

International Journal of Mathematics And its Applications

Regularity of the Free Boundary in $div(a(x)\nabla u(x,y)) = -(h(x)\gamma(u))_x$ with h'(x) < 0

Samia Challal^{1,*}

1 Department of Mathematics, Glendon college - York university, 2275 Bayview Ave. Toronto ON M4N 3M6 Canada.

Abstract: A free boundary problem of type div(a(x)∇u) = -(h(x)γ(u))x with hx < 0 is considered. A regularity of the free boundary as a curve y = Φ(x) is established using a local monotony bux - uy < 0 close to free boundary points.
MSC: 35A15, 35R35, 35JXX.

Keywords: Variational methods, free boundary problems, Linear elliptic equations. (c) JS Publication.

1. Introduction

Our interest in this work came from the lubrication model studied by M. Chambat and G. Bayada in [2] where the pressure p is a periodic function solution of

$$div(h^{3}(x)\nabla p) = (h(x)\gamma)_{x}; \quad h(x) = 1 + \alpha \cos x; \quad \alpha \in (0,1)$$

and $0 \leq \gamma(p) \leq 1$ with $\gamma(p) = 1$ on [p > 0]. The authors established the existence of a solution and the uniqueness under regularity assumptions on the free boundary.

Recent works [4-6], showed a continuity of the free boundary in

$$div(a(x,y)\nabla u) = -(h(x,y)\gamma(u))_x$$
 when $h_x(x,y) \ge 0$.

This monotony on h led to a monotony of γ which allowed the characterization of the free boundary as a function $x = \phi(y)$. The continuity of ϕ is established under assumptions relating a(x, y) with h(x, y) in [4], and under $C_{loc}^{0,\alpha}$ regularity on a in [5]. These work brought answers to the Lubrication free boundary problem in half of the domain since

 $h'(x) = -\alpha \sin(x)$ is negative on $(0, \pi)$ and positive on $(\pi, 2\pi)$.

In an attempt to explore the situation where $h_x < 0$, we assume, in this paper, that a and h are independent of y. We look for a monotone solution u in the y-direction. The free boundary is then defined as a function $y = \Phi(x)$. We establish its

^{*} E-mail: schallal@glendon.yorku.ca

continuity by using techniques developed in [1, 9] for obstacle problems where a solution is more regular at the free boundary points than it is in our case. The idea is to construct a cone with a vertex at a free boundary point while controlling a part of [u > 0] in that cone.

For simplicity, we set the domain

$$\Omega = (0,1) \times (0,1),$$
 denote: $\Gamma_0 = (0,1) \times \{0\},$ $\Gamma_1 = (0,1) \times \{1\},$

and formulate the problem as:

$$(P) \begin{cases} \text{Find } (u,\gamma) \in H^{1}(\Omega) \times L^{\infty}(\Omega) \text{ such that:} \\ (i) \quad u \ge 0, \quad 0 \leqslant \gamma \leqslant 1, \quad u(\gamma-1) = 0 \text{ a.e. in } \Omega \\ (ii) \quad u = \varphi \text{ on } \partial \Omega \\ (iii) \quad \int_{\Omega} (a(x)\nabla u + \gamma h(x)e_{x}) . \nabla \xi dx dy = 0 \quad \forall \ \xi \in H^{1}_{0}(\Omega) \end{cases}$$

where $e_x = (1, 0), \varphi \in C^{0,1}(\overline{\Omega})$ with

$$\varphi(x,y) = \left| \begin{array}{cccc} 0 & \text{ on } & \Gamma_0, & & \theta_0(y) & \text{ on } \{0\} \times [0,1] \\ & & \text{ and } \\ u_a & \text{ on } & \Gamma_1, & & \theta_1(y) & \text{ on } \{1\} \times [0,1] \end{array} \right|$$

with θ_i being regular and nondecreasing functions satisfying $0 \leq \theta_i(y) \leq u_a$, i = 1, 2, and u_a is a positive constant. The function h is $C^2([0, 1])$ and satisfies for some positive constants \overline{h} and λ :

$$|h(x)| \leq \overline{h}, \qquad -\overline{h} \leq h'(x) < -\lambda < 0, \qquad |h''(x)| \leq \overline{h} \quad \text{for} \quad x \in [0, 1].$$

$$\tag{1}$$

The matrix a depends only on the x-variable and satisfies:

$$a \in W^{2,\infty}(0,1) \cap C^{1,1}[0,1] \tag{2}$$

$$m|\xi|^2 \leqslant a_{ij}\xi_i\xi_j \leqslant M|\xi|^2 \quad \forall \ \xi \in \mathbb{R}^2, \quad m > 0, \quad M > 0.$$

