Regularity of the Free Boundary in $\operatorname{div}(a(x) \nabla u(x, y))=-(h(x) \gamma(u))_{x}$ with $h^{\prime}(x)<0$

Samia Challal ${ }^{1, *}$
1 Department of Mathematics, Glendon college - York university, 2275 Bayview Ave. Toronto ON M4N 3M6 Canada.

Abstract

A free boundary problem of type $\operatorname{div}(a(x) \nabla u)=-(h(x) \gamma(u))_{x}$ with $h_{x}<0$ is considered. A regularity of the free boundary as a curve $y=\Phi(x)$ is established using a local monotony $b u_{x}-u_{y}<0$ close to free boundary points. MSC: $35 \mathrm{~A} 15,35 \mathrm{R} 35,35 \mathrm{JXX}$.

Keywords: Variational methods, free boundary problems, Linear elliptic equations.
(C) JS Publication.

1. Introduction

Our interest in this work came from the lubrication model studied by M. Chambat and G. Bayada in [2] where the pressure p is a periodic function solution of

$$
\operatorname{div}\left(h^{3}(x) \nabla p\right)=(h(x) \gamma)_{x} ; \quad h(x)=1+\alpha \cos x ; \quad \alpha \in(0,1)
$$

and $0 \leqslant \gamma(p) \leqslant 1$ with $\gamma(p)=1$ on $[p>0]$. The authors established the existence of a solution and the uniqueness under regularity assumptions on the free boundary.

Recent works [4-6], showed a continuity of the free boundary in

$$
\operatorname{div}(a(x, y) \nabla u)=-(h(x, y) \gamma(u))_{x} \text { when } h_{x}(x, y) \geqslant 0
$$

This monotony on h led to a monotony of γ which allowed the characterization of the free boundary as a function $x=\phi(y)$. The continuity of ϕ is established under assumptions relating $a(x, y)$ with $h(x, y)$ in [4], and under $C_{l o c}^{0, \alpha}$ regularity on a in [5]. These work brought answers to the Lubrication free boundary problem in half of the domain since

$$
h^{\prime}(x)=-\alpha \sin (x) \text { is negative on }(0, \pi) \text { and positive on }(\pi, 2 \pi)
$$

In an attempt to explore the situation where $h_{x}<0$, we assume, in this paper, that a and h are independent of y. We look for a monotone solution u in the y-direction. The free boundary is then defined as a function $y=\Phi(x)$. We establish its

[^0]continuity by using techniques developed in $[1,9]$ for obstacle problems where a solution is more regular at the free boundary points than it is in our case. The idea is to construct a cone with a vertex at a free boundary point while controlling a part of $[u>0]$ in that cone.
For simplicity, we set the domain
$$
\Omega=(0,1) \times(0,1), \quad \text { denote: } \quad \Gamma_{0}=(0,1) \times\{0\}, \quad \Gamma_{1}=(0,1) \times\{1\},
$$
and formulate the problem as:
\[

\left\{$$
\begin{array}{l}
\text { Find }(u, \gamma) \in H^{1}(\Omega) \times L^{\infty}(\Omega) \text { such that: } \\
\text { (i) } u \geqslant 0, \quad 0 \leqslant \gamma \leqslant 1, \quad u(\gamma-1)=0 \text { a.e. in } \Omega \tag{P}\\
\text { (ii) } u=\varphi \text { on } \partial \Omega \\
\text { (iii) } \int_{\Omega}\left(a(x) \nabla u+\gamma h(x) e_{x}\right) \cdot \nabla \xi d x d y=0 \quad \forall \xi \in H_{0}^{1}(\Omega)
\end{array}
$$\right.
\]

where $e_{x}=(1,0), \varphi \in C^{0,1}(\bar{\Omega})$ with

$$
\varphi(x, y)=\| \begin{array}{lllllll}
0 & \text { on } & \Gamma_{0}, & & \theta_{0}(y) & \text { on } & \{0\} \times[0,1] \\
u_{a} & \text { on } & \Gamma_{1}, & & \theta_{1}(y) & \text { on } & \{1\} \times[0,1]
\end{array}
$$

with θ_{i} being regular and nondecreasing functions satisfying $0 \leqslant \theta_{i}(y) \leqslant u_{a}, i=1,2$, and u_{a} is a positive constant. The function h is $C^{2}([0,1])$ and satisfies for some positive constants \bar{h} and λ :

$$
\begin{equation*}
|h(x)| \leqslant \bar{h}, \quad-\bar{h} \leqslant h^{\prime}(x)<-\lambda<0, \quad\left|h^{\prime \prime}(x)\right| \leqslant \bar{h} \quad \text { for } \quad x \in[0,1] . \tag{1}
\end{equation*}
$$

The matrix a depends only on the x-variable and satisfies:

$$
\begin{align*}
& a \in W^{2, \infty}(0,1) \cap C^{1,1}[0,1] \tag{2}\\
& m|\xi|^{2} \leqslant a_{i j} \xi_{i} \xi_{j} \leqslant M|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{2}, \quad m>0, \quad M>0 \tag{3}
\end{align*}
$$

