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1. Introduction

The Introduction of the concept of a fuzzy subset of a set X as a function from X into the closed intervel [0.1] by Zadeh

in his pioneering paper [19]. After the notion of fuzzy sets, Rosenfield [12] defined the notion of a fuzzy subgroup of a

group and since then several researchers have applied this concept to abstract algebras such as semigroup, ring, semiring,

field, near-ring, lattice etc. For example, Kuroki [7] investigated the properties of fuzzy ideals of a semigroup. Malik and

Moderson [10] worked on fuzzy subrings and ideals of rings. Liu [9] introduced fuzzy invarient subgroups and fuzzy ideals.

Attallah [1] and Lehmke [8] introduced fuzzy ideals of lattices. Jun, Kim and Oztirk [5] introduced fuzzy maximal ideals of

Gamma near-rings. Katsaras and Liu [6] introduced fuzzy vector spaces and fuzzy topological vector spaces.

In most of the works mentioned above, the fuzzy statements take truth values in the intervel [0, 1] of real numbers. However,

Gougen [3] realised that the unit intervel [0, 1] is insufficient to have the truth values of general fuzzy statements and it

is necessary to consider a more general class of lattices in place of [0, 1] by means of a complete lattice in an attempt to

make a generalised study of fuzzy set theory by studying L-fuzzy sets. Further, to make an abstract study, Swamy and

other researchers in [13–18] consider a general complete lattice satasfying the infinite meet distributivity to have truth

values of fuzzy statements. This type of lattice is called a frame. In this paper, we introduce the notion of fuzzy filter of a

meet-semilattice (S,∧)
(
dually, fuzzy ideal of a join-semilattice (S,∨)

)
, having truth values in a general frame L and prove

certain properties of these.

Throughout this paper, L stands for a frame (L,∧,∨, 0, 1); i.e., L is a non-trivial complete lattice in which the infinite meet

distributive law is satisfied. That is;

α ∧
( ∨
β∈M

β
)

=
∨
β∈M

(α ∧ β)
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for all α ∈ L and M ⊆ L. Here the operations ∨ and ∧ are, respectively, supremum and infimum in the lattice L and 0, 1

are respectively, greatest and smallest elements in L. Also S stands for a meet-semilattice (S,∧)
(

join-semilattice (S,∨)
)
,

unless otherwise stated. As usual, by an L-fuzzy subset of S, we mean a mapping of S into L. For the sake of convenience,

we write fuzzy subset instead of L-fuzzy subset. A fuzzy subset A : S → L is said to be non-empty if it is not the constant

map which assumes the value 0 of L. For any fuzzy subset A of S and α ∈ L, the set

Aα = A−1[α, 1] = {x ∈ S : α ≤ A(x)}.

is called the α-cut of A.

2. Preliminaries

In his section, some basic definitions, results and notations which will be needed later on are presented.

Definition 2.1. For any non-empty set X, any subset R of X ×X is called a binary relation on X. A binary relation R

on X is said to be a partial order on X if

(1). xRx for all x ∈ X (reflexive)

(2). xRy and yRx⇒ x = y (antisymmetric)

(3). xRy and yRz ⇒ xRz (transitive)

The partial orders are usually denote by the symbols ≤, ≥, ⊆, ⊇ etc. A non-empty set X together with a partial order ≤

is called a partial ordered set or poset and we simply denote it by (X,≤).

Definition 2.2. Let (X,≤) be a poset. Then the relation

≤−1= {(x, y) ∈ X ×X : y ≤ x}

is also a partial order on X and it is denoted by ≥. ≥ is called the dual order of ≤. That is a ≥ b if and only if b ≤ a.

Definition 2.3. A partial order ≤ on as set X is called a total order or linear order on X, if for any x, y ∈ X, either

x ≤ y or y ≤ x and, in this case, (X,≤) is called a total ordered set or a chain.

Definition 2.4. Let (X,≤) be a poset, Y ⊆ X and a ∈ X.