$$(3)$$

The existence of a solution to (P) follows the proof in [3]. We introduce, for $\epsilon \in (0, \min(1, u_a))$, the penalization problem:

$$(P_{\epsilon}) \begin{cases} \text{Find } u_{\epsilon}^{\eta} \in H^{1}(\Omega) \text{ such that }: \\ (i) \quad u_{\epsilon} = \varphi \text{ on } \partial\Omega \\ (ii) \quad \int_{\Omega} \left(a(x) \nabla u_{\epsilon} + h(x) H_{\epsilon}(u_{\epsilon}) e_{x} \right) \nabla\xi dx dy = 0 \quad \forall \ \xi \in H_{0}^{1}(\Omega) \end{cases}$$

with

$$H_{\epsilon}(t) = \left| \begin{array}{cc} 0 & \text{if } t < 0 \\ t/\epsilon & \text{if } 0 \leqslant t \leqslant \epsilon \\ 1 & \text{if } t > \epsilon \end{array} \right|$$

We show, as in [3], that there exists a unique solution for (P_{ϵ}) satisfying:

$$u_{\epsilon} \rightharpoonup u \quad \text{in } H^{1}(\Omega), \quad H_{\epsilon}(u_{\epsilon}) \rightharpoonup \gamma \quad \text{in } L^{2}(\Omega)$$

2

and that (u, γ) is a solution of (P).

Taking u_{ϵ}^{-} (resp. $(u_{\epsilon} - u_{a})^{+}$) as a test functions in (P_{ϵ}) , shows that $u_{\epsilon} \ge 0$ (resp. $u_{\epsilon} \le u_{a}$). Then, comparing $u_{\epsilon}^{\eta} = u_{\epsilon}(x, y + \eta)$ with u_{ϵ} as in [7], we obtain $(u_{\epsilon})_{y} \ge 0$ and finally get

$$0 \leqslant u \leqslant u_a, \quad \frac{\partial u}{\partial y} \ge 0 \quad \text{ a.e in } \Omega.$$
(4)

In all what follows, we consider only monotone solutions of (P). As a consequence, we deduce that:

- $\forall \ (x_0, y_0) \in [u > 0] = [u(x, y) > 0] \cap \Omega, \exists \ \delta > 0$ such that u(x, y) > 0 for $(x, y) \in B_{\delta}(x_0, y_0) \cup (x_0 \delta, x_0 + \delta) \times [y_0, 1]$
- $\Phi: (0,1) \longrightarrow [0,1)$ is well defined by $\Phi(x) = \inf\{y \in (0,1) \mid u(x,y) > 0\}$ and is upper semi-continuous (u.s.c) on (0,1).
- $[u > 0] = [y > \Phi(x)].$

Now, we list some properties of the solutions of (P). We have

- $div(a(x)\nabla u) = -(h\gamma)_x$ in $\mathcal{D}'(\Omega)$.
- $u \in C^{0,\alpha}_{loc}(\Omega \cup \Gamma_0 \cup \Gamma_1)$ ([8, Theorem 8.24, p 202]).
- [u > 0] is an open set.
- If $a \in C^{1,1}[0,1]$ and $h \in C^2(0,1)$, then $u \in C^2_{loc}([u > 0])$ ([8, Theorem 8.10, p 186]).
- $div(a(x)\nabla u) \ge -(h)_x \chi([u>0])$ in $\mathcal{D}'(\Omega)$.
- $div(a(x)\nabla u) \ge 0$ and $(h\chi)_x \le 0$ in $\mathcal{D}'(\Omega)$.

Remark 1.1. The above last inequalities are obtained by taking $\pm(H_{\epsilon}(u)\xi)$, $\xi \in \mathcal{D}(\Omega)$, $\xi \ge 0$ as a test function in (P). The $C_{loc}^{0,\alpha}$ regularity holds because $h\gamma \in L^q(\Omega)$ for q > 2.

The main result of this paper is the following:

Theorem 1.2. Assume the interior of the set $(0,1) \cap [\Phi(x) > 0]$ non empty. Then Φ is continuous at each interior point of $(0,1) \cap [\Phi(x) > 0]$.

To prove the theorem, we work close to a free boundary point P_0 . We construct a half cone with vertex at P_0 . This is possible by establishing a local monotony $b\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \leq 0$.

2. Local Monotony

For the purpose of clarity, we establish the monotonicity result through the following steps.