The existence of a solution to (P) follows the proof in [3].
We introduce, for $\epsilon \in\left(0, \min \left(1, u_{a}\right)\right)$, the penalization problem:

$$
\left(P_{\epsilon}\right)\left\{\begin{array}{l}
\text { Find } u_{\epsilon}^{\eta} \in H^{1}(\Omega) \text { such that: } \\
\text { (i) } \quad u_{\epsilon}=\varphi \text { on } \partial \Omega \\
(i i) \quad \int_{\Omega}\left(a(x) \nabla u_{\epsilon}+h(x) H_{\epsilon}\left(u_{\epsilon}\right) e_{x}\right) \nabla \xi d x d y=0 \quad \forall \xi \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

with

$$
H_{\epsilon}(t)=\| \begin{array}{ll}
0 & \text { if } t<0 \\
t / \epsilon & \text { if } 0 \leqslant t \leqslant \epsilon \\
1 & \text { if } t>\epsilon
\end{array}
$$

We show, as in [3], that there exists a unique solution for $\left(P_{\epsilon}\right)$ satisfying:

$$
u_{\epsilon} \rightharpoonup u \quad \text { in } H^{1}(\Omega), \quad H_{\epsilon}\left(u_{\epsilon}\right) \rightharpoonup \gamma \text { in } L^{2}(\Omega)
$$

and that (u, γ) is a solution of (P).
Taking $u_{\epsilon}^{-}\left(\operatorname{resp} .\left(u_{\epsilon}-u_{a}\right)^{+}\right)$as a test functions in $\left(P_{\epsilon}\right)$, shows that $u_{\epsilon} \geqslant 0$ (resp. $\left.u_{\epsilon} \leqslant u_{a}\right)$. Then, comparing $u_{\epsilon}^{\eta}=u_{\epsilon}(x, y+\eta)$ with u_{ϵ} as in [7], we obtain $\left(u_{\epsilon}\right)_{y} \geqslant 0$ and finally get

$$
\begin{equation*}
0 \leqslant u \leqslant u_{a}, \quad \frac{\partial u}{\partial y} \geqslant 0 \quad \text { a.e in } \Omega . \tag{4}
\end{equation*}
$$

In all what follows, we consider only monotone solutions of (P). As a consequence, we deduce that:

- $\forall\left(x_{0}, y_{0}\right) \in[u>0]=[u(x, y)>0] \cap \Omega, \exists \delta>0$ such that $u(x, y)>0$ for $(x, y) \in B_{\delta}\left(x_{0}, y_{0}\right) \cup\left(x_{0}-\delta, x_{0}+\delta\right) \times\left[y_{0}, 1\right]$
- $\Phi:(0,1) \longrightarrow[0,1)$ is well defined by $\Phi(x)=\inf \{y \in(0,1) / u(x, y)>0\}$ and is upper semi-continuous (u.s.c) on $(0,1)$.
- $[u>0]=[y>\Phi(x)]$.

Now, we list some properties of the solutions of (P). We have

- $\operatorname{div}(a(x) \nabla u)=-(h \gamma)_{x}$ in $\mathcal{D}^{\prime}(\Omega)$.
- $u \in C_{l o c}^{0, \alpha}\left(\Omega \cup \Gamma_{0} \cup \Gamma_{1}\right)([8$, Theorem 8.24, p 202] $)$.
- $[u>0]$ is an open set.
- If $a \in C^{1,1}[0,1]$ and $h \in C^{2}(0,1)$, then $u \in C_{l o c}^{2}([u>0])([8$, Theorem 8.10, p 186] $)$.
- $\operatorname{div}(a(x) \nabla u) \geqslant-(h)_{x} \chi([u>0])$ in $\mathcal{D}^{\prime}(\Omega)$.
- $\operatorname{div}(a(x) \nabla u) \geqslant 0$ and $(h \chi)_{x} \leqslant 0$ in $\mathcal{D}^{\prime}(\Omega)$.

Remark 1.1. The above last inequalities are obtained by taking $\pm\left(H_{\epsilon}(u) \xi\right), \xi \in \mathcal{D}(\Omega), \xi \geqslant 0$ as a test function in (P). The $C_{l o c}^{0, \alpha}$ regularity holds because $h \gamma \in L^{q}(\Omega)$ for $q>2$.

The main result of this paper is the following:

Theorem 1.2. Assume the interior of the set $(0,1) \cap[\Phi(x)>0]$ non empty. Then Φ is continuous at each interior point of $(0,1) \cap[\Phi(x)>0]$.

To prove the theorem, we work close to a free boundary point P_{0}. We construct a half cone with vertex at P_{0}. This is possible by establishing a local monotony $b \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y} \leqslant 0$.

2. Local Monotony

For the purpose of clarity, we establish the monotonicity result through the following steps.
Step 1: First, we have

Lemma 2.1.

$$
\begin{equation*}
\frac{\partial u}{\partial y}>0 \text { in }[u>0] \tag{5}
\end{equation*}
$$

Proof. We have

$$
\operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial y}\right)\right)=\frac{\partial}{\partial y}(\operatorname{div}(a(x) \nabla u))=\frac{\partial}{\partial y}\left(h^{\prime}(x)\right)=0 \quad \text { in }[u>0] \quad \text { and } \quad \frac{\partial u}{\partial y} \geqslant 0
$$

By the strong maximum principle ([8, Theorem 9.6 p.225]), one has

$$
\frac{\partial u}{\partial y}>0 \quad \text { in } \quad[u>0] \quad \text { or } \quad \frac{\partial u}{\partial y}=0 \quad \text { in } \quad[u>0] .
$$

But if $\frac{\partial u}{\partial y}=0$ in $[u>0]$, then $u=u(x)=u(x, 1)=u_{a}$ since $u \in C^{0}\left(\Omega \cup \Gamma_{1}\right)$. This leads to $0=\operatorname{div}(a(x) \nabla u)=-h^{\prime}(x)>0$ in $[u>0]$ which is not possible.