(1). If x ≤ a for all x ∈ X, then a is called the largest element in X.

(2). If a ≤ x for all x ∈ X, then a is called the smallest element in X.

(3). If x ≤ a for all x ∈ Y , then a is called an upper bound of Y .

(4). If a ≤ x for all x ∈ Y , then a is called a lower bound of Y .

(5). A lower bound a of Y is called the greatest lowerbound, which will be denoted by g.l.b Y or inf Y, if b ≤ a for all lower

bounds b of Y . Similarly, an upperbound a of Y is called the least upper bound, which will be denote by l.u.b Y or sup

Y, if a ≤ b for all upper bounds b of Y .

Definition 2.5. A poset (X,≤) is called a meet-semilattice (dually, join-semilattice) if inf{a, b} (dully, sup{a, b}) exists

in X for any a, b ∈ X
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Lemma 2.6. The dual of a meet-semilattice is a join-semilattice, and conversely.

Proposition 2.7. The poset (X,≤) is a lattice if and only if it is meet and join-semilattice.

Definition 2.8. A semilattice is an algebra S = (S, ◦) with one binary operation o satisfying the identities

(x ◦ y) ◦ z = x ◦ (y ◦ z)

x ◦ y = y ◦ x

x ◦ x = x

i.e, the operation ◦ is associative, commutative and idempotent.

Proposition 2.9. Let (X,≤) be a meet-semilattice (join-semilattice). Then the algebra X = (X,∧)
(

(X,∨)
)

is a semilattice,

when a ∧ b = inf{a, b}
(
a ∨ b = sup{a, b}

)
for any a, b ∈ X.

Theorem 2.10. Let S = (S, ◦) be a semilattice. For any a and b ∈ S, define binary relations ≤∧ and ≤∨ on S by

a ≤∧ b if and if only a ◦ b = a and a ≤∨ b if and if only a ◦ b = b.

Then ≤∧ and ≤∨ are partial orders on S and consequently, (S,≤∧) is a meet-semilattice in which a∧b = a◦b for all a, b ∈ S,

and (S,≤∨) is a join-semilattice in which a ∨ b = a ◦ b for all a, b ∈ S.

In the light of the previous theorem, semilattices can be alternatively considered as meet or join-semilattices, respectively.

Theorem 2.11. Let (S,∧) be a meet-semilattice with greatest element 1. Let F (S) be the set of all filters of S. Then

(F (S),⊆) is a complete lattice. F (S) called the lattice of filters of S.

Definition 2.12. Let A be a non-empty class of subsets of a non-empty set X. A subclass B of A is said to be directed

above if, for any B and C ∈ B, there exists D ∈ B such that B ⊆ D and C ⊆ D.

(1). A is said to be closed under unions of directed above subclasses if, for any directed above subclass D of A ,
⋃

D∈D

D ∈ A .

(2). A is said to be closure set system on X if A is closed under arbitrary intersection; that is B ⊆ A ⇒
⋃

B∈B

B ∈ A .

3. Fuzzy Filters

A filter of a meet-semilattice (S,∧) is a non-empty subset F of S such that, for all a, b ∈ S, a∧ b ∈ F if and only if a, b ∈ F .

A filter can also be characterised by:

(1). a, b ∈ F ⇒ a ∧ b ∈ F (F is closed under ∧);

(2). a ∈ F and a 6 x⇒ x ∈ F (F is final segment)

Now, we introduce the notion of fuzzy filter of a meet-semilattice S = (S,∧) with truth values in a general frame L. Here

after L stands for a general frame.

Definition 3.1. A fuzzy subset A of S is said to be an L-fuzzy filter (simply, fuzzy filter) of S if A(x0) = 1 for some x0 ∈ S

and A(x ∧ y) = A(x) ∧A(y) for all x, y ∈ S.

The following is a characterisation of fuzzy filters.
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Theorem 3.2. The following are equivalent to each other for any fuzzy subset A of S.

(i). A is a fuzzy filter of S.

