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1. Introduction

Our interest in this work came from the lubrication model studied by M. Chambat and G. Bayada in [2] where the pressure

p is a periodic function solution of

div(h*(z)Vp) = (h(z)7)e; h(z) =1+acosz; a€ (0,1)

and 0 < v(p) < 1 with v(p) =1 on [p > 0]. The authors established the existence of a solution and the uniqueness under
regularity assumptions on the free boundary.

Recent works [4-6], showed a continuity of the free boundary in

div(a(z,y)Vu) = —(h(z,y)v(u))z when hy(z,y) > 0.

This monotony on h led to a monotony of v which allowed the characterization of the free boundary as a function z = ¢(y).
The continuity of ¢ is established under assumptions relating a(z,y) with h(x,y) in [4], and under C%® regularity on @ in

loc

[5]. These work brought answers to the Lubrication free boundary problem in half of the domain since
h'(z) = —asin(z) is negative on (0,7) and positive on (r, 27).

In an attempt to explore the situation where h; < 0, we assume, in this paper, that a and h are independent of y. We look

for a monotone solution u in the y-direction. The free boundary is then defined as a function y = ®(z). We establish its
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continuity by using techniques developed in [1, 9] for obstacle problems where a solution is more regular at the free boundary
points than it is in our case. The idea is to construct a cone with a vertex at a free boundary point while controlling a part
of [u > 0] in that cone.

For simplicity, we set the domain
Q=(0,1) x (0,1), denote: T'o=(0,1) x {0}, T1=(0,1)x {1},
and formulate the problem as:

Find (u,v) € H(Q) x L>(Q) such that:
(1) w20, 0<y<1l, u(y—1)=0 ae inQ
(1)) uw=¢ on 9N

(a(z)Vu + yh(z)es).Védzdy =0 YV € € Hy(Q)

—
~.
S
S

N

D\

where e, = (1,0), ¢ € C%(Q) with

0 on Ty, 0o(y) on {0} x[0,1]
ez, y) = and
Uq on Iy, 01(y) on {1} x[0,1]

with 6; being regular and nondecreasing functions satisfying 0 < 0;(y) < uq, ¢ = 1,2, and u, is a positive constant.

The function h is C2([0,1]) and satisfies for some positive constants h and \:
|h(z)] < h, —h <K (z) < =A<0, |h"(z)] <h for x€[0,1]. (1)
The matrix a depends only on the z-variable and satisfies:

a € W>>*(0,1)nc'0,1] (2)

mlé)® < ay&& < MIEP ¥V E€R?, m>0, M>0. (3)

The existence of a solution to (P) follows the proof in [3].

We introduce, for € € (0, min(1,us)), the penalization problem:

Find u? € H'(Q) such that :
(Pe) (7) ue = @ on ON)

(41) /Q (a(x)Vue + h(z)He(uc)es ) Védady =0 V € € Hy(Q)

with
0 ift<o0
H(t)=| t/e if0<t<e
1 ift>e

We show, as in [3], that there exists a unique solution for (P:) satisfying:

ue = u in H'(Q), Hc(u)—~ in L*(Q)
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and that (u,~) is a solution of (P).
Taking u_ (resp.(ue —uq)") as a test functions in (P.), shows that u. > 0 (resp.u. < u,). Then, comparing u? = uc(z,y+n)

with ue as in [7], we obtain (uc)y > 0 and finally get

0 <u < Ug, g—Z}O a.e in Q. (4)

In all what follows, we consider only monotone solutions of (P). As a consequence, we deduce that:
oV (z0,y0) € [u>0] = [u(z,y) >0NQ,3 §> 0 such that u(z,y) > 0 for (z,y) € Bs(xo,yo) U (zo — J, 20 + &) X [yo, 1]
e &:(0,1) — [0,1) is well defined by ®(z) = inf{y € (0,1) / u(x,y) > 0} and is upper semi-continuous (u.s.c) on (0,1).
o [u>0]=[y > o))

Now, we list some properties of the solutions of (P). We have
e div(a(z)Vu) = —(hy), in D'(Q).

ue Ch¥(QUTUT,) ([8, Theorem 8.24, p 202]).

loc

[u > 0] is an open set.