Step 2: Next, let $x_{0} \in(0,1)$ with $y_{0}=\Phi\left(x_{0}\right)>0$. Set $\epsilon_{0}=\left(1-y_{0}\right) / 6, \delta_{0}=\min \left(x_{0}, 1-x_{0}\right) / 6$. Since Φ is u.s.c, then for $\epsilon \in\left(0, \epsilon_{0}\right), \exists \delta \in\left(0, \delta_{0}\right)$ such that $\Phi(x)<\Phi\left(x_{0}\right)+\epsilon$ for any $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Using the continuity of u up to the boundary $y=1$, we can find $0<\rho<1-\left(y_{0}+3 \epsilon_{0}\right)$ such that $u>0$ on $\left[x_{0}-\delta, x_{0}+\delta\right] \times[1-\rho, 1]$. Set

$$
\begin{aligned}
F & =\left[x_{0}-\delta / 2, x_{0}+\delta / 2\right] \times\left[y_{0}+2 \epsilon, 1-\rho\right] \\
G & =\left(x_{0}-\delta, x_{0}+\delta\right) \times\left(y_{0}+\epsilon, 1-\frac{\rho}{2}\right)
\end{aligned}
$$

Note that: $G \subset[u>0]=[y>\Phi(x)]$.

Figure 1: Set F and set G

Step 3: Since $u \in C^{2}([u>0]$, then we have in G :

$$
\begin{aligned}
\operatorname{div}(a(x) \nabla u) & =-h^{\prime}(x) \\
\operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial y}\right)\right) & =0
\end{aligned}
$$

$$
\operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial x}\right)\right)=\frac{\partial}{\partial x}(\operatorname{div}(a(x) \nabla u))-\left(\frac{\partial a_{11}}{\partial x} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial a_{22}}{\partial x} \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial\left(a_{12}+a_{21}\right)}{\partial x} \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} a_{11}}{\partial x^{2}} \frac{\partial u}{\partial x}+\frac{\partial^{2} a_{12}}{\partial x^{2}} \frac{\partial u}{\partial y}\right)
$$

Using the assumptions on a and h, we deduce that the function

$$
\begin{equation*}
w=u+\tau \frac{\partial u}{\partial x}-E \frac{\partial u}{\partial y} \tag{6}
\end{equation*}
$$

satisfies

$$
\begin{aligned}
\operatorname{div}(a(x) \nabla w) & =\operatorname{div}(a(x) \nabla u)+\tau \operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial x}\right)\right)-E \operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial y}\right)\right) \\
& =-h^{\prime}(x)+\tau \operatorname{div}\left(a(x) \nabla\left(\frac{\partial u}{\partial x}\right)\right)-0 \geqslant \lambda-|\tau| C_{1} \quad \text { in } \quad G
\end{aligned}
$$

where $C_{1}=C\left(\bar{h},|a|_{1,1},|u|_{C^{2}(\bar{G})},|a|_{W^{2}, \infty}\right)$ is a constant depending on ϵ. Thus, for $|\tau|<\frac{\lambda}{2 C_{1}}$, we have

$$
\begin{equation*}
\operatorname{div}(a(x) \nabla w)>\frac{\lambda}{2} \quad \text { in } \quad G . \tag{7}
\end{equation*}
$$

Step 4:. Now, let $\zeta \in C^{\infty}\left(\mathbb{R}^{2}\right)$ satisfying $\zeta=0$ on $\mathrm{F}, 0 \leqslant \zeta \leqslant 1$ and $\zeta \geqslant 1$ on ∂G. We have

$$
\operatorname{div}(a(x) \nabla \zeta)=a_{11} \frac{\partial^{2} \zeta}{\partial x^{2}}+a_{22} \frac{\partial^{2} \zeta}{\partial y^{2}}+\left(a_{12}+a_{21}\right) \frac{\partial^{2} \zeta}{\partial x \partial y}+\frac{\partial a_{11}}{\partial x} \frac{\partial \zeta}{\partial x}+\frac{\partial a_{12}}{\partial x} \frac{\partial \zeta}{\partial y}
$$

Then,

$$
|\operatorname{div}(a(x) \nabla \zeta)| \leqslant C_{2}=\max _{\bar{G}}|\operatorname{div}(a(x) \nabla \zeta)|
$$

We choose $\mu \in\left(0, \frac{\lambda}{2 C_{2}}\right)$ so that

$$
\mu \operatorname{div}(a(x) \nabla \zeta) \leqslant \frac{\lambda}{2} \quad \text { in } \quad G
$$

From (7), we deduce that

$$
\begin{equation*}
\operatorname{div}(a(x) \nabla(w-\mu \zeta)) \geqslant 0 \quad \text { in } \quad G \tag{8}
\end{equation*}
$$