Step 1: First, we have

Lemma 2.1.

$$\frac{\partial u}{\partial y} > 0 \quad in \quad [u > 0]. \tag{5}$$

Proof. We have

$$div(a(x)\nabla\left(\frac{\partial u}{\partial y}\right)) = \frac{\partial}{\partial y}\left(div(a(x)\nabla u)\right) = \frac{\partial}{\partial y}(h'(x)) = 0 \quad \text{in } [u>0] \quad \text{and} \quad \frac{\partial u}{\partial y} \ge 0$$

By the strong maximum principle ([8, Theorem 9.6 p.225]), one has

$$\frac{\partial u}{\partial y} > 0$$
 in $[u > 0]$ or $\frac{\partial u}{\partial y} = 0$ in $[u > 0]$.

But if $\frac{\partial u}{\partial y} = 0$ in [u > 0], then $u = u(x) = u(x, 1) = u_a$ since $u \in C^0(\Omega \cup \Gamma_1)$. This leads to $0 = div(a(x)\nabla u) = -h'(x) > 0$ in [u > 0] which is not possible.

Step 2: Next, let $x_0 \in (0,1)$ with $y_0 = \Phi(x_0) > 0$. Set $\epsilon_0 = (1-y_0)/6$, $\delta_0 = \min(x_0, 1-x_0)/6$. Since Φ is u.s.c, then for $\epsilon \in (0, \epsilon_0)$, $\exists \ \delta \in (0, \delta_0)$ such that $\Phi(x) < \Phi(x_0) + \epsilon$ for any $x \in (x_0 - \delta, x_0 + \delta)$. Using the continuity of u up to the boundary y = 1, we can find $0 < \rho < 1 - (y_0 + 3\epsilon_0)$ such that u > 0 on $[x_0 - \delta, x_0 + \delta] \times [1 - \rho, 1]$. Set

$$F = [x_0 - \delta/2, x_0 + \delta/2] \times [y_0 + 2\epsilon, 1 - \rho]$$
$$G = (x_0 - \delta, x_0 + \delta) \times \left(y_0 + \epsilon, 1 - \frac{\rho}{2}\right)$$

Note that: $G \subset [u > 0] = [y > \Phi(x)].$

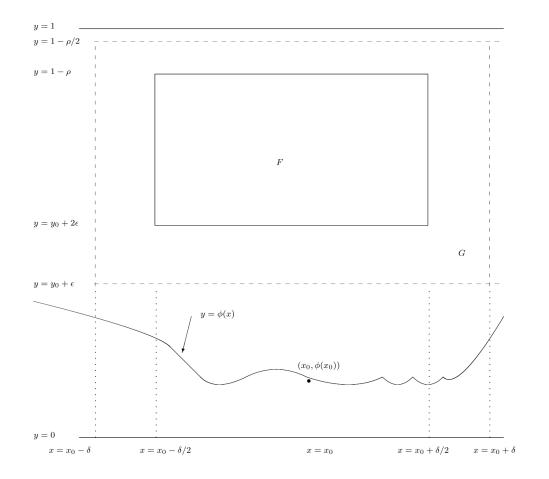


Figure 1: Set F and set G

Step 3: Since $u \in C^2([u > 0])$, then we have in G:

$$div(a(x)\nabla u) = -h'(x)$$
$$div\left(a(x)\nabla\left(\frac{\partial u}{\partial y}\right)\right) = 0$$

4

$$div\left(a(x)\nabla\left(\frac{\partial u}{\partial x}\right)\right) = \frac{\partial}{\partial x}\left(div(a(x)\nabla u)\right) - \left(\frac{\partial a_{11}}{\partial x}\frac{\partial^2 u}{\partial x^2} + \frac{\partial a_{22}}{\partial x}\frac{\partial^2 u}{\partial y^2} + \frac{\partial(a_{12}+a_{21})}{\partial x}\frac{\partial^2 u}{\partial x\partial y} + \frac{\partial^2 a_{11}}{\partial x^2}\frac{\partial u}{\partial x} + \frac{\partial^2 a_{12}}{\partial x^2}\frac{\partial u}{\partial y}\right).$$

Using the assumptions on a and h, we deduce that the function

$$w = u + \tau \frac{\partial u}{\partial x} - E \frac{\partial u}{\partial y} \tag{6}$$

satisfies

$$div(a(x)\nabla w) = div(a(x)\nabla u) + \tau div\left(a(x)\nabla\left(\frac{\partial u}{\partial x}\right)\right) - E \,div\left(a(x)\nabla\left(\frac{\partial u}{\partial y}\right)\right)$$
$$= -h'(x) + \tau \,div\left(a(x)\nabla\left(\frac{\partial u}{\partial x}\right)\right) - 0 \ge \lambda - |\tau|C_1 \quad \text{in} \quad G$$

where $C_1 = C(\overline{h}, |a|_{1,1}, |u|_{C^2(\overline{G})}, |a|_{W^{2,\infty}})$ is a constant depending on ϵ . Thus, for $|\tau| < \frac{\lambda}{2C_1}$, we have

$$div(a(x)\nabla w) > \frac{\lambda}{2}$$
 in G . (7)