If a € C'[0,1] and h € C?(0,1), then u € CZ ([u > 0]) ([8, Theorem 8.10, p 186]).
e div(a(z)Vu) = —(h)zx([u > 0]) in D'().
e div(a(z)Vu) = 0 and (hy). <0 in D'(Q).

Remark 1.1. The above last inequalities are obtained by taking +(He(u)f), € € D(Q), € = 0 as a test function in (P). The

C%* regularity holds because hy € LI(Q) for ¢ > 2.

loc

The main result of this paper is the following:

Theorem 1.2. Assume the interior of the set (0,1) N [®(x) > 0] non empty. Then ® is continuous at each interior point
of (0,1) N [®(z) > 0].
To prove the theorem, we work close to a free boundary point Py. We construct a half cone with vertex at Py. This is

@_m

— < 0.
ox 8y\0

possible by establishing a local monotony b

2. Local Monotony

For the purpose of clarity, we establish the monotonicity result through the following steps.

Step 1: First, we have

Lemma 2.1.

ou
@>Ozn [u > 0] )
Proof. We have
dzv(a(x)v(%)) ag(dw(a(x)vu)) = ag(h,(ﬁﬂ)) =0 infu>0] and % >0
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By the strong maximum principle ([8, Theorem 9.6 p.225]), one has

%>0 in [u>0] or Z—Z:O in [u>0].

But if % =0in [u > 0], then u = u(x) = u(z,1) = u, since u € C°(QUT1). This leads to 0 = div(a(z)Vu) = —h'(x) > 0

in [u > 0] which is not possible.

O

Step 2: Next, let 2o € (0,1) with yo = ®(z9) > 0. Set g = (1 — y0)/6, do = min(zo,1 — z0)/6. Since P is u.s.c, then

for € € (0,e0), 3 6 € (0,00) such that ®(z) < ®(x0) + € for any = € (zo — I, z0 + §). Using the continuity of u up to the

boundary y = 1, we can find 0 < p < 1 — (yo + 3e0) such that u > 0 on [zg — d,z0 + ] X [1 — p,1]. Set

F =[zo—06/2,20+6/2] X [yo + 2¢,1 — p]

G=($0—5,$0+5)X (yo—l—e,l—g)

Note that: G C [u > 0] = [y > ®(z)].

y=1

y=1-p/2 e
I I
I I

y=1-p | |
I I
I I
I I
| |
I I
| I
| I
I I
I I
| F I
I I
I I
| 1
I I
I I

y=yo+2 ! !
I I
| I
I I
I G I
I I
| I

Yy =1yo+e€ Fr----- =" =" =—"—"—-"—"—-"—-" -~ —"—"—" -~ -~ —" -~ - —"—"—"—"———————— - - — — — - -+ =

(20, ¢(x0))

y=

r=x0—0 T =1x0—6/2 T =x0 T =m0 +6/2 z=x0+0

Figure 1: Set F and set G

Step 3: Since u € C?([u > 0], then we have in G:

div(a(z)Vu) = —h/(z)

s (ot (2) =0
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. ou\\ 0 /.. dair O*u  daze *u A arz +az) *u  H%ai1 Ou  H%ai2 Ou
div (a(a:)V (%)) N %(dw(a(x)Vu)) B ( dox dx2 + ox dy? + Ox 0xdy + dx? Oz + Ox? (‘Ty)

Using the assumptions on a and h, we deduce that the function

ou ou
w—u—‘,—T%—Ea—y (6)

satisfies

div(a(z)Vw) = div(a(z)Vu) + rdiv @(@v(%)) ~ Ediv <a(a:)v(g—;‘))