Step 5: Set

$$
\begin{aligned}
k & =\max _{\bar{G}}|u|+\max _{\bar{G}}|\nabla u|, & \tau_{0} & =\frac{\mu}{1+k}, \\
E_{0} & =\frac{k}{\beta\left(\tau_{0}\right)}, & \beta\left(\tau_{0}\right) & =\min _{\left[u \geqslant \tau_{0}\right] \cap \bar{G}}\left(\frac{\partial u}{\partial y}\right)
\end{aligned}
$$

By the extreme value theorem, the minimum value $\beta\left(\tau_{0}\right)$ is attained if the closed bounded set $\left[u \geqslant \tau_{0}\right] \cap \bar{G} \neq \emptyset$ and is strictly positive by Lemma 2.1; that is

$$
\beta\left(\tau_{0}\right)=\frac{\partial u}{\partial y}\left(m_{0}\right)>0 ; \quad \quad m_{0} \in\left[u \geqslant \tau_{0}\right] \cap \bar{G}
$$

To show that $w-\mu \zeta \leqslant 0$ on ∂G, we discuss the following:

- If $\partial G \cap\left[u \geqslant \tau_{0}\right]=\emptyset$, then $u<\tau_{0}$ on ∂G. As a consequence, we have

$$
\begin{aligned}
w & =u+\tau \frac{\partial u}{\partial x}-E \frac{\partial u}{\partial y} \leqslant \tau_{0}+|\tau| k \text { since } \frac{\partial u}{\partial y} \geqslant 0 \\
& \leqslant \tau_{0}+\tau_{0} k=\mu \text { on } \partial G \text { if }|\tau|<\tau_{0} .
\end{aligned}
$$

- If $\partial G \cap\left[u \geqslant \tau_{0}\right] \neq \emptyset$, then
- on $\partial G \cap\left[u<\tau_{0}\right]$, we have, as in the previous case $w \leqslant \mu$ on $\partial G \cap\left[u<\tau_{0}\right]$ if $|\tau|<\tau_{0}$.
- on $\partial G \cap\left[u \geqslant \tau_{0}\right]$,

$$
\begin{aligned}
w & =u+\tau \frac{\partial u}{\partial x}-E \frac{\partial u}{\partial y} \leqslant k+|\tau| k-E \beta\left(\tau_{0}\right) \text { since } \frac{\partial u}{\partial y} \geqslant \beta\left(\tau_{0}\right)>0 \\
& \leqslant k+\tau_{0} k-E_{0} \beta\left(\tau_{0}\right) \text { for } E \geqslant E_{0} \\
& =\tau_{0} k \leqslant \tau_{0}(1+k)=\mu \text { on } \partial G \cap\left[u \geqslant \tau_{0}\right] \text { if }|\tau|<\tau_{0} \text { and } E \geqslant E_{0} .
\end{aligned}
$$

Step 6: Now, since $\operatorname{div}(a(x) \nabla(w-\mu \zeta)) \geqslant 0$ in G and $w-\mu \zeta \leqslant 0$ on ∂G, we deduce, by the maximum principle, that $w-\mu \zeta \leqslant 0$ in G. In particular, we have $w \leqslant 0$ in F. Hence

$$
\tau \frac{\partial u}{\partial x}-E \frac{\partial u}{\partial y} \leqslant-u<0 \text { in } F \text { if }|\tau|<\tau_{0} \text { and } E \geqslant E_{0}
$$

Setting $b=\frac{\tau}{E}$ and $b_{0}=\frac{\tau_{0}}{E_{0}}$, we finally established, through the 6 steps, the following result:
Theorem 2.2. There exists a constant $b_{0}>0$ depending on x_{0}, y_{0}, ϵ such that

$$
b \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}<0 \text { in } F \text { for }|b|<b_{0}
$$

3. Set of Directions

Figure 2: Lines $P_{0} P_{n}$ and $P_{n}^{-} P_{0}$

In this section, we describe how we form particular lines passing through the vertex $P_{0}=\left(x_{0}, y_{0}\right)$ and crossing the horizontal line $y=y_{0}+2 \epsilon=y_{\epsilon}$.

Line segment $P_{0} P_{1}$: It is possible to find $x_{1} \in\left(x_{0}, x_{0}+\delta / 4\right)$ such that

$$
\frac{x_{1}-x_{0}}{y_{\epsilon}-y_{0}}=\frac{x_{1}-x_{0}}{2 \epsilon}=\kappa b_{0}<b_{0}
$$

It suffices, to choose

$$
\kappa=\frac{x_{1}-x_{0}}{2 \epsilon} \cdot \frac{1}{b_{0}} \text { such that }\left|x_{1}-x_{0}\right|=2 \epsilon b_{0} \kappa<\frac{\delta}{4} ; \quad \kappa \in\left(0, \min \left(\frac{1}{2}, \frac{\delta}{8 \epsilon b_{0}}\right)\right) .
$$

