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Abstract: The primary objective of this article is to introduced generalized directional derivative(η-directional derivative) of a
function in the direction of a certain function in Linear spaces, Hilbert spaces and Banach spaces. This will be the gener-

alization of Frechet derivative, Gauteaux derivative and Hadamard derivative under certain conditions. Some properties

of η-directional derivative with there examples have been studied.
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1. Introduction

In past, Frechet derivative [1], Gauteaux derivative [1] and Hadamard derivative [3] has been introduced and proved some

fascinating results on Differential calculus, Optimization engineering, Banach spaces and Linear spaces. In this review we

contrast on to define the generalized the definition of derivative of a function in Linear spaces, Hilbert spaces and Banach

spaces. This is the generalization of Frechet derivative [1], Gauteaux derivative [1] and Hadamard derivative [3]. Some

known definitions and results are recalled for our need in section 2; η-directional derivative and its properties defined newly

along with there examples in section 3; higher order η-directional derivative and a Theorem have been studied in section 4;

the article end with a conclusion in section 5.

2. Preliminaries

To make the article self contained some known definitions and results are recited for our requirement.

Definition 2.1 ([1]). Suppose f : K ⊆ Rn → Rm where K be an open set. The function f is classically differentiable at

x0 ∈ K if,

(a). The partial derivative of f , ∂fi
∂xj

for i = 1, 2, ...m and j = 1, 2, ...n exist at x0,

(b). The Jacobian matrix J(x0) = ∂fi
∂xj

(x0) ∈ Rm×n satisfies the following

lim
x→x0

‖f(x)− f(x0)− J(x0)(x− x0)‖
‖x− x0‖

.
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We say that the Jacobian matrix J(x0) is the derivative of f at x0, that is called total derivative.

Definition 2.2 ([1]). Let X, Y are Banach spaces, the directional derivative of f : X → Y at x, K ⊂ X in the direction

h ∈ X, denoted by the symbol f ′(x;h), is defined by the equation

f ′(x;h) = lim
t→0

f(x+ th)− f(x)

t

whenever the limit on the right exists.

Definition 2.3 ([1]). Let f be a function on an open subset K of a Banach space X into the Banach space Y . We say f

is Gauteaux differentiable at x ∈ K. If there is bounded and linear operator Tx : X → Y such that

Tx(h) = lim
t→0

f(x+ th)− f(x)

t

for every h ∈ X. The operator Tx is called the Gauteaux derivative of f at x.

Definition 2.4 ([1]). Let f be a function on an open subset K of a Banach space X into the Banach space Y. we say f is

Frechet differentiable at x ∈ K. If there is bounded and linear operator T : X → Y such that

Tx(h) = lim
t→0

f(x+ th)− f(x)

t

is uniform for every h ∈ SX . Where SX = {x ∈ X : ‖x‖ = 1}. The operator Tx is called the Frechet derivative of f at x.

Definition 2.5 ([1]). Let f be a real-valued function on an open subset K of a Banach space X. we say that f is uniformly

Gauteaux differentiable on K if for every h ∈ SX

lim
t→0

f(x+ th)− f(x)

t
= Tx(h)

is uniform x ∈ K. Where SX = {x ∈ X : ‖x‖ = 1}.

Definition 2.6 ([1]). Let f be a real-valued function on an open subset K of a Banach space X. We say that f is uniformly

Frechet differentiable on K if

lim
t→0

f(x+ th)− f(x)

t
= Tx(h)

is uniform for every h ∈ SX and x ∈ K. Where SX = {x ∈ X : ‖x‖ = 1}.

Definition 2.7 ([3]). The set K is said to be η-invex set if there exist a vector function η : K ×K → X such that for all

u, v ∈ K and t ∈ (0, 1), we have x+ tη(u, v) ∈ K.

Definition 2.8. The definition of ”normalized vector function” is familiar from analysis. To say that a vector function

η : K ×K → X, ∀u, v ∈ K is normalized vector function if ‖η(u, v)‖ = 1 for K ⊂ X.

3. Generalized Directional Derivative

Let us define the generalized directional derivative of a function f at x in the direction of the normalized vector function

η(u, v) (i.e., η-directional derivative) with some examples and its properties as follows.
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Definition 3.1. Let f : K → Y be a function on an open η-invex subset K of a Banach space X into the Banach space Y and

a normalized vector function η defined over the neighborhood of x with radius ε > 0 such that η : Nε ×Nε → X, ∀u, v ∈ Nε.