Step 4: Now, let $\zeta \in C^{\infty}(\mathbb{R}^2)$ satisfying $\zeta = 0$ on F, $0 \leq \zeta \leq 1$ and $\zeta \geq 1$ on ∂G . We have

$$div(a(x)\nabla\zeta) = a_{11}\frac{\partial^2\zeta}{\partial x^2} + a_{22}\frac{\partial^2\zeta}{\partial y^2} + (a_{12} + a_{21})\frac{\partial^2\zeta}{\partial x\partial y} + \frac{\partial a_{11}}{\partial x}\frac{\partial\zeta}{\partial x} + \frac{\partial a_{12}}{\partial x}\frac{\partial\zeta}{\partial y}$$

Then,

$$|div(a(x)\nabla\zeta)| \leqslant C_2 = \max_{\overline{G}} |div(a(x)\nabla\zeta)|$$

We choose $\mu \in \left(0, \frac{\lambda}{2C_2}\right)$ so that

$$\mu \ div(a(x)\nabla\zeta) \leqslant rac{\lambda}{2}$$
 in G

From (7), we deduce that

$$div(a(x)\nabla(w-\mu\zeta)) \ge 0 \quad \text{in} \quad G.$$
(8)

Step 5: Set

$$\begin{aligned} k &= \max_{\overline{G}} |u| + \max_{\overline{G}} |\nabla u|, \qquad \tau_0 = \frac{\mu}{1+k}, \\ E_0 &= \frac{k}{\beta(\tau_0)}, \qquad \beta(\tau_0) = \min_{[u \geqslant \tau_0] \cap \overline{G}} \left(\frac{\partial u}{\partial y}\right) \end{aligned}$$

By the extreme value theorem, the minimum value $\beta(\tau_0)$ is attained if the closed bounded set $[u \ge \tau_0] \cap \overline{G} \ne \emptyset$ and is strictly positive by Lemma 2.1; that is

$$\beta(\tau_0) = \frac{\partial u}{\partial y}(m_0) > 0; \qquad \qquad m_0 \in [u \ge \tau_0] \cap \overline{G}.$$

To show that $w - \mu \zeta \leqslant 0$ on ∂G , we discuss the following:

• If $\partial G \cap [u \ge \tau_0] = \emptyset$, then $u < \tau_0$ on ∂G . As a consequence, we have

$$w = u + \tau \frac{\partial u}{\partial x} - E \frac{\partial u}{\partial y} \leqslant \tau_0 + |\tau| k \text{ since } \frac{\partial u}{\partial y} \geqslant 0$$
$$\leqslant \tau_0 + \tau_0 k = \mu \text{ on } \partial G \text{ if } |\tau| < \tau_0.$$

- If $\partial G \cap [u \ge \tau_0] \neq \emptyset$, then
 - on $\partial G \cap [u < \tau_0]$, we have, as in the previous case $w \leq \mu$ on $\partial G \cap [u < \tau_0]$ if $|\tau| < \tau_0$.
 - on $\partial G \cap [u \ge \tau_0]$,

$$w = u + \tau \frac{\partial u}{\partial x} - E \frac{\partial u}{\partial y} \leqslant k + |\tau|k - E\beta(\tau_0) \text{ since } \frac{\partial u}{\partial y} \geqslant \beta(\tau_0) > 0$$

$$\leqslant k + \tau_0 k - E_0\beta(\tau_0) \text{ for } E \geqslant E_0$$

$$= \tau_0 k \leqslant \tau_0(1+k) = \mu \text{ on } \partial G \cap [u \geqslant \tau_0] \text{ if } |\tau| < \tau_0 \text{ and } E \geqslant E_0.$$

Step 6: Now, since $div(a(x)\nabla(w - \mu\zeta)) \ge 0$ in G and $w - \mu\zeta \le 0$ on ∂G , we deduce, by the maximum principle, that $w - \mu\zeta \le 0$ in G. In particular, we have $w \le 0$ in F. Hence

$$au rac{\partial u}{\partial x} - E rac{\partial u}{\partial y} \leqslant -u < 0 ext{ in } F ext{ if } | au| < au_0 ext{ and } E \geqslant E_0.$$

Setting $b = \frac{\tau}{E}$ and $b_0 = \frac{\tau_0}{E_0}$, we finally established, through the 6 steps, the following result: **Theorem 2.2.** There exists a constant $b_0 > 0$ depending on x_0, y_0, ϵ such that

$$b rac{\partial u}{\partial x} - rac{\partial u}{\partial y} < 0 \ \ in \ F \ \ for \ \ |b| < b_0$$

3. Set of Directions

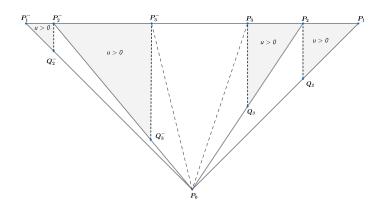


Figure 2: Lines P_0P_n and $P_n^-P_0$

In this section, we describe how we form particular lines passing through the vertex $P_0 = (x_0, y_0)$ and crossing the horizontal line $y = y_0 + 2\epsilon = y_{\epsilon}$.