Set $P_{1}=\left(x_{1}, y_{\epsilon}\right)$ and $b_{1}=\kappa b_{0}$. The line joining P_{0} and P_{1} has the slope

$$
\frac{y_{\epsilon}-y_{0}}{x_{1}-x_{0}}=b_{1}^{-1}
$$

and can be described by the following two parameterizations:

$$
P_{0} P_{1}: \quad\left\{\begin{array} { l }
{ x = x _ { 1 } - t b _ { 1 } } \\
{ y = y _ { \epsilon } - t }
\end{array} \quad t \in [0 , 2 \epsilon] \quad \text { or } \quad \left\{\begin{array}{l}
x=x_{0}+s b_{1} \\
y=y_{0}+s
\end{array} \quad s \in[0,2 \epsilon]\right.\right.
$$

Define the function

$$
f_{b_{1}}(t)=u\left(x_{1}-t b_{1}, y_{\epsilon}-t\right) .
$$

We have

$$
f_{b_{1}}(0)=u\left(x_{1}, y_{\epsilon}\right)>0, \quad f_{b_{1}}^{\prime}(0)=\left(-b_{1} \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)\left(x_{1}, y_{\epsilon}\right)<0
$$

By continuity, we have $f_{b_{1}}^{\prime}(t)<0$ for t small. Let

$$
t_{2}=\sup U ; \quad U=\left\{t \in[0,2 \epsilon] \text { such that } f_{b_{1}}(s)>0 \forall s \in[0, t)\right\} .
$$

Since $U \neq \emptyset$ and bounded, then t_{2} is well defined and by continuity of $f_{b_{1}}$, we have $f_{b_{1}}\left(t_{2}\right)=0$. Note that $t_{2}>\epsilon$ since $u>0$ in $\left(x_{0}-\delta, x_{0}+\delta\right) \times\left[y_{0}+\epsilon, y_{\epsilon}\right]$. If $t_{2}=2 \epsilon$, then $u>0$ along the line segment $P_{0} P_{1} \backslash\left\{P_{0}\right\}$. If $t_{2} \neq 2 \epsilon$, set

$$
x_{2}=x_{1}-t_{2} b_{1} ; \quad y_{2}=y_{\epsilon}-t_{2} ; \quad Q_{2}=\left(x_{2}, y_{2}\right),
$$

then form the second line segment.
Line segment $P_{0} P_{2}$: Set $P_{2}=\left(x_{2}, y_{\epsilon}\right)$. Then, we have

$$
\begin{aligned}
\frac{x_{2}-x_{0}}{y_{\epsilon}-y_{0}} & =\frac{1}{2 \epsilon}\left(\left(x_{1}-t_{2} b_{1}\right)-x_{0}\right) \\
& =\frac{1}{2 \epsilon}\left(\left(x_{0}+2 \epsilon b_{1}-t_{2} b_{1}\right)-x_{0}\right) \text { since } x_{1}=x_{0}+2 \epsilon b_{1} \\
& =\left(\frac{2 \epsilon-t_{2}}{2 \epsilon}\right) b_{1}=b_{2}<b_{1}<b_{0} .
\end{aligned}
$$

The line joining P_{0} and P_{2} has the slope

$$
\frac{y_{\epsilon}-y_{0}}{x_{2}-x_{0}}=b_{2}^{-1}
$$

and can be described by the following two parameterizations:

$$
P_{0} P_{2}: \quad\left\{\begin{array} { l }
{ x = x _ { 2 } - t b _ { 2 } } \\
{ y = y _ { \epsilon } - t }
\end{array} \quad t \in [0 , 2 \epsilon] \quad \text { or } \quad \left\{\begin{array}{l}
x=x_{0}+s b_{2} \\
y=y_{0}+s
\end{array}\right.\right.
$$

Define the function

$$
f_{b_{2}}(t)=u\left(x_{1}-t b_{2}, y_{\epsilon}-t\right) .
$$

We have

$$
f_{b_{2}}(0)=u\left(x_{1}, y_{\epsilon}\right)>0, \quad f_{b_{2}}^{\prime}(0)=\left(-b_{2} \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)\left(x_{1}, y_{\epsilon}\right)<0
$$

By continuity $f_{b_{2}}^{\prime}(t)<0$ for small t. Let $t_{3} \in(0,2 \epsilon]$ such that

$$
f_{b_{2}}\left(t_{3}\right)=0 \text { and } f_{b_{2}}(t)>0 \text { for } t \in\left[0, t_{3}\right) .
$$

Note that $t_{3}>\epsilon$ since $u>0$ in $\left(x_{0}-\delta, x_{0}+\delta\right) \times\left[y_{0}+\epsilon, y_{\epsilon}\right]$. If $t_{3}=2 \epsilon$, then $u>0$ along the line segment $P_{0} P_{2} \backslash\left\{P_{0}\right\}$. If $t_{3} \neq 2 \epsilon$, set

$$
x_{3}=x_{2}-t_{3} b_{2} ; \quad y_{3}=y_{\epsilon}-t_{3} ; \quad Q_{3}=\left(x_{3}, y_{3}\right)
$$

then we form the line segment $P_{0} P_{3}$.
Line segment $P_{0} P_{n}$: By repeating the previous process, we will obtain a sequence of points $P_{n}=\left(x_{n}, y_{\epsilon}\right)$ and $Q_{n+1}=$ $\left(x_{n+1}, y_{\epsilon}-t_{n+1}\right)$ satisfying:

$$
\begin{array}{cc}
x_{1}-x_{0}=2 \epsilon b_{1}=2 \epsilon b_{0} \kappa & x_{1}-x_{2}=t_{2} b_{1} \geqslant \epsilon b_{1} \\
x_{2}-x_{0}=2 \epsilon b_{2} & x_{2}-x_{3}=t_{3} b_{2} \geqslant \epsilon b_{2} \\
\vdots & \vdots \\
x_{n}-x_{0}=2 \epsilon b_{n} & x_{n}-x_{n+1}=t_{n+1} b_{n} \geqslant \epsilon b_{n}
\end{array}
$$