We say f has η-directional derivative of f at x ∈ K in the direction of a normalized vector function η. If there is bounded

and continuous linear operator D : X → Y such that

Dηf(x) = lim
t→0

f(x+ tη(u, v))− f(x)

t

for every u, v ∈ K. The operator ”Dη” is called the η-directional derivative of f at x ∈ K in the direction of a vector

function η. Whenever K is η-invex compact set and the limit is uniform for η in this case, we write Dηf(x) = f ′η(x).

For the existence of the definition, as sequences xn and tn convergence to x and t for n→∞ and now by the continuity of f

and Mean value theorem, their exist x∗n between xn and xn + tnη(u, v). For the existence, we have to show θ → 0, whenever

t→ 0,

θ =
f(xn + tnη(u, v))− f(xn)

tn
− f ′η(x∗)

with the following limit exist lim
n→∞

sup
‖θ‖Y

‖θ‖ = 0, implies that

lim
n→∞

sup
‖θ‖Y

∥∥∥∥f(xn + tnη(u, v))− f(xn)

tn
− f ′η(x∗)

∥∥∥∥ = 0,

⇒ Dηf(x)− f ′η(x∗) = 0.

Remark 3.2.

(a). When η(u, 0) = η(u) for v = 0 or η(0, v) = η(v) for u = 0. When η(u) = u and η(v) = v, in this case η-directional

derivative of f at x in the direction of normalized vector function η coincided with Gauteaux derivative and Frechet

derivative respectively.

(b). When η(u, 0) = u for v = 0 or η(0, v) = v for u = 0. Let f be a real-valued function on an open set K of Banach

spaces X and f is uniformly η-directional derivative at x in the direction of normalized vector function η if the limit is

uniformly on η and x ∈ K.

(c). When η(u, v) → u for v → 0 or η(u, v) → v for u → 0. Let f be a continuous and bounded a real-valued function on

an open set K subset of Banach spaces X. In this case η-directional derivative of f at x in the direction of normalized

vector function η coincides with Hadamard derivative.

(d). D−ηf(x) = −Dηf(x), immediately follows from the definition, when η(u, v) is skew symmetric i.e., η(u, v) = −η(v, u).

Again when η is symmetric i.e., η(u, v) = η(v, u), we have Dηf(x) = D−ηf(x).

(e). In one dimension, there are two η-directional derivative of a function for every point: one directed ”forward”, i.e.,

η(u, v) = u− v and other directed ”backward”, i.e., η(u, v) = −(u− v) = v − u.

(f). In two or more dimension, there are infinitely many η-directional derivative of a function for every point. But according

to our requirement we can fix a certain direction by defining the vector function η.

(g). The η-directional derivative is a one directional calculation of derivative in the specified direction defined by the nor-

malized vector function η. If the vector function η is one dimensional along a specific direction u, then η-directional

derivative coincides with Gauteaux differential.
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3.1. Examples on η-Directional Derivative

Example 3.3 (Inner product space). Let y and x are two vectors, K be a η-invex subset of inner product space and define

a linear function f(x) = xT y. Now the η-directional derivative of f at x in the direction of a normalized vector function η:

Dηf(x) = lim
t→0

[
(x+ tη(u, v))T y − xT y

t

]
= lim

t→0

[
xT y + tηT (u, v)y − xT y

t

]
= ηT (u, v)y.

Again, Let x be a vector, K be a η-invex subset of inner product space and define a quadratic function f(x) = xTx. Now the

η-directional derivative of f at x in the direction of a normalized vector function η:

Dηf(x) = lim
t→0

[
(x+ tη(u, v))Tx− xTx

t

]
= lim

t→0

[
xTx+ tηT (u, v)x− xTx

t

]
= ηT (u, v)x.

Now, let A be a symmetric metrics, and define a quadratic function f = 2xT y + xTAx. The η-directional derivative of f at

x in the direction of a normalized vector function η:

Dηf(x) = lim
t→0

[
2(x+ tη)T y − 2xT y

t

]
+ lim
t→0

[
(x+ tη)TA(x+ tη)− xTAx

t

]
= lim

t→0

[
2xT y + 2tηT y − 2xT y

t

]
+ lim
t→0

[
(xT + tηT )A(x+ tη)− xTAx

t

]
= lim

t→0

[
2tηT y

t

]
+ lim
t→0

[
xTA(x+ tη)− xTAx

t

]
+ lim
t→0

[
tηTA(x+ tη)

t

]
= ηT (u, v)(2y +Ax) + xTAη(u, v).