(ii). A(x0) = 1 for some x0 ∈ S,

(iii). A(x ∧ y) ≥ A(x) ∧A(y) and x ≤ y ⇒ A(y) ≥ A(x) (i.e., A is an isotone) for all x, y ∈ S.

(iv). Aα is a filter of S for all α ∈ L.

Proof. (i)⇒ (ii): It is clear.

(ii) ⇒ (iii): Let α ∈ L. By (ii), A(x0) = 1 ≥ α for some x0 ∈ S and hence x0 ∈ Aα. Therefore Aα is non-empty. Let

a, b ∈ Aα. Then α ≤ A(a) and α ≤ A(b). Again by (ii), α ≤ A(a) ∧ A(b) ≤ A(a ∧ b) and hence a ∧ b ∈ Aα. Further, if

a ∈ Aα and a ≤ x, then α ≤ A(a) ≤ A(x), since A is an isotone. Therefore x ∈ Aα. Thus Aα is filter of S.

(iii)⇒ (ii): It is a simple consequence of the transfer principle for fuzzy sets.

Let X be a non-empty subset of S, and let [X) denote the smallest filter containing X in S. It is well known that

[X) = {a ∈ S :
n∧
i=1

xi ≤ a for some xi ∈ X} and [a) = {x ∈ S : a ≤ x} for any a ∈ S

Lemma 3.3. Let A be a fuzzy filter of S and X a non-empty subset of S, and x, y ∈ S. We have

(i). x ∈ [X)⇒ A(x) ≥
m∧
i=1

A(ai) for some a1, a2, . . . am ∈ X

(ii). x ∈ [y)⇒ A(x) ≥ A(y)

(iii). If S has the greatest element 1, then A(1) = 1.

Proof.

(i). Let x ∈ [X). Then
n∧
i=1

ai ≤ x for some ai ∈ X. Therefore, A(x) ≥ A
( n∧
i=1

ai
)

=
n∧
i=1

A(ai) (since A is an isotone).

(ii). It is clear from the fact that A is an isotone.

(iii). Suppose that A(x0) = 1 for some x0 ∈ S. If S has the greatest element 1, then x0 ≤ 1 and hence A(x0) = 1 ≤ A(1),

and hence A(1) = 1.

Let FF (S) denote the set of all fuzzy filters of a meet-semilattice (S,∧) with greatest element 1. For any A and B ∈ FF (S),

we define A ≤ B if and only if A(x) ≤ B(x) for all x ∈ S. Then (FF (S),≤) is a poset.

Now the following is straight forward verification.

Theorem 3.4. (FF (S),≤) is a complete lattice in which, for any family {Ai : i ∈ ∆} of fuzzy filters of S, the g.l.b and

l.u.b are given by

∧
i∈∆

Ai = The point-wise infimum of A′is and
∨
i∈∆

Ai = The point-wise infimum of {A ∈ FF (S) : Ai ≤ A for all i ∈ ∆
}

.

If A is any non-empty fuzzy subset of S, then the point-wise infimum of fuzzy filters containing A is non-empty and hence

a fuzzy filter which becomes the fuzzy filter generated by A and is denoted by A. For more description of Ā, we prove the

following.

Theorem 3.5. Let A be a fuzzy subset of S. Then the fuzzy filter Ā generated by A is given by

A(x0) = 1 for some x0 ∈ S and Ā(x) =
∨{ n∧

i=1

A(ai) : a1, a2, . . . an ∈ S,
n∧
i=1

ai ≤ x
}

for any x0 6= x ∈ S.
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Proof. Define B(x) =
∨{ n∧

i=1

A(ai) : a1, a2, . . . an ∈ S and
n∧
i=1

ai ≤ x
}

. Clearly A(x) ≤ B(x) for all x ∈ S and hence

A ≤ B. Let x, y ∈ S and x ≤ y. Then, for any a1, a2, . . . an ∈ S,

n∧
i=1

ai ≤ x⇒
n∧
i=1

ai ≤ y ⇒
n∧
i=1

A(ai) ≤ B(y)

which implies that B(x) ≤ B(y) and hence B is an isotone and it follows that B(x∧ y) ≤ B(x)∧B(y) for all x, y ∈ S. Now,

by the infinite meet distributivity in L, we have

B(x) ∧B(y) =
(∨{ n∧

i=1

A(ai) : ai ∈ S and

n∧
i=1

ai ≤ x
})
∧
(∨{ m∧

j=1

A(bj) : bj ∈ S and

m∧
j=1

bj ≤ y
})