The sequence $\left(x_{n}\right)$ is convergent since it is decreasing and bounded. Indeed, we have

$$
0 \leqslant 2 \epsilon b_{n+1} \leqslant 2 \epsilon b_{n} \leqslant 2 \epsilon b_{0} \kappa \leqslant \epsilon b_{0} \text { and } t_{n+1} \geqslant \epsilon .
$$

We also have

$$
\begin{aligned}
2 \epsilon b_{0} \kappa & =x_{1}-x_{0} \geqslant x_{1}-x_{n+1} \\
& =\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\ldots+\left(x_{n}-x_{n+1}\right) \\
& \geqslant \epsilon b_{1}+\epsilon b_{2}+\ldots+\epsilon b_{n}=s_{n} \geqslant 0
\end{aligned}
$$

$\left(s_{n}\right)$ is a bounded increasing sequence. Thus convergent. As a consequence

$$
\epsilon b_{n}=s_{n}-s_{n-1} \longrightarrow 0 \text { and } x_{n}=x_{0}+2 \epsilon b_{n} \longrightarrow x_{0} \text { as } n \longrightarrow+\infty .
$$

Similarly, we obtain a sequence of points $P_{1}^{-}, P_{2}^{-}, \ldots, P_{n}^{-}, \ldots$ to the left of P_{0}.
Line segment $P_{1}^{-} P_{0}$: With $x_{1}^{-}-x_{0}=-2 \epsilon \kappa b_{0}$, we have

$$
\frac{x_{1}^{-}-x_{0}}{y_{\epsilon}-y_{0}}=\frac{x_{1}^{-}-x_{0}}{2 \epsilon}=-\kappa b_{0}>-b_{0}, \quad x_{1}^{-} \in\left(x_{0}-\delta / 4, x_{0}\right)
$$

Since

$$
\kappa=\frac{x_{1}^{-}-x_{0}}{2 \epsilon} \cdot \frac{1}{-b_{0}} \text { is such that }\left|x_{1}^{-}-x_{0}\right|=2 \epsilon b_{0} \kappa<\frac{\delta}{4} \text { for } \kappa \in\left(0, \min \left(\frac{1}{2}, \frac{\delta}{8 \epsilon b_{0}}\right)\right) \text {. }
$$

Set $P_{1}^{-}=\left(x_{1}^{-}, y_{\epsilon}\right)$ and $b_{1}=\kappa b_{0}$. The line joining P_{1}^{-}and P_{0} has the slope

$$
\frac{y_{\epsilon}-y_{0}}{x_{1}^{-}-x_{0}}=-b_{1}^{-1}
$$

and can be described by the following two parameterizations:

$$
P_{1}^{-} P_{0}: \quad\left\{\begin{array} { l }
{ x = x _ { 1 } ^ { - } + t b _ { 1 } } \\
{ y = y _ { \epsilon } - t }
\end{array} \quad t \in [0 , 2 \epsilon] \quad \text { or } \quad \left\{\begin{array}{l}
x=x_{0}-s b_{1} \\
y=y_{0}+s
\end{array}\right.\right.
$$

Define the function

$$
g_{b_{1}}(t)=u\left(x_{1}^{-}+t b_{1}, y_{\epsilon}-t\right) .
$$

We have

$$
g_{b_{1}}(0)=u\left(x_{1}^{-}, y_{\epsilon}\right)>0, \quad g_{b_{1}}^{\prime}(0)=\left(b_{1} \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)\left(x_{1}^{-}, y_{\epsilon}\right)<0
$$

By continuity $g_{b_{1}}^{\prime}(t)<0$ for small t. Let $t_{2}^{-} \in(0,2 \epsilon]$ such that $g_{b_{1}}\left(t_{2}^{-}\right)=0$ and $g_{b_{1}}(t)>0$ for $t \in\left[0, t_{2}^{-}\right)$. Note that $t_{2}^{-}>\epsilon$ since $u>0$ in $\left(x_{0}-\delta, x_{0}+\delta\right) \times\left[y_{0}+\epsilon, y_{\epsilon}\right]$. If $t_{2}^{-}=2 \epsilon$, then $u>0$ along the line segment $P_{1}^{-} P_{0} \backslash\left\{P_{0}\right\}$. If $t_{2}^{-} \neq 2 \epsilon$, set $x_{2}^{-}=x_{1}^{-}+t_{2}^{-} b_{1} ; y_{2}^{-}=y_{\epsilon}-t_{2}^{-} ; Q_{2}^{-}=\left(x_{2}^{-}, y_{2}^{-}\right)$, then we form the following line segment $P_{2}^{-} P_{0}$ with $P_{2}^{-}=\left(x_{2}^{-}, y_{\epsilon}\right)$.
Line segment $P_{n}^{-} P_{0}$: We obtain a sequence of points $P_{n}^{-}=\left(x_{n}^{-}, y_{\epsilon}\right)$ and $Q_{n+1}^{-}=\left(x_{n+1}^{-}, y_{\epsilon}-t_{n+1}^{-}\right)$satisfying:

$$
0 \leqslant x_{0}-x_{n}^{-}=2 \epsilon b_{n} \leqslant 2 \epsilon b_{1}=2 \epsilon b_{0} \kappa \leqslant \epsilon b_{0} ; x_{n+1}^{-}-x_{n}^{-}=t_{n+1}^{-} b_{n} \geqslant \epsilon b_{n}
$$

and $x_{n}^{-}=x_{0}-2 \epsilon b_{n} \longrightarrow x_{0}$ as $n \longrightarrow+\infty$.