Example 3.4 (Infinite-dimensional linear space). In the case of an infinite-dimensional linear space V whose elements are

real-valued functions and define eu : V → V simply u(x) maps point wise to its exponential function eu(x). Let x be a vector,

K be a η-invex subset of infinite-dimensional linear space. Now the η-directional derivative of ex at x in the direction of a

normalized vector function η:

Dη(ex) = lim
t→0

[
e(x+tη(u,v)) − ex

t

]
= lim
t→0

[
exetη(u,v) − ex

t

]
= ex lim

t→0

[
etη(u,v) − 1

t

]
= η(u, v)ex, using series of etη(u,v).

Example 3.5 (The absolute value function in R). Let f(x) = |x| absolute value mapping, K be a η-invex subset of R. Now

the η-directional derivative of f at x in the direction of a normalized vector function η:

(a). When x = 0, Dη(f) = lim
t→0

(
|x+tη(u,v)|−|x|

t

)
= |η(u, v)| ;

(b). When x < 0, Dη(f) = lim
t→0

(
|x+tη(u,v)|−|x|

t

)
= −η(u, v),

(c). When x > 0, Dη(f) = lim
t→0

(
|x+tη(u,v)|−|x|

t

)
= η(u, v).
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Remark 3.6. When mapping η(u, v) is symmetric i.e., η(u, v) = η(v, u), the η-directional derivative of |x| at x in the

direction of a normalized vector function η exits and depending on the values of normalized vector function η(u, v) for all

values of x ∈ R.

Example 3.7 (η-directional derivative in R3). Let f(X) = X2 = x21 +x22 +x23 be a mapping in R3, K be a η-invex subset of

R3. Now the η-directional derivative of f at x in the direction of a normalized vector function η(u, v) = (a cos θ, a sin θ, cθ)

such that a2 + c2 · θ2 = 1 and u, v ∈ Nε, neighborhood of x with radius ε > 0.

Dη(f(X)) = lim
t→0

[
(X + tη(u, v))2 −X2

t

]
= lim
t→0

[
(x1 + tη)2 + (x2 + tη)2 + (x3 + tη)2 − (x21 + x22 + x23)2

t

]
= lim

t→0

[
(x1 + ta cos θ)2 − x21

t

]
+ lim
t→0

[
(x2 + ta sin θ)2 − x22

t

]
+ lim
t→0

[
(x3 + tcθ)2 − x23

t

]
= lim

t→0

[
2x1ta cos θ + (ta cos θ)2

t

]
+ lim
t→0

[
2x2ta sin θ + (ta sin θ)2

t

]
+ lim
t→0

[
2x3tcθ + (tcθ)2

t

]
= 2 · x1 · a cos θ + 2 · x2 · a sin θ + 2 · x3 · cθ

= 2X · η(u, v).

3.2. Properties for η-Directional Derivative

a. Let f(x) = C, a constant map. Now the η-directional derivative of f at x in the direction of a normalized vector function

η is always vanishes. The proof follows immediately from the definition.

b. η-directional derivative distributes over sums: Dη(f ± g) = Dη(f)±Dη(g).

The proof follows immediately from the definition.

c. Product rule: Dη(fg) = fDη(g) + gDη(f) for element wise product.

Dη(〈f, g〉) = 〈f,Dη(g)〉+ 〈Dη(f), g〉 for inner product.

We have to begin with the definition of η-directional derivative:

Dη(f · g)(x) = Dη(f(x) · g(x)) = lim
t→0

[
g(x+ tη)f(x+ tη)− f(x) · g(x)

t

]
g(x) · f(x+ tη(u, v)) add and subtract in numerator

= lim
t→0

[
g(x+ tη)f(x+ tη)− g(x) · f(x+ tη(u, v)) + g(x) · f(x+ tη(u, v))− f(x) · g(x)

t

]
= lim

t→0
f(x+ tη) ·

[
g(x+ tη)− g(x)

t

]
+ lim
t→0

g(x) ·
[
f(x+ tη)− f(x)

t

]
= f ·Dηg(x) + g ·Dηf(x).

d. Quotient rule: Dη
(
f
g

)
= Dη(f · g−1) = g−2{g ·Dη(f)− f ·Dη(g)}, g(x) 6= 0.

