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1. Introduction

Our interest in this work came from the lubrication model studied by M. Chambat and G. Bayada in [2] where the pressure

p is a periodic function solution of

div
(
h3(x)∇p

)
= (h(x)γ)x; h(x) = 1 + α cosx; α ∈ (0, 1)

and 0 6 γ(p) 6 1 with γ(p) = 1 on [p > 0]. The authors established the existence of a solution and the uniqueness under

regularity assumptions on the free boundary.

Recent works [4–6], showed a continuity of the free boundary in

div(a(x, y)∇u) = −(h(x, y)γ(u))x when hx(x, y) > 0.

This monotony on h led to a monotony of γ which allowed the characterization of the free boundary as a function x = φ(y).

The continuity of φ is established under assumptions relating a(x, y) with h(x, y) in [4], and under C0,α
loc regularity on a in

[5]. These work brought answers to the Lubrication free boundary problem in half of the domain since

h′(x) = −α sin(x) is negative on (0, π) and positive on (π, 2π).

In an attempt to explore the situation where hx < 0, we assume, in this paper, that a and h are independent of y. We look

for a monotone solution u in the y-direction. The free boundary is then defined as a function y = Φ(x). We establish its
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continuity by using techniques developed in [1, 9] for obstacle problems where a solution is more regular at the free boundary

points than it is in our case. The idea is to construct a cone with a vertex at a free boundary point while controlling a part

of [u > 0] in that cone.

For simplicity, we set the domain

Ω = (0, 1)× (0, 1), denote: Γ0 = (0, 1)× {0}, Γ1 = (0, 1)× {1},

and formulate the problem as:

(P )



Find (u, γ) ∈ H1(Ω)× L∞(Ω) such that:

(i) u > 0, 0 6 γ 6 1, u(γ − 1) = 0 a.e. in Ω

(ii) u = ϕ on ∂Ω

(iii)

∫
Ω

(
a(x)∇u+ γh(x)ex

)
.∇ξdxdy = 0 ∀ ξ ∈ H1

0 (Ω)

where ex = (1, 0), ϕ ∈ C0,1(Ω) with

ϕ(x, y) =

∥∥∥∥∥∥∥∥∥∥
0 on Γ0, θ0(y) on {0} × [0, 1]

and

ua on Γ1, θ1(y) on {1} × [0, 1]

with θi being regular and nondecreasing functions satisfying 0 6 θi(y) 6 ua, i = 1, 2, and ua is a positive constant.

The function h is C2([0, 1]) and satisfies for some positive constants h and λ:

|h(x)| 6 h̄, −h 6 h′(x) < −λ < 0, |h′′(x)| 6 h for x ∈ [0, 1]. (1)

The matrix a depends only on the x-variable and satisfies:

a ∈W 2,∞(0, 1) ∩ C1,1[0, 1] (2)

m|ξ|2 6 aijξiξj 6M |ξ|2 ∀ ξ ∈ R2, m > 0, M > 0. (3)

The existence of a solution to (P ) follows the proof in [3].

We introduce, for ε ∈ (0,min(1, ua)), the penalization problem:

(Pε)



Find uηε ∈ H1(Ω) such that :

(i) uε = ϕ on ∂Ω

(ii)

∫
Ω

(
a(x)∇uε + h(x)Hε(uε)ex

)
∇ξdxdy = 0 ∀ ξ ∈ H1

0 (Ω)

with

Hε(t) =

∥∥∥∥∥∥∥∥∥∥
0 if t < 0

t/ε if 0 6 t 6 ε

1 if t > ε

We show, as in [3], that there exists a unique solution for (Pε) satisfying:

uε ⇀ u in H1(Ω), Hε(uε) ⇀ γ in L2(Ω)
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and that (u, γ) is a solution of (P ).

Taking u−ε (resp.(uε−ua)+) as a test functions in (Pε), shows that uε > 0 (resp.uε 6 ua). Then, comparing uηε = uε(x, y+η)

with uε as in [7], we obtain (uε)y > 0 and finally get

0 6 u 6 ua,
∂u

∂y
> 0 a.e in Ω. (4)

In all what follows, we consider only monotone solutions of (P ). As a consequence, we deduce that:

� ∀ (x0, y0) ∈ [u > 0] = [u(x, y) > 0]∩Ω, ∃ δ > 0 such that u(x, y) > 0 for (x, y) ∈ Bδ(x0, y0)∪ (x0 − δ, x0 + δ)× [y0, 1]

� Φ : (0, 1) −→ [0, 1) is well defined by Φ(x) = inf{y ∈ (0, 1) / u(x, y) > 0} and is upper semi-continuous (u.s.c) on (0,1).