4. Proof of Continuity

Proof of Theorem 1.2. Let x_{0} be in the interior of $(0,1) \cap[\Phi(x)>0]$. Define $\epsilon_{0}, \delta_{0}, \rho$, and the sets F and G as in Step 2 of section 2. Then, construct points $P_{1}^{-}, P_{2}^{-}, \ldots, P_{n}^{-}, \ldots$ to the left of P_{0} and points $P_{1}, P_{2}, \ldots, P_{n}, \ldots$ to the right of P_{0} (as in section 3) such that $u>0$ above the line segments $\left[P_{i}^{-} Q_{i+1}^{-}\right)$and $\left[P_{i} Q_{i+1}\right) ; i=1,2, \ldots, n, \ldots$.
For $x \in\left(x_{0}-\frac{\delta}{8}, x_{0}+\frac{\delta}{8}\right) \backslash\left\{x_{0}\right\}$, there exists $n \geqslant 1$ such that $x_{n+1} \leqslant x<x_{n}$ or $x_{n}^{-}<x \leqslant x_{n+1}^{-}$since $x_{n}=x_{0}+2 \epsilon b_{n}$ and $x_{n}^{-}=x_{0}-2 \epsilon b_{n}$. Now, because $u(x, \Phi(x))=0$, the point ($x, \Phi(x)$) will be under the line segment

$$
\left[P_{n} Q_{n+1}\right): \quad x-x_{0}=b_{n}\left(y-y_{0}\right) \quad \text { or } \quad\left[P_{n}^{-} Q_{n+1}^{-}\right): x-x_{0}=-b_{n}\left(y-y_{0}\right)
$$

We discuss two situations:
i). $\Phi(x) \geqslant y_{0}=\Phi\left(x_{0}\right)$. We have

$$
\begin{aligned}
& \Phi(x)-\Phi\left(x_{0}\right)<b_{n}^{-1}\left(x-x_{0}\right) \text { if } x_{n+1} \leqslant x<x_{n} \\
& \Phi(x)-\Phi\left(x_{0}\right)<b_{n}^{-1}\left(x_{0}-x\right) \text { if } x_{n}^{-}<x \leqslant x_{n+1}^{-}
\end{aligned}
$$

* For $x_{n+1} \leqslant x<x_{n}$, we have

$$
\begin{aligned}
0<x-x_{0} & =\left(x-x_{n}\right)+\left(x_{n}-x_{0}\right) \\
& \leqslant\left(x_{n}-x_{n+1}\right)+\left(x_{n}-x_{0}\right) \\
& =t_{n} b_{n}+2 \epsilon b_{n} \\
b_{n}^{-1}\left(x-x_{0}\right) & \leqslant t_{n}+2 \epsilon \leqslant 2 \epsilon+2 \epsilon=4 \epsilon
\end{aligned}
$$

* For $x_{n}^{-}<x \leqslant x_{n+1}^{-}$, we have

$$
\begin{aligned}
0<x_{0}-x & =\left(x_{0}-x_{n+1}^{-}\right)+\left(x_{n+1}^{-}-x\right) \\
& \leqslant\left(x_{0}-x_{n+1}^{-}\right)+\left(x_{n+1}^{-}-x_{n}^{-}\right) \\
& =2 \epsilon b_{n+1}+t_{n+1}^{-} b_{n} \\
b_{n}^{-1}\left(x_{0}-x\right) & \leqslant 2 \epsilon b_{n}^{-1} \cdot b_{n+1}+t_{n+1}^{-} \leqslant 2 \epsilon+2 \epsilon=4 \epsilon \text { since } b_{n+1} \leqslant b_{n} .
\end{aligned}
$$

Thus $\Phi(x)-\Phi\left(x_{0}\right) \leqslant 4 \epsilon$.
ii). $\Phi(x)<y_{0}=\Phi\left(x_{0}\right)$.