Line segment P_0P_1 : It is possible to find $x_1 \in (x_0, x_0 + \delta/4)$ such that

$$\frac{x_1 - x_0}{y_{\epsilon} - y_0} = \frac{x_1 - x_0}{2\epsilon} = \kappa b_0 < b_0$$

It suffices, to choose

$$\kappa = \frac{x_1 - x_0}{2\epsilon} \cdot \frac{1}{b_0} \text{ such that } |x_1 - x_0| = 2\epsilon b_0 \kappa < \frac{\delta}{4}; \quad \kappa \in \left(0, \min\left(\frac{1}{2}, \frac{\delta}{8\epsilon b_0}\right)\right).$$

Set $P_1 = (x_1, y_{\epsilon})$ and $b_1 = \kappa b_0$. The line joining P_0 and P_1 has the slope

$$\frac{y_{\epsilon} - y_0}{x_1 - x_0} = b_1^{-1}$$

and can be described by the following two parameterizations:

$$P_0 P_1: \qquad \begin{cases} x = x_1 - tb_1 \\ & t \in [0, 2\epsilon] \\ y = y_{\epsilon} - t \end{cases} \quad \text{or} \quad \begin{cases} x = x_0 + sb_1 \\ & s \in [0, 2\epsilon] \\ y = y_0 + s \end{cases}$$

Define the function

$$f_{b_1}(t) = u(x_1 - tb_1, y_{\epsilon} - t)$$

We have

$$f_{b_1}(0) = u(x_1, y_{\epsilon}) > 0, \quad f'_{b_1}(0) = \left(-b_1 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)(x_1, y_{\epsilon}) < 0$$

By continuity, we have $f_{b_1}'(t) < 0$ for t small. Let

$$t_2 = \sup U; \quad U = \{t \in [0, 2\epsilon] \text{ such that } f_{b_1}(s) > 0 \ \forall \ s \in [0, t)\}$$

Since $U \neq \emptyset$ and bounded, then t_2 is well defined and by continuity of f_{b_1} , we have $f_{b_1}(t_2) = 0$. Note that $t_2 > \epsilon$ since u > 0in $(x_0 - \delta, x_0 + \delta) \times [y_0 + \epsilon, y_{\epsilon}]$. If $t_2 = 2\epsilon$, then u > 0 along the line segment $P_0P_1 \setminus \{P_0\}$. If $t_2 \neq 2\epsilon$, set

$$x_2 = x_1 - t_2 b_1;$$
 $y_2 = y_\epsilon - t_2;$ $Q_2 = (x_2, y_2),$

then form the second line segment.

Line segment P_0P_2 : Set $P_2 = (x_2, y_{\epsilon})$. Then, we have

$$\frac{x_2 - x_0}{y_\epsilon - y_0} = \frac{1}{2\epsilon} ((x_1 - t_2 b_1) - x_0)$$

= $\frac{1}{2\epsilon} ((x_0 + 2\epsilon b_1 - t_2 b_1) - x_0)$ since $x_1 = x_0 + 2\epsilon b_1$
= $\left(\frac{2\epsilon - t_2}{2\epsilon}\right) b_1 = b_2 < b_1 < b_0.$

The line joining P_0 and P_2 has the slope

$$\frac{y_{\epsilon} - y_0}{x_2 - x_0} = b_2^{-1}$$

and can be described by the following two parameterizations:

$$P_0 P_2: \begin{cases} x = x_2 - tb_2 \\ t \in [0, 2\epsilon] \\ y = y_{\epsilon} - t \end{cases} \text{ or } \begin{cases} x = x_0 + sb_2 \\ s \in [0, 2\epsilon] \\ y = y_0 + s \end{cases}$$

Define the function

$$f_{b_2}(t) = u(x_1 - tb_2, y_{\epsilon} - t).$$

We have

$$f_{b_2}(0) = u(x_1, y_{\epsilon}) > 0, \quad f_{b_2}'(0) = \left(-b_2 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)(x_1, y_{\epsilon}) < 0$$

By continuity $f_{b_2}'(t) < 0$ for small t. Let $t_3 \in (0, 2\epsilon]$ such that

$$f_{b_2}(t_3) = 0$$
 and $f_{b_2}(t) > 0$ for $t \in [0, t_3)$.

