then $(T^2T^{*2})T^* = T^*(T^*T)^2$.

Proof. Since $T \in$ quasi-class (Q), $T^* \in$ quasi-class (Q). Thus we have

$$T^*\left(\left(T^*\right)^{*2}\left(T^*\right)^2\right) = \left(\left(T^*\right)^*\left(T^*\right)\right)^2 T^*$$

which implies that $T^*(T^2T^{*2}) = (T^*T)^2 T^*$.

Theorem 2.5. Let T be any operator on a Hilbert space H. Then

- (1). $(T + T^*)$ is quasi-class (Q)
- (2). TT^* is quasi-class (Q)
- (3). T^*T is quasi-class (Q)
- (4). $(I + T^*T), (I + TT^*)$ are quasi-class (Q)

Theorem 2.6. If $T \in quasi-class(Q)$ then $T(T^2T^{*2}) = (TT^*)^2 T$.

Proof. If $T \in \text{quasi-class}(Q)$ then if $T^* \in \text{quasi-class}(Q)$. Thus we have $T^*(T^{*2}T^{**2}) = (T^{**}T^*)^2 T^*$. Which implies that $T(T^2T^{*2}) = (TT^*)^2 T$ (since $T^* = T$).

Theorem 2.7. If T is a self adjoint operator and $T \in quasi-class (Q)$ and T^{-1} exists, then T^{-1} is a quasi-class (Q) operator.

Since T is a self adjoint operator, we have $T^* = T$ (i.e.) $(T^{-1})^* = (T^*)^{-1} = (T)^{-1}$. From the above we have T^{-1} Proof. is self adjoint operator. Further we have

$$(T^{-1})\left(\left(\left(T^{-1}\right)^{*}\right)^{2}\left(T^{-1}\right)^{2}\right) = (T^{-1})\left(\left(\left(T^{*}\right)^{-1}\right)^{2}\left(T^{-1}\right)^{2}\right)$$
$$= (T^{-1})\left(\left(T^{-1}\right)^{2}\left(T^{-1}\right)^{2}\right)$$
$$= (T^{-1})^{5}$$
$$\left(\left(\left(T^{-1}\right)^{*}\right)\left(T^{-1}\right)\right)^{2}\left(T^{-1}\right) = \left((T^{*})^{-1}\left(T^{-1}\right)\right)^{2}\left(T^{-1}\right)$$
$$= \left((T^{-1})\left(T^{-1}\right)\right)^{2}\left(T^{-1}\right)$$
$$= (T^{-1})^{5} \quad (\text{Since } T^{*} = T)$$

Already we have proved that every self adjoint operator is quasi-class (Q) and T^{-1} is also self adjoint operator. Therefore T^{-1} is quasi-class (Q) operator.

Theorem 2.8. Let T be a quasi-class (Q) on H. Let S be the self adjoint operator for which T & S commute, then ST is also quasi-class (Q) operator.

Proof. Since S is a self adjoint operator, we have $S^* = S$. Since T & S commute, we get ST = TS. Also $(ST)^* = (TS)^*$. This implies that $T^*S^* = S^*T^*$ and $T^*S = ST^*$. Also $(ST)^* = T^*S = ST^*$. Since T is quasi-class (Q) operator, we get

$$T\left(T^2 T^{*2}\right) = \left(TT^*\right)^2 T$$

From ST = TS and $S^* = S$, we can easily prove that

$$(ST)^* = T^*S = ST^*;$$

 $ST^{*2} = T^{*2}S;$
 $TS^{*2} = S^{*2}T;$
 $ST^2 = T^2S$ and
 $(ST)^2 = S^2T^2.$

Now

$$(ST) \left((ST)^{*2} (ST)^2 \right) = STT^{*2}S^{*2}S^2T^2$$

= $ST^{*2}TS^{*2}S^2T^2$
= $T^{*2}SS^{*2}TS^2T^2$
= $T^{*2}S^{*2}SS^2TT^2$
= $T^{*2}S^{*2}S^2ST^2T$
= $T^{*2}S^{*2}S^2T^2ST$
= $((ST)^* (ST))^2 (ST)$

Hence $ST \in$ quasi-class (Q) operator.

Theorem 2.9. If $T \in B(H)$ is quasi normal, then $T \in$ quasi-class (Q) operator.

Proof. Since T is quasi-normal then $TT^*T = T^*TT$ (i.e.) $TT^*T = T^*T^2$. Multiply the above by TT^* , we get

$$TT^*TT^*T = TT^*T^*T^2$$

 $T(T^*T)^2 = T(T^{*2}T^2)$
 $T(T^{*2}T^2) = T(T^*T)^2$

Therefore $T \in$ quasi-class (Q) operator.

Theorem 2.10. If $T \in B(H)$ is isometry, then $T \in quasi-class$ (Q).

Proof. Since T is isometry, $T^*T = I$

$$(T^*T)^2 = I \text{ and } T^{*2}T^2 = I$$

From the above $T^{*2}T^2 = (T^*T)^2$. Now multiply (??) by T

$$T(T^{*2}T^{2}) = (T^{*}T)^{2}T$$

Therefore $T \in$ quasi-class (Q) operator.

Theorem 2.11. Let T be a self adjoint operator on a Hilbert space H and S be any operator on H, then S^*TS is a quasi-class (Q) operator.