=
∨{ n∧

i=1

A(ai) ∧
m∧
j=1

A(bj) :

n∧
i=1

ai ∧
m∧
j=1

bj ≤ x ∧ y
}

≤ B(x ∧ y).

By Theorem 3.2, B is a fuzzy filter of S. If C is a fuzzy filter of S and A ≤ C, then, for any x ∈ S and a1, a2, .....an ∈ S

with
n∧
i=1

ai ≤ x,

n∧
i=1

A(ai) ≤
n∧
i=1

C(ai) = C
( n∧
i=1

ai
)
≤ C(x)

it follows that B(x) ≤ C(x) for all x ∈ S, so that B ≤ C. Thus B = A.

Corollary 3.6. Let {Ai}i∈∆ be a class of fuzzy filters of S. Then the supremum
∨
i∈∆

Ai of {Ai}i∈∆ in FF (S) is given by( ∨
i∈∆

Ai
)

(x) =
∨{ ∧

a∈X
B(a) : x ∈ [X), X is a non-empty finite subset of S

}
, where B(x) =

∨{
Ai(x) : i ∈ ∆

}
(i.e., the

point-wise supremum of Ai’s).

Corollary 3.7. For any fuzzy filters A and B of S, the supremum A ∨B is given by

(A ∨B)(x) =
∨{ ∧

a∈X

(
A(a) ∨B(a)

)
: x ∈ [X), X is a non-empty finite subset of S

}
.

For any subset X of S, the characteristic map χX : S 7→ L is defined by

χX (x) =


1, if x ∈ X

0, otherwise.

it can be easily observed that χX is a fuzzy filter of S if and only if X is a filter of S. Now, one can easily seen that

the correspondence X 7→ χX establishes a monomorphism from the complete lattice (F (S),⊆) of all filters of S in to the

complete lattice (FF (S),≤) of all fuzzy filters of S. Also, for any filter F of S, χ
F

= χ
[F )

. In Theorem 3.2, we have proved

that the α−cuts of any fuzzy filter A of a meet-semilattice (S,∧) are filters of S. Infact these α−cuts completely determine

the fuzzy filter in the sense of the following.

Theorem 3.8. Let (S,∧) be a semilattice with greatest element 1 and {Fα}α∈L a class of filters of S such that
⋂
α∈M

Fα =

F∨
α

α∈M
, for any M ⊆ L. For any x ∈ S define A(x) = ∨{α ∈ L : x ∈ Fα}. Then A is a fuzzy filter of S such that Aα = Fα,

for any α ∈ L.

Proof. Clearly, α ≤ β ⇒ Fβ ⊆ Fα, for any α, β ∈ L. By the definition of A, we have x ∈ Fβ ⇒ β ≤ A(x) ⇒ x ∈ Aβ for

any x ∈ S and β ∈ L. Therefore Fβ ⊆ Aβ for all β ∈ L On the otherhand,

x ∈ Aβ ⇒ β ≤ A(x) = ∧
{
α ∈ L : x ∈ Fα

}
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⇒ β = β ∧
(
∨ {α ∈ L : x ∈ Fα}

)
⇒ β = ∨{β ∧ α : x ∈ Fα} (by the infinite meet distributivity in L)

⇒ Fβ =
⋂
x∈Fα

Fβ∧α

⇒ x ∈ Fβ (since α 7→ Fα is an antitone)

Therefore Aβ = Fβ for all β ∈ L. By Theorem 3.2, A is a fuzzy filter of S. The converse of above theorem is true, since, for

any fuzzy filter A of S, the α-cuts Aα’s are filter of S and for any M ⊆ L,
⋂
α∈M

Aα = A∨
α

α∈M
and A(x) = ∨{α ∈ L : x ∈ Aα},

for any x ∈ S.