� [u > 0] = [y > Φ(x)].

Now, we list some properties of the solutions of (P ). We have

� div(a(x)∇u) = −(hγ)x in D′(Ω).

� u ∈ C0,α
loc (Ω ∪ Γ0 ∪ Γ1) ([8, Theorem 8.24, p 202]).

� [u > 0] is an open set.

� If a ∈ C1,1[0, 1] and h ∈ C2(0, 1), then u ∈ C2
loc([u > 0]) ([8, Theorem 8.10, p 186]).

� div(a(x)∇u) > −(h)xχ([u > 0]) in D′(Ω).

� div(a(x)∇u) > 0 and (hχ)x 6 0 in D′(Ω).

Remark 1.1. The above last inequalities are obtained by taking ±(Hε(u)ξ), ξ ∈ D(Ω), ξ > 0 as a test function in (P ). The

C0,α
loc regularity holds because hγ ∈ Lq(Ω) for q > 2.

The main result of this paper is the following:

Theorem 1.2. Assume the interior of the set (0, 1) ∩ [Φ(x) > 0] non empty. Then Φ is continuous at each interior point

of (0, 1) ∩ [Φ(x) > 0].

To prove the theorem, we work close to a free boundary point P0. We construct a half cone with vertex at P0. This is

possible by establishing a local monotony b
∂u

∂x
− ∂u

∂y
6 0.

2. Local Monotony

For the purpose of clarity, we establish the monotonicity result through the following steps.

Step 1: First, we have

Lemma 2.1.

∂u

∂y
> 0 in [u > 0]. (5)

Proof. We have

div(a(x)∇
(∂u
∂y

)
) =

∂

∂y

(
div(a(x)∇u)

)
=

∂

∂y
(h′(x)) = 0 in [u > 0] and

∂u

∂y
> 0.

3
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By the strong maximum principle ([8, Theorem 9.6 p.225]), one has

∂u

∂y
> 0 in [u > 0] or

∂u

∂y
= 0 in [u > 0].

But if
∂u

∂y
= 0 in [u > 0], then u = u(x) = u(x, 1) = ua since u ∈ C0(Ω ∪ Γ1). This leads to 0 = div(a(x)∇u) = −h′(x) > 0

in [u > 0] which is not possible.

Step 2: Next, let x0 ∈ (0, 1) with y0 = Φ(x0) > 0. Set ε0 = (1 − y0)/6, δ0 = min(x0, 1 − x0)/6. Since Φ is u.s.c, then

for ε ∈ (0, ε0), ∃ δ ∈ (0, δ0) such that Φ(x) < Φ(x0) + ε for any x ∈ (x0 − δ, x0 + δ). Using the continuity of u up to the

boundary y = 1, we can find 0 < ρ < 1− (y0 + 3ε0) such that u > 0 on [x0 − δ, x0 + δ]× [1− ρ, 1]. Set

F = [x0 − δ/2, x0 + δ/2]× [y0 + 2ε, 1− ρ]

G = (x0 − δ, x0 + δ)×
(
y0 + ε, 1− ρ

2

)
Note that: G ⊂ [u > 0] = [y > Φ(x)].

Figure 1: Set F and set G

Step 3: Since u ∈ C2([u > 0], then we have in G:

div(a(x)∇u) = −h′(x)

div

(
a(x)∇

(
∂u

∂y

))
= 0
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div

(
a(x)∇

(
∂u

∂x

))
=

∂

∂x

(
div(a(x)∇u)

)
−
(∂a11

∂x

∂2u

∂x2
+
∂a22

∂x

∂2u

∂y2
+
∂(a12 + a21)

∂x

∂2u

∂x∂y
+
∂2a11

∂x2

∂u

∂x
+
∂2a12

∂x2

∂u

∂y

)
.

Using the assumptions on a and h, we deduce that the function

w = u+ τ
∂u

∂x
− E∂u

∂y
(6)

satisfies

div(a(x)∇w) = div(a(x)∇u) + τdiv

(
a(x)∇

(∂u
∂x

))
− E div

(
a(x)∇

(∂u
∂y

))
= −h′(x) + τ div

(
a(x)∇

(∂u
∂x

))
− 0 > λ− |τ |C1 in G

where C1 = C(h, |a|1,1, |u|C2(G), |a|W2,∞) is a constant depending on ε. Thus, for |τ | < λ

2C1
, we have

div(a(x)∇w) >
λ

2
in G. (7)