Note that $t_3 > \epsilon$ since u > 0 in $(x_0 - \delta, x_0 + \delta) \times [y_0 + \epsilon, y_\epsilon]$. If $t_3 = 2\epsilon$, then u > 0 along the line segment $P_0P_2 \setminus \{P_0\}$. If $t_3 \neq 2\epsilon$, set

$$x_3 = x_2 - t_3 b_2;$$
 $y_3 = y_\epsilon - t_3;$ $Q_3 = (x_3, y_3),$

then we form the line segment P_0P_3 .

Line segment P_0P_n : By repeating the previous process, we will obtain a sequence of points $P_n = (x_n, y_{\epsilon})$ and $Q_{n+1} = (x_{n+1}, y_{\epsilon} - t_{n+1})$ satisfying:

$$x_{1} - x_{0} = 2\epsilon b_{1} = 2\epsilon b_{0}\kappa$$

$$x_{1} - x_{2} = t_{2}b_{1} \ge \epsilon b_{1}$$

$$x_{2} - x_{0} = 2\epsilon b_{2}$$

$$\vdots$$

$$x_{n} - x_{0} = 2\epsilon b_{n}$$

$$x_{1} - x_{2} = t_{2}b_{1} \ge \epsilon b_{1}$$

$$x_{2} - x_{3} = t_{3}b_{2} \ge \epsilon b_{2}$$

$$\vdots$$

$$x_{n} - x_{n+1} = t_{n+1}b_{n} \ge \epsilon b_{n}$$

The sequence (x_n) is convergent since it is decreasing and bounded. Indeed, we have

 $0 \leq 2\epsilon b_{n+1} \leq 2\epsilon b_n \leq 2\epsilon b_0 \kappa \leq \epsilon b_0$ and $t_{n+1} \geq \epsilon$.

We also have

$$2\epsilon b_0 \kappa = x_1 - x_0 \ge x_1 - x_{n+1}$$
$$= (x_1 - x_2) + (x_2 - x_3) + \ldots + (x_n - x_{n+1})$$
$$\ge \epsilon b_1 + \epsilon b_2 + \ldots + \epsilon b_n = s_n \ge 0$$

 $\left(s_{n}\right)$ is a bounded increasing sequence. Thus convergent. As a consequence

$$\epsilon b_n = s_n - s_{n-1} \longrightarrow 0$$
 and $x_n = x_0 + 2\epsilon b_n \longrightarrow x_0$ as $n \longrightarrow +\infty$.

Similarly, we obtain a sequence of points $P_1^-, P_2^-, \ldots, P_n^-, \ldots$ to the left of P_0 . Line segment $P_1^-P_0$: With $x_1^- - x_0 = -2\epsilon \kappa b_0$, we have

$$\frac{x_1^- - x_0}{y_{\epsilon} - y_0} = \frac{x_1^- - x_0}{2\epsilon} = -\kappa b_0 > -b_0, \quad x_1^- \in (x_0 - \delta/4, x_0)$$

Since

$$\kappa = \frac{x_1^- - x_0}{2\epsilon} \cdot \frac{1}{-b_0} \text{ is such that } |x_1^- - x_0| = 2\epsilon b_0 \kappa < \frac{\delta}{4} \text{ for } \kappa \in \left(0, \min\left(\frac{1}{2}, \frac{\delta}{8\epsilon b_0}\right)\right)$$

Set $P_1^- = (x_1^-, y_{\epsilon})$ and $b_1 = \kappa b_0$. The line joining P_1^- and P_0 has the slope

$$\frac{y_{\epsilon} - y_0}{x_1^- - x_0} = -b_1^{-1}$$

and can be described by the following two parameterizations:

$$P_1^- P_0: \begin{cases} x = x_1^- + tb_1 \\ t \in [0, 2\epsilon] \\ y = y_{\epsilon} - t \end{cases} \text{ or } \begin{cases} x = x_0 - sb_1 \\ s \in [0, 2\epsilon] \\ y = y_0 + s \end{cases}$$

Define the function

$$g_{b_1}(t) = u(x_1^- + tb_1, y_{\epsilon} - t).$$

We have

$$g_{b_1}(0) = u(\bar{x_1}, y_{\epsilon}) > 0, \quad g'_{b_1}(0) = \left(b_1 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)(\bar{x_1}, y_{\epsilon}) < 0$$