We have to begin with the definition of η-directional derivative:

Dη

(
f

g

)
= Dη

(
f(x)

g(x)

)
= lim
t→0

[ f(x+tη(u,v))
g(x+tη(u,v))

− f(x)
g(x)

t

]
= lim
t→0

[
g(x)f(x+ tη)− f(x) · g(x+ tη)

t · g(x+ tη) · g(x)

]
g(x) · f(x) add and subtract in numerator

= lim
t→0

[
g(x)f(x+ tη(u, v))− g(x) · f(x)

t · g(x+ tη(u, v)) · g(x)

]
− lim
t→0

[
f(x) · g(x+ tη(u, v))− g(x) · f(x)

t · g(x+ tη(u, v)) · g(x)

]
= lim

t→0

[
g(x){f(x+ tη(u, v))− f(x)}
t · g(x+ tη(u, v)) · g(x)

]
− lim
t→0

[
f(x){g(x+ tη(u, v))− g(x)}
t · g(x+ t · η(u, v)) · g(x)

]
=

1

g2(x)
[g(x) ·Dη(f(x))− f(x) ·Dη(g(x))] .
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e. η-directional derivative for composition of functions: Now, assume g : Y → V has η-directional derivative at f(x) ∈ Y ,

and that f : X → Y has η-directional derivative at x ∈ X. Now calculate the η-directional derivative their composition

(gof)(x) = g(f(x)). We have to begin with the definition of η-directional derivative:

Dη(gof)(x) = lim
t→0

[
(gof)(x+ tη)− (gof)(x)

t

]
multiply and divide by f(x+ tη(u, v))− f(x)

= lim
t→0

[
g(f(x+ tη))− g(f(x))

f(x+ tη)− f(x)
· f(x+ tη)− f(x)

t

]
= lim

t→0

[
g(f(x+ tη))− g(f(x))

f(x+ tη)− f(x)

]
· lim
t→0

[
f(x+ tη)− f(x)

t

]
= Df(x)(g(f(x))) ·Dηf(x).

The following example illustrate the composition rule.

Example 3.8. In the case of an infinite-dimensional linear space V whose elements are real-valued functions and define

ew : V → V simply w(x) maps point wise to its exponential function ew(x). Let x be a vector, K be a η-invex subset of

infinite-dimensional linear space. Now the η-directional derivative of ex
2

at x in the direction of a normalized vector function

η, set w(x) = x2

Dη(ew(x)) = lim
t→0

[
ew(x+tη(u,v)) − ew(x)

t

]
multiply and divide by w(x+ tη(u, v))− w(x)

= lim
t→0

[
ew(x+tη(u,v)) − ew(x)

w(x+ tη(u, v))− w(x)
· w(x+ tη(u, v))− w(x)

t

]
= lim

t→0

[
ew(x+tη(u,v)) − ew(x)

w(x+ tη(u, v))− w(x)

]
· lim
t→0

[
w(x+ tη(u, v))− w(x)

t

]
= Dw(x)(e

w(x)) ·Dηw(x), ∵ Dw(x)(e
w(x)) = ex

2

, Dηw(x) = 2x · η(u, v)

= ex
2

· 2x · η(u, v) = 2x · ex
2

· η(u, v).

Example 3.9. In the case of an infinite-dimensional linear space V whose elements are real-valued functions and define

ez(w) : V → V simply z = w(x) maps point wise to its exponential function ez(w(x)). Let x be a vector, K be a η-invex subset

of infinite-dimensional linear space. Now the η-directional derivative of esin x
2

at x in the direction of a normalized vector

function η, set z(w) = sinw and w(x) = x2,

Dη(ez(w(x))) = lim
t→0

[
ez(w(x+tη(u,v))) − ez(w(x))

t

]
multiply and divide by z(w(x+ tη(u, v)))− z(w(x)) and w(x+ tη(u, v))− w(x)

= lim
t→0

[
ez(w(x+tη(u,v))) − ez(w(x))

z(w(x+ tη(u, v)))− z(w(x))
· z(w(x+ tη(u, v)))− z(w(x))

w(x+ tη(u, v))− w(x)
.
w(x+ tη(u, v))− w(x)

t

]
= lim

t→0

[
ez(w(x+tη(u,v))) − ez(w(x))

z(w(x+ tη(u, v)))− z(w(x))

]
· lim
t→0

[
z(w(x+ tη(u, v)))− z(w(x))

w(x+ tη(u, v))− w(x)

]
· lim

t→0

[
w(x+ tη(u, v))− w(x)

t

]
= esinw · cosw · 2x · η(u, v), ∵ Dηw(x) = 2x · η(u, v)

= 2x · cos(x2) · esin(x
2) · η(u, v).
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4. Higher Order Generalized Directional Derivative

Let X and Y be Banach spaces and K is η-invex subset of X and a normalized vector function η : Nε×Nε → X, ∀u, v ∈ Nε.