Step 4:. Now, let ζ ∈ C∞(R2) satisfying ζ = 0 on F, 0 6 ζ 6 1 and ζ > 1 on ∂G. We have

div(a(x)∇ζ) = a11
∂2ζ

∂x2
+ a22

∂2ζ

∂y2
+ (a12 + a21)

∂2ζ

∂x∂y
+
∂a11

∂x

∂ζ

∂x
+
∂a12

∂x

∂ζ

∂y

Then,

|div(a(x)∇ζ)| 6 C2 = max
G
|div(a(x)∇ζ)|

We choose µ ∈
(

0,
λ

2C2

)
so that

µ div(a(x)∇ζ) 6 λ

2
in G

From (7), we deduce that

div(a(x)∇(w − µζ)) > 0 in G. (8)

Step 5: Set

k = max
G
|u|+ max

G
|∇u|, τ0 =

µ

1 + k
,

E0 =
k

β(τ0)
, β(τ0) = min

[u>τ0]∩G

(∂u
∂y

)

By the extreme value theorem, the minimum value β(τ0) is attained if the closed bounded set [u > τ0]∩G 6= ∅ and is strictly

positive by Lemma 2.1; that is

β(τ0) =
∂u

∂y
(m0) > 0; m0 ∈ [u > τ0] ∩G.

To show that w − µζ 6 0 on ∂G, we discuss the following:

� If ∂G ∩ [u > τ0] = ∅, then u < τ0 on ∂G. As a consequence, we have

w = u+ τ
∂u

∂x
− E∂u

∂y
6 τ0 + |τ |k since

∂u

∂y
> 0

6 τ0 + τ0k = µ on ∂G if |τ | < τ0.
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� If ∂G ∩ [u > τ0] 6= ∅, then

- on ∂G ∩ [u < τ0], we have, as in the previous case w 6 µ on ∂G ∩ [u < τ0] if |τ | < τ0.

- on ∂G ∩ [u > τ0],

w = u+ τ
∂u

∂x
− E∂u

∂y
6 k + |τ |k − Eβ(τ0) since

∂u

∂y
> β(τ0) > 0

6 k + τ0k − E0β(τ0) for E > E0

= τ0k 6 τ0(1 + k) = µ on ∂G ∩ [u > τ0] if |τ | < τ0 and E > E0.

Step 6: Now, since div(a(x)∇(w − µζ)) > 0 in G and w − µζ 6 0 on ∂G, we deduce, by the maximum principle, that

w − µζ 6 0 in G. In particular, we have w 6 0 in F . Hence

τ
∂u

∂x
− E∂u

∂y
6 −u < 0 in F if |τ | < τ0 and E > E0.

Setting b =
τ

E
and b0 =

τ0
E0

, we finally established, through the 6 steps, the following result:

Theorem 2.2. There exists a constant b0 > 0 depending on x0, y0, ε such that

b
∂u

∂x
− ∂u

∂y
< 0 in F for |b| < b0.

3. Set of Directions

Figure 2: Lines P0Pn and P−n P0

In this section, we describe how we form particular lines passing through the vertex P0 = (x0, y0) and crossing the horizontal

line y = y0 + 2ε = yε.

Line segment P0P1: It is possible to find x1 ∈ (x0, x0 + δ/4) such that

x1 − x0

yε − y0
=
x1 − x0

2ε
= κb0 < b0

It suffices, to choose

κ =
x1 − x0

2ε
.

1

b0
such that |x1 − x0| = 2εb0κ <

δ

4
; κ ∈

(
0,min

(1

2
,
δ

8εb0

))
.

6
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Set P1 = (x1, yε) and b1 = κb0. The line joining P0 and P1 has the slope

yε − y0

x1 − x0
= b−1

1

and can be described by the following two parameterizations:

P0P1 :


x = x1 − tb1

t ∈ [0, 2ε]

y = yε − t

or


x = x0 + sb1

s ∈ [0, 2ε]

y = y0 + s

Define the function

fb1(t) = u(x1 − tb1, yε − t).

We have

fb1(0) = u(x1, yε) > 0, f ′b1(0) =
(
− b1

∂u

∂x
− ∂u

∂y

)
(x1, yε) < 0

By continuity, we have f ′b1(t) < 0 for t small. Let

t2 = sup U ; U = {t ∈ [0, 2ε] such that fb1(s) > 0 ∀ s ∈ [0, t)}.

Since U 6= ∅ and bounded, then t2 is well defined and by continuity of fb1 , we have fb1(t2) = 0. Note that t2 > ε since u > 0

in (x0 − δ, x0 + δ)× [y0 + ε, yε]. If t2 = 2ε, then u > 0 along the line segment P0P1 \ {P0}. If t2 6= 2ε, set

x2 = x1 − t2b1; y2 = yε − t2; Q2 = (x2, y2),

then form the second line segment.