= K (z) + 7 div (a(x)V(%)) —0=A—|rlCy in G

— A
where C1 = C(h, |al1,1, [u|c2(@), [alwz.) is a constant depending on e. Thus, for |7| < S =-, we have

2C,

div(a(z)Vw) >

| >

in G. (7)

Step 4:. Now, let ¢ € C™°(R?) satisfying ¢ =0 on F, 0 < ¢ <1 and ¢ > 1 on 8G. We have

. B 82C 82< 82C a1l aC Oaiz 5{
div(a(z)V() = ang—g + a228T/2 + (a12 + a21)8x5‘y + 9z Ox oz Dy

Then,

|div(a(z)V()| < C2 = max |div(a(x) V()]

A
We choose u € (0, 2702) so that
u div(a(z)VE) < % in G
From (7), we deduce that
div(a(z)V(w —puf)) >0 in G. (8)
Step 5: Set
o _ M
kfmgx|u\+mgx|Vu|, =T
k ou
Ey = 5 = 1 _
"= Blro) o = min ()

By the extreme value theorem, the minimum value 3(70) is attained if the closed bounded set [u > 7o] NG # () and is strictly

positive by Lemma 2.1; that is

5(70)2%(m0)>0; mo € [u> 7] NG.

To show that w — u¢ < 0 on OG, we discuss the following:

e If 9G N [u > 10] = 0, then u < 70 on G. As a consequence, we have

wzu—&—T@—E@

du
< i — >
e oy S 7o + |7|k since >0

0y

< 1o+ 710k =p on 9G if |7] < 70.
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e If 0G N [u > 19] # 0, then

- on 8GN [u < 7o), we have, as in the previous case w < p on G N [u < 7o) if |7]| < 70.

- on 9G N [u = 7],

0 0 . )
w :u—l—Ta—Z —Ea—z < k+|r|k — EB(0) since B—Z > B(m0) >0
< k+ 1ok — EoB(10) for E > Ey

=71k <1(l+k)=p on GN[u>=1] if |7| <70 and E > Ep.

Step 6: Now, since div(a(z)V(w — u¢)) > 0 in G and w — u¢ < 0 on IG, we deduce, by the maximum principle, that

w — pu¢ < 0in G. In particular, we have w < 0 in F. Hence

Ta—u—Ea—ug—u<0 in F if |7| <71 and E > Eo.
ox Oy

Setting b = % and by = %, we finally established, through the 6 steps, the following result:
0

Theorem 2.2. There exists a constant bg > 0 depending on o, yo, € such that

ou Ou )
ba—x—a—y<0 in F for |b| < bo.

3. Set of Directions

Figure 2: Lines Py P, and P, Py

In this section, we describe how we form particular lines passing through the vertex Py = (zo, yo0) and crossing the horizontal
line y = yo + 2€ = ye.
Line segment Py Pi: It is possible to find z1 € (zo,x0 + §/4) such that

xr1 — To r1 — o

= = kbo < bo
Ye — Yo 2e

It suffices, to choose

X1 — Xo 1
R = T

1
such that |21 — zo| = 2ebor < 0 e (O7min (7 0 ))
2e 0 4
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Set P = (z1,ye) and by = kbo. The line joining Py and P; has the slope

Ye — Yo :b1—1
X1 — 2o

and can be described by the following two parameterizations:
r=x1 — th xr = x0 + sb1

PPy t €10, 2¢€ or s €10, 2¢€

Y=Ye—1 Yy=yo+s

Define the function

fb1 (t) = u(:rl — tbl, Ye — t).

‘We have

fun(0) = u(e1,90) > 0, f,(0) = (=g = 5 ) (r90) <0

By continuity, we have f;, (t) < 0 for ¢ small. Let

ta =sup U; U ={t€|0,2¢] such that f5,(s) >0V se€[0,t)}.