Proof. Since T is self adjoint, then $T^* = T$. Consider

$$(S^*TS)^* = S^*T^*S^{**} = S^*T^*S = S^*TS$$

 S^*TS is a self adjoint operator then by Theorem 2.7, S^*TS is quasi-class (Q).

$$i.e., (S^*TS) \left((S^*TS)^{*2} (S^*TS)^2 \right) = (S^*TS) \left((S^*T^*S^{**})^2 (S^*TS)^2 \right) \\ = (S^*TS) \left((S^*T^*S)^2 (S^*TS)^2 \right) \\ = (S^*TS) (S^*T^*S)^4 \\ = (S^*T^*S)^5 \\ \left((S^*TS)^* (S^*TS) \right)^2 (S^*TS) = ((S^*T^*S^{**}) (S^*TS))^2 (S^*TS) \\ = ((S^*T^*S) (S^*TS))^2 (S^*TS) \\ = ((S^*TS) (S^*TS))^2 (S^*TS) \\ = (S^*TS)^4 (S^*TS) \\ = (S^*TS)^5 \end{aligned}$$

It is proved that S^*TS is quasi-class (Q) operator.

Theorem 2.12. If $T \in quasi-class$ (Q), then

(1). If T and S are of quasi-class (Q) such that $ST = TS = T^*S = ST^* = 0$. Then TS is of quasi-class (Q).

(2). If T and S are of quasi-class (Q). Then T+S is of quasi-class (Q).

Proof.

(1).
$$(TS) \left((TS)^{*2} (TS)^2 \right) = TSS^{*2}T^{*2}T^2S^2$$

= $TT^{*2}T^2SS^{*2}S^2$
= $T^{*2}T^3S^{*2}S^3$
= $(TS)^{*2} (TS)^3$

Hence TS is of quasi-class (Q).

(2).
$$(T+S)\left((T+S)^{*2}(T+S)^2\right) = (T+S)\left(T^{*2}T^2 + S^{*2}S^2\right)$$

 $= TT^{*2}T^2 + SS^{*2}S^2$
 $= T^{*2}T^3 + S^{*2}S^3$
 $(T+S)\left((T+S)^{*2}(T+S)^2\right) = (T+S)^{*2}(T+S)^3$
Which implies that $T+S$ is of quasi class (Q)

Which implies that T+S is of quasi-class (Q).

Theorem 2.13. Let T be a quasi- class (Q) operator and $TB^2 = C^2T$. Then

- (1). B commutes with U and V.
- (2). C commutes with U and V.

Proof. Since $TB^2 = C^2T$. We have $T(T^{*2}T^2) = (T^*T)^2T$. Hence $(T^{*2}T^2)T^* = T^*(T^*T)^2$. Since T is quasi-class (Q) operator, we have

(1).
$$B^{2}U = (T^{*2}T^{2})(\frac{T+T^{*}}{2})$$

 $= \frac{(T^{*2}T^{2})T + (T^{*2}T^{2})T^{*}}{2}$
 $= \frac{T^{*}(T^{*2}T^{2}) + T(T^{*2}T^{2})}{2}$
 $= (\frac{T+T^{*}}{2})(T^{*2}T^{2})$
 $= UB^{2}$

Since B is non negative definite, it follows that BU = UB, similarly BV = VB.

(2).
$$C^{2}U = (T^{*}T)^{2} \left(\frac{T+T^{*}}{2}\right)$$

 $= \frac{(T^{*2}T^{2})T + (T^{*2}T^{2})T^{*}}{2}$
 $= \frac{T^{*}(T^{*2}T^{2}) + T(T^{*2}T^{2})}{2}$
 $= \left(\frac{T+T^{*}}{2}\right)(T^{*}T)^{2}$
 $= UC^{2}$

Since C is non negative definite, it follows that CU = UC, similarly CV = VC.

Theorem 2.14. If T be quasi-class (Q) operator and $TB^2 = C^2T$. Then

- (1). $C^2 U = U C^2$.
- (2). $C^2 V = V C^2$.

Proof. Since $TB^2 = C^2T$

$$\Rightarrow T\left(T^{*2}T^{2}\right) = (T^{*}T)^{2}T$$
$$\Rightarrow \left(T^{*2}T^{2}\right)T^{*} = T^{*}\left(T^{*}T\right)^{2}$$

Since T is quasi-class (Q) operator, we have

(1).
$$C^{2}U = (T^{*}T)^{2} \left(\frac{T+T^{*}}{2}\right)$$

 $= \frac{(T^{*2}T^{2})T + (T^{*2}T^{2})T^{*}}{2}$
 $= \frac{T^{*}(T^{*2}T^{2}) + T(T^{*2}T^{2})}{2}$
 $= \left(\frac{T+T^{*}}{2}\right)(T^{*}T)^{2}$
 $= UC^{2}$

(2). Similarly, $C^2 V = V C^2$.

References

- [1] A. A. S. Jibril, On operators for which $(T^{*2}T^2) = (T^*T)^2$, International Mathematics Forum, 5(45-48)(2010), 2255-2262.
- [2] A. Brown, On a class of operators, Proc. Amer. Math. Soc, (1953), 723-728.
- [3] S. L. Campbell and R. Gellar, Spectral properties of Linear Operators for which T*T and T* + T commute, Proc. Amer. Math Soc., 60(1976), 197-202.
- [4] P. R. Halmos, A Hilbert space problem book, Princeton, N.J: Van Nostrand, (1967).
- [5] S. K. Berberian, Lectures in Functional Analysis and operator theory, Springer Verlag New York, (1974).
- [6] K. Vidhyapraba, A. Sivasathya and V. Vimala, Some Properties of Quasi-normal operators, International Journal of Scientific Research and Management, 2(12)(2014), 1811-1814.