The η-directional derivative of higher order can be state as follows:

Second order η-directional derivative:

D2
η(f(x)) = Dη(Dη(f(x))) = lim

t→0

[
Dηf(x+ tη(u, v))−Dηf(x)

t

]
= lim

t→0

[
f(x+ 2tη)− 2f(x+ tη) + f(x)

t2

]
.

Third order η-directional derivative:

D3
η(f(x)) = Dη(D2

η(f(x))) = lim
t→0

[
D2
ηf(x+ tη(u, v))−D2

ηf(x)

t

]
= lim

t→0

[
f(x+ 3tη)− 3f(x+ 2tη) + 3f(x+ tη)− f(x)

t3

]
.

Fourth order η-directional derivative:

D4
η(f(x)) = Dη(D3

η(f(x))) = lim
t→0

[
D3
ηf(x+ tη(u, v))−D3

ηf(x)

t

]
= lim

t→0

[
f(x+ 4tη)− 4f(x+ 3tη) + 6f(x+ 2tη)− 4f(x+ tη) + f(x)

t4

]
.

and so on. Now from the above higher order η-directional derivative we can see a pattern of the coefficient of the numerator

of the definitions in triangular form called Palsu’s Triangle such as follows:

n = 1 : 1 − 1

n = 2 : 1 − 2 1

n = 3 : 1 − 3 3 − 1

n = 4 : 1 − 4 6 − 4 1

n = 5 : 1 − 5 10 − 10 5 − 1

n = 6 : 1 − 6 15 − 20 15 − 6 1

...
...

...

by continuing as such we can calculate the nth order η-directional derivative of a function f(x) in the direction of a normalized

vector function η. The similar pattern can be generate by adding the previous coefficients ignoring negative sign and then

using alternative sign. Sum of coefficient of any order η-directional derivative is zero.

Theorem 4.1. Let X and Y be Banach spaces and K is η-invex subset of X and a normalized vector function η : Nε×Nε →

X, ∀u, v ∈ Nε. If the η-directional derivative of f : K → Y is exist and bounded, i.e., |Dηf(x)| ≤ C iff f is Lipschitz near

x ∈ Nε.

Proof. Let us suppose that, the η-directional derivative of f(x) is exist and bounded. Now by the definition, let f(x) be

a function on an open η-invex subset K of a Banach space X into the Banach space Y and a normalized vector function
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η : Nε × Nε → X, ∀u, v ∈ Nε. We say f(x) has η-directional derivative of f(x) at x ∈ Nε in the direction of a normalized

vector function η. If there is bounded and continuous linear operator D : X → Y such that

Dηf(x) = lim
t→0

f(x+ tη(u, v))− f(x)

t

for every u, v ∈ Nε. Now the η-directional derivative of f(x) is bounded, i.e., |Dηf(x)| ≤ C.

⇒
∣∣∣∣limt→0

f(x+ tη(u, v))− f(x)

t

∣∣∣∣
Y

≤ C

⇒ lim
t→0

∥∥∥∥f(x+ tη(u, v))− f(x)

x+ tη(u, v)− x

∥∥∥∥
Y

≤ C

⇒ ‖f(x+ tη)− f(x)‖Y ≤ C ‖x+ tη − x‖X

set z = x+ tη ∈ K,

⇒ ‖f(z)− f(x)‖Y ≤ C ‖z − x‖X .

This implies f is Lipschitz near x ∈ Nε and C is the Lipschitz constant. The converse of the theorem immediately follows

from the above analysis. This proves the Theorem.

Problem 4.1. Generalized Minimal η-Differential Inequality Problems

(GM-η-DIP): Let X, Y be Banach spaces, K is η-invex subset of X and a normalized vector function η : Nε×Nε → X, ∀u, v ∈

Nε. If the η-direectional derivative of f : K → Y is exist. Finding x0 ∈ K such that Dηf(x0) ≥ 0 for x0 ∈ K ∀u, v ∈ Nε.

5. Conclusion

The η-directional derivative is the generalization all differentiation. According to the nature of its scope it will give a new

edge in the field of nonlinear functional analysis and engineering applications.
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