Since U # () and bounded, then ¢ is well defined and by continuity of fi,, we have fi, (t2) = 0. Note that t2 > € since u > 0

in (zo — 0,0 + 0) X [yo + €, ye]. If to = 2¢, then u > 0 along the line segment Py Py \ {Po}. If to # 2, set

T2 = 1 — taby; Y2 = Ye — lo; Q2 = (w2, 92),

then form the second line segment.

Line segment PyP>: Set P> = (x2,y.). Then, we have

xo — X 1
ﬁ = 5. (@1 = t2b1) — 20)
1
= 2—((:00 + 2eby — t2b1) — x0) since z1 = xo + 2€bs
€
2e — t
:( 626 2)b1:b2<b1 < bo.

The line joining Py and P» has the slope

T2 — X0

Ye — Yo b2_1
and can be described by the following two parameterizations:

T = T — tby T = x0 + sbo
PyPs t €10, 2¢] or s €10, 2¢]

Y=yYe—1 Yy=1Yo+s
Define the function
sz (t) = u(a:l — tbz, Ye — t).

‘We have

Fa 0) = ular ) > 0, fa(0) = (= a3 = T) (w1, < 0
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By continuity f;,(t) < 0 for small ¢. Let t3 € (0, 2¢] such that

be(tg) =0 and be (t) >0 for te [0,t3).

Note that t3 > € since u > 0 in (zo — §,z0 + ) X [yo + €, ye|. If t3 = 2¢, then u > 0 along the line segment Po P> \ {Fo}. If
ts # 2e, set

r3 = T2 — t3by; Y3 = Ye — 13; Q3 = (x3,y3),
then we form the line segment Py Ps.

Line segment PyP,: By repeating the previous process, we will obtain a sequence of points P, = (Zn,¥ye) and Qni1 =

(Tn+1,Ye — tnt1) satisfying:

T1 — 20 = 2e¢b1 = 2ebok T1 — X2 = tab1 > ey
To — To = 2€bs To — x3 = t3ba > ebs
Iy — To = 2€by, Tn — Tnt1 = tny1bn = €by

The sequence () is convergent since it is decreasing and bounded. Indeed, we have

0 < 2ebn+1 < 2eby, < 2ebok < €bg and tp41 > €.

We also have

2ebok = T1 — To = T1 — Tnt1
=(z1 —x2) + (w2 —23) + ... + (Tn — Tnt1)

>eby +e€bas+...+€ebp =5, >0

(sn) is a bounded increasing sequence. Thus convergent. As a consequence

ebp, = 8p — Sn—1 — 0 and =z, = xo + 2¢b, —> o as n — +oo.

Similarly, we obtain a sequence of points P, , P, ,..., P, ,... to the left of Py.
Line segment P; Py: With x] — x¢o = —2ekbo, we have
Ty —To Ty — o

- — —kbo > —bo, a1 —§/4
— 5 kb > —bo, x1 € (z0 /4, x0)

Since

K= %.—Lbo is such that |z; — xo| = 2ebor < % for k€ (O,min (%,%))

Set P = (z1,y.) and by = kbo. The line joining P, and Py has the slope

Ye — Yo —
_7:—1711
Ty — o
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and can be described by the following two parameterizations:

T =x; +th xr =x9 — sby
PPy t e [0,2¢ or s €0, 2¢]

Y=Ye—t Yy=yo+s

Define the function

9o (t) = u(zy +thr,ye —t).

‘We have
ou  Ou

901(0) = (et 5e) > 0, 64, (0) = (bar — 5 ) 1) <0

By continuity gy, (£) < 0 for small ¢. Let t; € (0,2¢] such that gy, (t;) = 0 and gp, (£) > 0 for ¢ € [0,¢; ). Note that t; > €
since u > 0 in (zo — 0,0 + J) X [yo + €,ye]. If t7 = 2¢, then u > 0 along the line segment P, Py \ {Po}. If t; # 2e, set
Ty =x7 +t3b15ys =ye —ty; Q3 = (23 ,¥s ), then we form the following line segment P, Py with Py~ = (x5, ye)-

Line segment P, Po: We obtain a sequence of points P, = (z,,,%e) and Q,,; = (%, 1, ¥e — t,, ) satisfying:
0 < zo — z, = 2€b, < 2eb1 = 2ebok < €bo; Ty — T, =1, 1bn > €by
and x, = xo — 2¢b, — xp as n —» +o0.