By continuity $g'_{b_1}(t) < 0$ for small t. Let $t_2^- \in (0, 2\epsilon]$ such that $g_{b_1}(t_2^-) = 0$ and $g_{b_1}(t) > 0$ for $t \in [0, t_2^-)$. Note that $t_2^- > \epsilon$ since u > 0 in $(x_0 - \delta, x_0 + \delta) \times [y_0 + \epsilon, y_{\epsilon}]$. If $t_2^- = 2\epsilon$, then u > 0 along the line segment $P_1^- P_0 \setminus \{P_0\}$. If $t_2^- \neq 2\epsilon$, set $x_2^- = x_1^- + t_2^- b_1$; $y_2^- = y_{\epsilon} - t_2^-$; $Q_2^- = (x_2^-, y_2^-)$, then we form the following line segment $P_2^- P_0$ with $P_2^- = (x_2^-, y_{\epsilon})$. Line segment $P_n^- P_0$: We obtain a sequence of points $P_n^- = (x_n^-, y_{\epsilon})$ and $Q_{n+1}^- = (x_{n+1}^-, y_{\epsilon} - t_{n+1}^-)$ satisfying:

$$0 \leqslant x_0 - x_n^- = 2\epsilon b_n \leqslant 2\epsilon b_1 = 2\epsilon b_0 \kappa \leqslant \epsilon b_0; \quad \bar{x_{n+1}} - \bar{x_n} = \bar{t_{n+1}} b_n \geqslant \epsilon b_n$$

and $x_n^- = x_0 - 2\epsilon b_n \longrightarrow x_0$ as $n \longrightarrow +\infty$.

4. Proof of Continuity

Proof of Theorem 1.2. Let x_0 be in the interior of $(0,1) \cap [\Phi(x) > 0]$. Define $\epsilon_0, \delta_0, \rho$, and the sets F and G as in Step 2 of section 2. Then, construct points $P_1^-, P_2^-, \ldots, P_n^-, \ldots$ to the left of P_0 and points $P_1, P_2, \ldots, P_n, \ldots$ to the right of P_0 (as in section 3) such that u > 0 above the line segments $[P_i^-Q_{i+1}^-)$ and $[P_iQ_{i+1})$; $i = 1, 2, \ldots, n, \ldots$ For $x \in (x_0 - \frac{\delta}{8}, x_0 + \frac{\delta}{8}) \setminus \{x_0\}$, there exists $n \ge 1$ such that $x_{n+1} \le x < x_n$ or $x_n^- < x \le x_{n+1}^-$ since $x_n = x_0 + 2\epsilon b_n$ and $x_n^- = x_0 - 2\epsilon b_n$. Now, because $u(x, \Phi(x)) = 0$, the point $(x, \Phi(x))$ will be under the line segment

$$[P_nQ_{n+1}): \quad x-x_0 = b_n(y-y_0) \quad \text{or} \quad [P_n^-Q_{n+1}^-): \quad x-x_0 = -b_n(y-y_0).$$

We discuss two situations:

i). $\Phi(x) \ge y_0 = \Phi(x_0)$. We have

$$\Phi(x) - \Phi(x_0) < b_n^{-1}(x - x_0) \text{ if } x_{n+1} \le x < x_n$$

$$\Phi(x) - \Phi(x_0) < b_n^{-1}(x_0 - x) \text{ if } x_n^- < x \le x_{n+1}^-$$

* For $x_{n+1} \leq x < x_n$, we have

$$0 < x - x_0 = (x - x_n) + (x_n - x_0)$$
$$\leqslant (x_n - x_{n+1}) + (x_n - x_0)$$
$$= t_n b_n + 2\epsilon b_n$$
$$b_n^{-1}(x - x_0) \leqslant t_n + 2\epsilon \leqslant 2\epsilon + 2\epsilon = 4\epsilon$$

* For $x_n^- < x \leq x_{n+1}^-$, we have

$$0 < x_0 - x = (x_0 - x_{n+1}^-) + (x_{n+1}^- - x)$$

$$\leq (x_0 - x_{n+1}^-) + (x_{n+1}^- - x_n^-)$$

$$= 2\epsilon b_{n+1} + t_{n+1}^- b_n$$

$$b_n^{-1}(x_0 - x) \leq 2\epsilon b_n^{-1} \cdot b_{n+1} + t_{n+1}^- \leq 2\epsilon + 2\epsilon = 4\epsilon \text{ since } b_{n+1} \leq b_n.$$

Thus $\Phi(x) - \Phi(x_0) \leq 4\epsilon$.

ii).
$$\Phi(x) < y_0 = \Phi(x_0)$$
.