Line segment P0P2: Set P2 = (x2, yε). Then, we have

x2 − x0

yε − y0
=

1

2ε
((x1 − t2b1)− x0)

=
1

2ε
((x0 + 2εb1 − t2b1)− x0) since x1 = x0 + 2εb1

=
(2ε− t2

2ε

)
b1 = b2 < b1 < b0.

The line joining P0 and P2 has the slope

yε − y0

x2 − x0
= b−1

2

and can be described by the following two parameterizations:

P0P2 :


x = x2 − tb2

t ∈ [0, 2ε]

y = yε − t

or


x = x0 + sb2

s ∈ [0, 2ε]

y = y0 + s

Define the function

fb2(t) = u(x1 − tb2, yε − t).

We have

fb2(0) = u(x1, yε) > 0, f ′b2(0) =
(
− b2

∂u

∂x
− ∂u

∂y

)
(x1, yε) < 0

7
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By continuity f ′b2(t) < 0 for small t. Let t3 ∈ (0, 2ε] such that

fb2(t3) = 0 and fb2(t) > 0 for t ∈ [0, t3).

Note that t3 > ε since u > 0 in (x0 − δ, x0 + δ)× [y0 + ε, yε]. If t3 = 2ε, then u > 0 along the line segment P0P2 \ {P0}. If

t3 6= 2ε, set

x3 = x2 − t3b2; y3 = yε − t3; Q3 = (x3, y3),

then we form the line segment P0P3.

Line segment P0Pn: By repeating the previous process, we will obtain a sequence of points Pn = (xn, yε) and Qn+1 =

(xn+1, yε − tn+1) satisfying:

x1 − x0 = 2εb1 = 2εb0κ x1 − x2 = t2b1 > εb1

x2 − x0 = 2εb2 x2 − x3 = t3b2 > εb2

...
...

xn − x0 = 2εbn xn − xn+1 = tn+1bn > εbn

The sequence (xn) is convergent since it is decreasing and bounded. Indeed, we have

0 6 2εbn+1 6 2εbn 6 2εb0κ 6 εb0 and tn+1 > ε.

We also have

2εb0κ = x1 − x0 > x1 − xn+1

= (x1 − x2) + (x2 − x3) + . . .+ (xn − xn+1)

> εb1 + εb2 + . . .+ εbn = sn > 0

(sn) is a bounded increasing sequence. Thus convergent. As a consequence

εbn = sn − sn−1 −→ 0 and xn = x0 + 2εbn −→ x0 as n −→ +∞.

Similarly, we obtain a sequence of points P−1 , P
−
2 , . . . , P

−
n , . . . to the left of P0.

Line segment P−1 P0: With x−1 − x0 = −2εκb0, we have

x−1 − x0

yε − y0
=
x−1 − x0

2ε
= −κb0 > −b0, x−1 ∈ (x0 − δ/4, x0)

Since

κ =
x−1 − x0

2ε
.

1

−b0
is such that |x−1 − x0| = 2εb0κ <

δ

4
for κ ∈

(
0,min

(1

2
,
δ

8εb0

))
.

Set P−1 = (x−1 , yε) and b1 = κb0. The line joining P−1 and P0 has the slope

yε − y0

x−1 − x0

= −b−1
1

8
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and can be described by the following two parameterizations:

P−1 P0 :


x = x−1 + tb1

t ∈ [0, 2ε]

y = yε − t

or


x = x0 − sb1

s ∈ [0, 2ε]

y = y0 + s

Define the function

gb1(t) = u(x−1 + tb1, yε − t).

We have

gb1(0) = u(x−1 , yε) > 0, g′b1(0) =
(
b1
∂u

∂x
− ∂u

∂y

)
(x−1 , yε) < 0

By continuity g′b1(t) < 0 for small t. Let t−2 ∈ (0, 2ε] such that gb1(t−2 ) = 0 and gb1(t) > 0 for t ∈ [0, t−2 ). Note that t−2 > ε

since u > 0 in (x0 − δ, x0 + δ) × [y0 + ε, yε]. If t−2 = 2ε, then u > 0 along the line segment P−1 P0 \ {P0}. If t−2 6= 2ε, set

x−2 = x−1 + t−2 b1; y−2 = yε − t−2 ; Q−2 = (x−2 , y
−
2 ), then we form the following line segment P−2 P0 with P−2 = (x−2 , yε).