4. Proof of Continuity

Proof of Theorem 1.2. Let xo be in the interior of (0,1) N [®(z) > 0]. Define €, do, p, and the sets F' and G as in Step 2 of
section 2. Then, construct points P; , P, ,..., P, ,... to the left of Py and points Pi, Pa,..., Py,... to the right of Py (as
in section 3) such that u > 0 above the line segments [P, Q) and [PiQit1); i =1,2,...,n,....

o . -
For z € (x0 — 5,20 + §) \ {zo}, there exists n > 1 such that zp,41 <z < zn or z, <z <z, since z, = o + 2¢b, and

8
x, = xo — 2¢eb,. Now, because u(z, ®(x)) = 0, the point (z, ®(z)) will be under the line segment

[PnQnt1): T —m0=0bu(y—yo) or [PrQu1): =—20=—bu(y— o)

We discuss two situations:

i). ®(z) > yo = ®(xo). We have

®(z) — (o) < by (z — x0) if T <z < Ty

®(x) — (xz0) < by, (w0 —2) if 2, <z <7y
* For Tpt1 < T < Tpn, we have

0<z—z0=(z—2n) + (Tn — o)
< (Tn — Znt1) + (2o — z0)
= t,b, + 2¢€b,

bt (2 — 20) < tn + 26 < 2¢ + 2¢ = 4e
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* For z,, <z < ,,,, we have

O0<zo—z=(r0o—Tpiy)+ (41 — )
< (o = Tpy1) + (Tnyr — @)
= 2€bn+1 +t;+1bn

by (w0 — ) < 2eby, bng1 + 1 < 26 4 2¢ = 4e since bpy1 < by.

Thus ®(z) — ®(z0) < 4e.

if). ®(z) < yo = @(z0).

Set z(, = x and y, = ®(x) = y. The point Pj = (¢, yo) will play the role of (zo,yo0) in section 3 and we will form with the
same process the sequence of points P;’, Py’ ..., Py’,... to the left of P§ and points P{, P3,..., P,,... to the right of P{.
It is sufficient that we start with P{ (resp. P; ') such that the corresponding b} (resp. b7’) is less than by.

Line segments PP and P;'Pj: We choose P| = (z,y.) = Pi = (z1,ye) and P/’ = (x7',y¢) = P, = (1 ,ye). This

ensures that we remain working on the interval [x],z1] and zo is in this interval. We have

|xo — mg\ < 2eby since |xo — x1| = |x7 — xo| = 2€bs
|z7 — zg] = |21 — 20 + 20 — 20| < |T1 — To| + |0 — 2G| < 4eby since 1 = o + 2eby

Ye — Yo = Ye — Yo = 2€ since y, < Yo

) — xt
by = ——7.
Ye — Yo
So
[ 4b 1
\b’1|:|x17x,0‘<2:2b1:25b0<b0 <~ K<z
Ye — Yo 2¢ 2

which is satisfied by the first choice of x. Similarly, we have

— /
P _
—b;' = 17,0; b7’ =

|z7 — xo| _ lwo — 2¢by — xp| o debr
Ye = Yo Ye = Yo Ye = Yo 2e

= 2b;.

Arguing as in i), we obtain

@ (o) — B(x) < max LI

E, a)kﬁ — (L’O| < 467

depending if x¢ is to the right of x; 27,1 < zo < &, or o is to the left of @; x;" < xo < z},. Finally, we have
1
|D(z) — P(x0)| < e for |z — x| < 3

This completes the proof of the continuity of ®.
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