Set $x_{0}^{\prime}=x$ and $y_{0}^{\prime}=\Phi(x)=y$. The point $P_{0}^{\prime}=\left(x_{0}^{\prime}, y_{0}^{\prime}\right)$ will play the role of $\left(x_{0}, y_{0}\right)$ in section 3 and we will form with the same process the sequence of points $P_{1}^{-1}, P_{2}^{-\prime}, \ldots, P_{n}^{-1}, \ldots$ to the left of P_{0}^{\prime} and points $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}, \ldots$ to the right of P_{0}^{\prime}. It is sufficient that we start with P_{1}^{\prime} (resp. $P_{1}^{-\prime}$) such that the corresponding b_{1}^{\prime} (resp. $b_{1}^{-\prime}$) is less than b_{0}.
Line segments $P_{0}^{\prime} P_{1}^{\prime}$ and $P_{1}^{-\prime} P_{0}^{\prime}$: We choose $P_{1}^{\prime}=\left(x_{1}^{\prime}, y_{\epsilon}\right)=P_{1}=\left(x_{1}, y_{\epsilon}\right)$ and $P_{1}^{-1}=\left(x_{1}^{-1}, y_{\epsilon}\right)=P_{1}^{-}=\left(x_{1}^{-}, y_{\epsilon}\right)$. This ensures that we remain working on the interval $\left[x_{1}^{-}, x_{1}\right]$ and x_{0} is in this interval. We have

$$
\begin{aligned}
\left|x_{0}-x_{0}^{\prime}\right| & \leqslant 2 \epsilon b_{1} \text { since }\left|x_{0}-x_{1}\right|=\left|x_{1}^{-}-x_{0}\right|=2 \epsilon b_{1} \\
\left|x_{1}^{\prime}-x_{0}^{\prime}\right| & =\left|x_{1}-x_{0}+x_{0}-x_{0}^{\prime}\right| \leqslant\left|x_{1}-x_{0}\right|+\left|x_{0}-x_{0}^{\prime}\right| \leqslant 4 \epsilon b_{1} \text { since } x_{1}=x_{0}+2 \epsilon b_{1} \\
y_{\epsilon}-y_{0}^{\prime} \geqslant y_{\epsilon}-y_{0} & =2 \epsilon \text { since } y_{0}^{\prime}<y_{0} \\
b_{1}^{\prime} & =\frac{x_{1}^{\prime}-x_{0}^{\prime}}{y_{\epsilon}-y_{0}^{\prime}} .
\end{aligned}
$$

So

$$
\left|b_{1}^{\prime}\right|=\frac{\left|x_{1}^{\prime}-x_{0}^{\prime}\right|}{y_{\epsilon}-y_{0}^{\prime}} \leqslant \frac{4 \epsilon b_{1}}{2 \epsilon}=2 b_{1}=2 \kappa b_{0}<b_{0} \quad \Longleftrightarrow \quad \kappa<\frac{1}{2}
$$

which is satisfied by the first choice of κ. Similarly, we have

$$
-b_{1}^{-\prime}=\frac{x_{1}^{-}-x_{0}^{\prime}}{y_{\epsilon}-y_{0}^{\prime}} ; \quad\left|b_{1}^{-\prime}\right|=\frac{\left|x_{1}^{-}-x_{0}^{\prime}\right|}{y_{\epsilon}-y_{0}^{\prime}}=\frac{\left|x_{0}-2 \epsilon b_{1}-x_{0}^{\prime}\right|}{y_{\epsilon}-y_{0}^{\prime}} \leqslant \frac{4 \epsilon b_{1}}{2 \epsilon}=2 b_{1} .
$$

Arguing as in i), we obtain

$$
\Phi\left(x_{0}\right)-\Phi(x) \leqslant \max \left(\frac{1}{b_{q}^{-\prime}}, \frac{1}{b_{m}^{\prime}}\right)\left|x-x_{0}\right| \leqslant 4 \epsilon,
$$

depending if x_{0} is to the right of $x ; x_{m+1}^{\prime} \leqslant x_{0}<x_{m}^{\prime}$, or x_{0} is to the left of $x ; x_{q}^{-1}<x_{0} \leqslant x_{q+1}^{-1}$. Finally, we have

$$
\left|\Phi(x)-\Phi\left(x_{0}\right)\right| \leqslant 4 \epsilon \text { for }\left|x-x_{0}\right|<\frac{\delta}{8} .
$$

This completes the proof of the continuity of Φ.

References

[1] H. W. Alt, The fluid flow Through Porous Media. Regularity of the free Surface, Manuscripta Math., 21(1977), 255-272.
[2] Guy Bayada and Michéle Chambat, Nonlinear variational formulation for a cavitation problem in lubrication, Journal of Mathematical Analysis and Applications, 90(2)(1982), 286-298.
[3] M. Chipot, Variational Inequalities and Flow in Porous Media, Springer-Verlag New York Inc, (1984).
[4] M. Chipot, On the Continuity of the Free Boundary in some Class of Dimensional Problems, Interfaces Free Bound., $3(1)(2001), 81-99$.
[5] S. Challal and A. Lyaghfouri, Continuity of the Free Boundary in Problems of type div $(a(x) \nabla u)=-(\chi(u) h(x))_{x_{1}}$, Nonlinear Analysis: Theory, Methods \& Applications, 62(2)(2005), 283-300.
[6] S. Challal and A. Lyaghfouri, On the Continuity of the Free Boundary in Problems of type div $(a(X) \nabla u)=$ - div $(\chi(u) H(X))$, Differential and Integral Equations, 19(5)(2006), 481-516.
[7] S. Challal and A. Lyaghfouri, A stationary flow of fresh and salt groundwater in a heterogeneous coastal aquifer, Bollettino della Unione Matematica Italiana, 8(2)(2000), 505-533.
[8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, (1983).
[9] J. F. Rodrigues, Obstacle problems in Mathematical physics, North Holland, (1987).

[^0]: * E-mail: schallal@glendon.yorku.ca