Line segment P−n P0: We obtain a sequence of points P−n = (x−n , yε) and Q−n+1 = (x−n+1, yε − t
−
n+1) satisfying:

0 6 x0 − x−n = 2εbn 6 2εb1 = 2εb0κ 6 εb0; x−n+1 − x
−
n = t−n+1bn > εbn

and x−n = x0 − 2εbn −→ x0 as n −→ +∞.

4. Proof of Continuity

Proof of Theorem 1.2. Let x0 be in the interior of (0, 1) ∩ [Φ(x) > 0]. Define ε0, δ0, ρ, and the sets F and G as in Step 2 of

section 2. Then, construct points P−1 , P
−
2 , . . . , P

−
n , . . . to the left of P0 and points P1, P2, . . . , Pn, . . . to the right of P0 (as

in section 3) such that u > 0 above the line segments [P−i Q
−
i+1) and [PiQi+1); i = 1, 2, . . . , n, . . . .

For x ∈ (x0 −
δ

8
, x0 +

δ

8
) \ {x0}, there exists n > 1 such that xn+1 6 x < xn or x−n < x 6 x−n+1 since xn = x0 + 2εbn and

x−n = x0 − 2εbn. Now, because u(x,Φ(x)) = 0, the point (x,Φ(x)) will be under the line segment

[PnQn+1) : x− x0 = bn(y − y0) or [P−n Q
−
n+1) : x− x0 = −bn(y − y0).

We discuss two situations:

i). Φ(x) > y0 = Φ(x0). We have

Φ(x)− Φ(x0) < b−1
n (x− x0) if xn+1 6 x < xn

Φ(x)− Φ(x0) < b−1
n (x0 − x) if x−n < x 6 x−n+1

* For xn+1 6 x < xn, we have

0 < x− x0 = (x− xn) + (xn − x0)

6 (xn − xn+1) + (xn − x0)

= tnbn + 2εbn

b−1
n (x− x0) 6 tn + 2ε 6 2ε+ 2ε = 4ε

9
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* For x−n < x 6 x−n+1, we have

0 < x0 − x = (x0 − x−n+1) + (x−n+1 − x)

6 (x0 − x−n+1) + (x−n+1 − x
−
n )

= 2εbn+1 + t−n+1bn

b−1
n (x0 − x) 6 2εb−1

n .bn+1 + t−n+1 6 2ε+ 2ε = 4ε since bn+1 6 bn.

Thus Φ(x)− Φ(x0) 6 4ε.

ii). Φ(x) < y0 = Φ(x0).

Set x′0 = x and y′0 = Φ(x) = y. The point P ′0 = (x′0, y
′
0) will play the role of (x0, y0) in section 3 and we will form with the

same process the sequence of points P−′1 , P−′2 , . . . , P−′n , . . . to the left of P ′0 and points P ′1, P
′
2, . . . , P

′
n, . . . to the right of P ′0.

It is sufficient that we start with P ′1 (resp. P−′1 ) such that the corresponding b′1 (resp. b−′1 ) is less than b0.

Line segments P ′0P
′
1 and P−′1 P ′0: We choose P ′1 = (x′1, yε) = P1 = (x1, yε) and P−′1 = (x−′1 , yε) = P−1 = (x−1 , yε). This

ensures that we remain working on the interval [x−1 , x1] and x0 is in this interval. We have

|x0 − x′0| 6 2εb1 since |x0 − x1| = |x−1 − x0| = 2εb1

|x′1 − x′0| = |x1 − x0 + x0 − x′0| 6 |x1 − x0|+ |x0 − x′0| 6 4εb1 since x1 = x0 + 2εb1

yε − y′0 > yε − y0 = 2ε since y′0 < y0

b′1 =
x′1 − x′0
yε − y′0

.

So

|b′1| =
|x′1 − x′0|
yε − y′0

6
4εb1
2ε

= 2b1 = 2κb0 < b0 ⇐⇒ κ <
1

2

which is satisfied by the first choice of κ. Similarly, we have

−b−′1 =
x−1 − x′0
yε − y′0

; |b−′1 | =
|x−1 − x′0|
yε − y′0

=
|x0 − 2εb1 − x′0|

yε − y′0
6

4εb1
2ε

= 2b1.

Arguing as in i), we obtain

Φ(x0)− Φ(x) 6 max
( 1

b−′q
,

1

b′m

)
|x− x0| 6 4ε,

depending if x0 is to the right of x; x′m+1 6 x0 < x′m, or x0 is to the left of x; x−′q < x0 6 x−′q+1. Finally, we have

|Φ(x)− Φ(x0)| 6 4ε for |x− x0| <
δ

8
.

This completes the proof of the continuity of Φ.
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