Set $x'_0 = x$ and $y'_0 = \Phi(x) = y$. The point $P'_0 = (x'_0, y'_0)$ will play the role of (x_0, y_0) in section 3 and we will form with the same process the sequence of points $P'_1, P''_2, \dots, P''_n, \dots$ to the left of P'_0 and points $P'_1, P'_2, \dots, P''_n, \dots$ to the right of P'_0 . It is sufficient that we start with P'_1 (resp. P''_1) such that the corresponding b'_1 (resp. b''_1) is less than b_0 .

Line segments $P'_0P'_1$ and $P''_1P'_0$: We choose $P'_1 = (x'_1, y_{\epsilon}) = P_1 = (x_1, y_{\epsilon})$ and $P''_1 = (x''_1, y_{\epsilon}) = P''_1 = (x''_1, y_{\epsilon})$. This ensures that we remain working on the interval $[x''_1, x_1]$ and x_0 is in this interval. We have

$$\begin{aligned} |x_0 - x'_0| &\leq 2\epsilon b_1 \text{ since } |x_0 - x_1| = |x_1^- - x_0| = 2\epsilon b_1 \\ |x'_1 - x'_0| &= |x_1 - x_0 + x_0 - x'_0| \leq |x_1 - x_0| + |x_0 - x'_0| \leq 4\epsilon b_1 \text{ since } x_1 = x_0 + 2\epsilon b_1 \\ y_\epsilon - y'_0 &\geq y_\epsilon - y_0 = 2\epsilon \text{ since } y'_0 < y_0 \\ b'_1 &= \frac{x'_1 - x'_0}{y_\epsilon - y'_0}. \end{aligned}$$

 \mathbf{So}

$$|b_1'| = \frac{|x_1' - x_0'|}{y_{\epsilon} - y_0'} \leqslant \frac{4\epsilon b_1}{2\epsilon} = 2b_1 = 2\kappa b_0 < b_0 \quad \Longleftrightarrow \quad \kappa < \frac{1}{2}$$

which is satisfied by the first choice of κ . Similarly, we have

$$-b_{1}^{-\prime} = \frac{x_{1}^{-} - x_{0}^{\prime}}{y_{\epsilon} - y_{0}^{\prime}}; \qquad |b_{1}^{-\prime}| = \frac{|x_{1}^{-} - x_{0}^{\prime}|}{y_{\epsilon} - y_{0}^{\prime}} = \frac{|x_{0} - 2\epsilon b_{1} - x_{0}^{\prime}|}{y_{\epsilon} - y_{0}^{\prime}} \leqslant \frac{4\epsilon b_{1}}{2\epsilon} = 2b_{1}.$$

Arguing as in i), we obtain

$$\Phi(x_0) - \Phi(x) \leqslant \max\left(\frac{1}{b_q^{-\prime}}, \frac{1}{b_m^{\prime}}\right)|x - x_0| \leqslant 4\epsilon,$$

depending if x_0 is to the right of x; $x'_{m+1} \leq x_0 < x'_m$, or x_0 is to the left of x; $x'_q < x_0 \leq x'_{q+1}$. Finally, we have

$$|\Phi(x) - \Phi(x_0)| \leq 4\epsilon$$
 for $|x - x_0| < \frac{\delta}{8}$.

This completes the proof of the continuity of Φ .

References

[3] M. Chipot, Variational Inequalities and Flow in Porous Media, Springer-Verlag New York Inc, (1984).

^[1] H. W. Alt, The fluid flow Through Porous Media. Regularity of the free Surface, Manuscripta Math., 21(1977), 255-272.

 ^[2] Guy Bayada and Michéle Chambat, Nonlinear variational formulation for a cavitation problem in lubrication, Journal of Mathematical Analysis and Applications, 90(2)(1982), 286-298.

- [4] M. Chipot, On the Continuity of the Free Boundary in some Class of Dimensional Problems, Interfaces Free Bound., 3(1)(2001), 81-99.
- [5] S. Challal and A. Lyaghfouri, Continuity of the Free Boundary in Problems of type $div(a(x)\nabla u) = -(\chi(u)h(x))_{x_1}$, Nonlinear Analysis: Theory, Methods & Applications, 62(2)(2005), 283-300.
- [6] S. Challal and A. Lyaghfouri, On the Continuity of the Free Boundary in Problems of type $div(a(X)\nabla u) = -div(\chi(u)H(X))$, Differential and Integral Equations, 19(5)(2006), 481-516.
- [7] S. Challal and A. Lyaghfouri, A stationary flow of fresh and salt groundwater in a heterogeneous coastal aquifer, Bollettino della Unione Matematica Italiana, 8(2)(2000), 505-533.
- [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, (1983).
- [9] J. F. Rodrigues, Obstacle problems in Mathematical physics, North Holland, (1987).