It is well knows that any closure set system forms a complete lattice with respect of the inclusion ordering (⊆) and, conversely,

any complete lattice is isomorphic to a closure set system. Also, it is known that a closure set system A is an algebric

lattice if and only if A is closed under unions of directed above subclasses. Further, if (S,∧) be a semilattice with greatest

element 1 and F (S) the class of all filters of S, then F (S) is a closure set system which is closed under unions of directed

above subclasses and hence F (S) is an algebraic lattice.

In view of the above, we define the following

Definition 3.9. Let C be a class of fuzzy subsets of a set X. A subclass {Ai}i∈∆ of C is called as directed above if, for

any i, j ∈ ∆ there is K ∈ ∆ such that Ai ≤ AK and Aj ≤ AK . C is said to be an algebric fuzzy system if, C is ciosed

under point-wise infimums and point-wise supremums of directed subclasses.

Theorem 3.10. Let (S,∧) be a semilattice with greatest element 1. Then the class FF (S) of all fuzzy filter of S is an

algebraic.

Proof. Let {Ai}i∈∆ be a directed above class of fuzzy filters of S and define A : S → L by

A(x) =
∨
i∈∆

Ai(x) (the point-wise supremum)

Clearly A(1) = 1. Now, let x and y ∈ S.

x ≤ y ⇒ Ai(x) ≤ Ai(y) for all i ∈ ∆

⇒
∨
i∈∆

Ai(x) ≤
∨
i∈∆

Ai(y)

⇒ A(x) ≤ A(y)

it follows that A is an isotone and hence that A(x∧ y) ≤ A(x)∧A(y). On the other hand, by the infinite meet distributivity

in L,

A(x) ∧A(y) =
( ∨
i∈∆

Ai(x)
)
∧
( ∨
j∈∆

Aj(y)
)

=
∨
i,j∈∆

(
Ai(x) ∧Aj(y)

)
(*)

Now, for any i, j ∈ ∆, there exists K ∈ ∆ such that Ai ≤ AK and Aj ≤ AK and hence

Ai(x) ∧Aj(y) ≤ AK(x) ∧AK(y)

= AK(x ∧ y) ≤ A(x ∧ y).

Therefore, by (*) it follows that A(x)∧A(y) ≤ A(x∧ y) and hence A(x∧ y) = A(x)∧A(y). Thus A is a fuzzy filter of S.
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Finally in this section we prove that the distributivity of a semilattice (S,∧) can be extended to that of the lattice FF (S) of

fuzzy filters of S. We recall that the map x 7→ [x) is an embedding of S into the lattice F(S) of filter of S. Also, the mapping

F 7→ χF is an embedding of F (S) into FF (S). Thus S is isomorphic to a sublattice of F(S) and F(S) is isomorphic to a

sublattice of FF (S).

Recall that a meet-semilattice (S,∧) is said to be distributive if for any a, b and c ∈ S,

b ∧ c ≤ a⇒ there exists b1, c1 ∈ S such that b1 ≥ b, c1 ≥ c and a = b1 ∧ c1.

In view of the above, we prove the following.

Theorem 3.11. Let (S,∧) be a semilattice with greatest element 1. Then the following are equivalent to each other:

(1). FF (S) is a distributive lattice.

(2). F (S) is a distributive lattice.

(3). S is distributive.

Proof. (1)⇒ (2) and (2)⇒ (3) are clear.

(3) ⇒ (1) : Suppose that S is distributive. Let A,B and C ∈ FF (S). Clearly (A ∧ B) ∨ (A ∧ C) ≤ A ∧ (B ∨ C). On the

otherhand, let x ∈ S. By the infinite meet distributivity in L, we have

(A ∧ (B ∨ C))(x) = A(x) ∧ (B ∨ C)(x)

= A(x) ∧
[ ∨
FbS
∧F≤x

( ∧
a∈F

(
B(a) ∨ C(a)

))]

=
∨

FbS
∧F≤x

[ ∧
a∈F

(
A(x) ∧B(a)

)
∨
(
A(x) ∧ C(a)

))]
(*)

where F b S denotes that F is a finite subset of S and ∧F denotes the inf F. Now, if F = {a1, a2, . . . an} and
∧
F =

n∧
i=1

ai ≤ x then, by the distributivity in S, there exists b1, b2, . . . bn ∈ S such that each bi ≥ ai and x =
n∧
i=1

bi. Now consider

∧
a∈F

((
A(x) ∧B(a)

)
∨
(
A(x) ∧ C(a)

))
=

n∧
i=1

((
A(x) ∧B(ai)

)
∨
(
A(x) ∧ C(ai)

))
≤

n∧
i=1

((
A(bi) ∧B(bi)

)
∨
(
A(bi) ∧ C(bi)

))
(since A,B,C are isotones)

=

n∧
i=1

(
(A ∧B)(bi) ∨ (A ∧ C)(bi)

)
≤
(

(A ∧B) ∨ (A ∧ C)
)

(x) (since x =

n∧
i=1

bi)

Therefore, by (*), A∧ (B∨C) ≤ (A∧B)∨ (A∧C) and hence A∧ (B∨C) = (A∧B)∨ (A∧C). Thus FF (S) is a distributive

lattice.

4. Fuzzy ideals of join-semilattices

Recall that, an ideal of a join-semilattice S = (S,∨) is a non-empty subset I of S such that, for all a, b ∈ S, a ∨ b ∈ I if and

only if a, b ∈ I. In other words, I is an ideal of S if,

(1). a, b ∈ I ⇒ a ∨ b ∈ I (I is closed under ∨) and
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(2). a ∈ I and x 6 a⇒ x ∈ I (I is an initial segment)

As we have mentioned in the preliminaries, the partial order ≤∨ on a semilattice (S, ◦) is precisely the inverse (or dual)

of the partial order ≤∧ on S. Also note that a subset I of S is an ideal of the join-semilattice (S,≤∨) if and only if I is

a filter of the meet-semilattice (S,≤∧). In this section, we introduce the notion of fuzzy ideal (or simply, fuzzy ideal) of a

join-semilattice (S,∨) with truth values in a general frame L and discuss certain properties of these, which are analogues

to those of fuzzy filters of a meet-semilattice (S,∧). The proofs of most of the results are simply dual to the corresponding

results on fuzzy filters. For this reason, we simply state the results and skip their proofs.

Definition 4.1. Let S = (S,∨) be a join-semilattice. A fuzzy subset A of S is called an L-fuzzy ideal (or simply, a fuzzy

ideal) of S if A(x0) = 1 for some x0 ∈ S and A(x ∨ y) = A(x) ∧A(y) for all x and y ∈ S.

In the following, any ideal of S can be identified with a fuzzy ideal of S.

Theorem 4.2. For any subset I of S, I is an ideal of S if and only if χI is a fuzzy ideal of S.

The following is a characterization of fuzzy ideals.

Theorem 4.3. The following are equivalent to each other for any fuzzy subset A of S

(1). A is a fuzzy ideal of S.

(2). A(x0) = 1 for some x0 ∈ S, A(x∨ y) ≥ A(x)∧A(y), and x ≤ y ⇒ A(x) ≥ A(y) (i.e., A is an antitone) for all x, y ∈ S.

(3). the α-cut Aα is an ideal of S, for all α ∈ L.

Let us recall that, for any non-empty subset X of S, the ideal generated by X is

(X] = {a ∈ S : a ≤
n∨
i=1

xi for some xi ∈ X}

and for any a ∈ S, the ideal generated by a is (a] = {x ∈ S : x ≤ a}

Lemma 4.4. Let A be a fuzzy ideal of S and X a non-empty subset of S. Then we have

(1). a ∈ (X]⇒ A(a) ≥
n∧
i=1

A(xi) for some xi ∈ X.

(2). x ∈ (y]⇒ A(x) ≥ A(y).

(3). If S has the smallest element 0, then A(0) = 1.

It is well known that, the set I(S) of all ideals of a join-semilattice (S,∨) with smallest element 0 is a complete lattice under

the set inclusion ordering ⊆. Let FI(S) denote the set of all fuzzy ideals of a join-semilattice (S,∨) with smallest element

0.

Theorem 4.5. FI(S) is a complete lattice under point-wise ordering in which, for any {Ai}i∈∆ ⊆ FI(S), the g.l.b and

l.u.b are given by( ∧
i∈∆

Ai
)

(x) =
∧
i∈∆

Ai(x) and
( ∨
i∈∆

Ai
)

(x) =
∧
{A(x) : A ∈ FI(S) and Ai ≤ A for all i ∈ ∆} for any x ∈ S.

Theorem 4.6. The smallest fuzzy ideal of S containing a non-empty fuzzy subset A of S is given by A(x) =
∧
{B(x) : B ∈

FI(S) and A ≤ B}.
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The following result gives a point-wise description of A.

Theorem 4.7. For any fuzzy subset A of S,

A(x0) = 1 for some x0 ∈ S and A(x) =
∨
{
n∧
i=1

A(ai) : a1, a2, . . . an ∈ S and x ≤
n∨
i=1

ai} for any x0 6= x ∈ S.

Corollary 4.8.
( ∨
i∈∆

Ai
)

(x) =
∨{ n∧

i=1

B(aj) : a1, a2 . . . an ∈ S and x ≤
n∨
i=1

ai
}

, where B(x) =
∨{

Ai(x) : i ∈ ∆
}

.

Corollary 4.9. For any A,B ∈ FI(S), the g.l.b A ∧B and l.u.b A ∨B in FI(S) are respectively given by

(A ∧B)(x) = A(x) ∧B(x) and (A ∨B)(x) =
∨{ n∧

j=1

(
A(aj) ∨B(aj)

)
: a1, a2 . . . an ∈ S and x ≤

n∨
j=1

aj
}

.

Theorem 4.10. Let (S,∨) be a join-semilattice with smallest element 0 and {Iα}α∈L a class of ideals of S such that⋂
α∈M

Iα = I∨
α

α∈M
, For any M ⊆ L. For any x ∈ S define A(x) = ∨{α ∈ L : x ∈ Iα}. Then A is a fuzzy ideal of S such that

the α-cut Aα = Iα, for any α ∈ L. Conversely every fuzzy ideal of S can be obtained as above.

It is well known that the class F (S) of all filters of a join-semilattice (S,∨) with smallest element 0 is an algebraic lattice.

In view of this we prove the following.

Theorem 4.11. Let (S,∨) be a join-semilattice with smallest element 0. Then the class FI(S) of all fuzzy ideals of S is

an algebraic fuzzy system.

Finally, we recall that a join-semilattice (S,∨) is said to be distributivity if, for any a, b and c ∈ S, a ≤ b ∨ c⇒ there exists

b1, c1 ∈ S such that b1 ≤ b, c1 ≤ c and a = b1 ∨ c1.

Theorem 4.12. Let (S,∨) be a join-semilattice with smallest element 0. Then the following are equivalent to each other:

(1). FI(S) is a distributive lattice.

(2). I(S) is a distributive lattice.

(3). S is distributive.

5. Conclusions

In this paper, we have studied the structural properties of fuzzy filters of a meet-semilattice (S,∧), by introducing the notion

of fuzzy filter of S with truth values in a general frame L. Further, we want to make an abstract study of the class of fuzzy

filters and to investigate fuzzy ideals and congruences of a meet-semilattice.
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