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Abstract: In this paper Michaelis-Menten type enzyme reactions are studied. With an output of this kind one could consider the
following set of equations dx

dτ
= a− bx−xpyq , dy

dτ
= xpyq − cy

y+1
. Taking some particular values of the parameters a, b, p,

q a detailed analysis of the system is taken up. The system is analysed by studying the associated differential equations,

phase plane analysis and bifurcation analysis.
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1. Introduction: Michaelis-Menten Enzyme Reaction

Enzymes are biological catalysts that alter the rates of reactions in cells without being, shanged themselves during the

course of a reaction. A biochemical reaction almost invariably has an eutput which is not necessarily linear. Such nonlinear

phenomena involving enzymes have been explained by several people, amongst them Michaelis and Menten are worth

mentioning. Following the law of mass action [17], there are many mathematical models with a Michaelis-Menten type

output. Michaelis and Menten in [1, 2] studied a simple enzyme reaction. If an enzyme En combines with another reactant

Su and gives rise to an intermediate substance In and this intermediate splits into two substances one of which is the original

enzyme En again and some other substance Q. The reaction can be written as

En + Su � In → En +Q

Michaelis Menten Equation is

V =
Vmax [S]

Km + [S]
(1)

where V is the velocity of the reaction, Vmax is the maximum velocity of the reaction, [S] is the concentration of the substrate

S, Km is the Michaelis constant.

Michaelis Menten Plot:

Some enzyme reactions like Michaelis-Menten reaction are studied by L.S. Dai in [3–5]. In [6–8] D. Erle and others and C.

Escher study some enzyme catalyzed reactions where they show the existence of oscillations, limit cycles and the conditions
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Figure 1. Plot of equation (1) taking Vmax = 3 and Km = 2

required for the associated biochemical reactions. The mathematical model corresponding to this simple reaction can be

derived, considering a general enzyme reaction, as follows [16]:

D0 → D1, D1 → 0

pD1 + qD2 → (p+ q)D2

D2 + E � ED2 � E + P

The differential equation corresponding to this enzyme reaction, can be written as

d

dt
[D1] = [D0]− k1 [D1]− k2[D1]p[D2]q

d

dt
[D2] = k2[D1]p[D2]q − V [D2]

k + [D2]

(2)

where V represents the velocity of the enzyme reaction, k is some constant. After adjusting the constants the equations

become

dx

dτ
= a− bx− xpyq

dy

dτ
= xpyq − cy

y + 1

(3)

where a = [D0] k−1
2 k−(p+q), b = k1k

−1
2 k−(p+q) and c = V k−1

2 k−(p+q). The second term in the equation (3) namely cy
y+1

,

when considered from a prey-predator point of view, represents the type II functional response of Holling.

2. A Generalised Enzyme Equation with a Michaelis-Menten Func-
tional Response Term

C.S.Holling studied the factors involved in the utilization of resources by predators. He described the changes in the feeding

rate of organisms as “the functional response term”. He showed that there were three categories of functional response [9].

Type 1. Refers to animals which consume food proportional to the rate of their encounter with food items.

Type 2. Where the organisms take some time to eat and to capture their prey.

Type 3. In this category the organism will not consume the prey if it is below a certain threshold density.

There is a remarkable parallel between enzyme reactions and the predator-prey Holling functional response. The Michaelis-

Menten enzyme reaction follows a type 2 functional response. Keeping this type of functional response in mind the following
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model is proposed and analysed.

dx

dt
= a− bx− xpyq

dy

dt
= xpyq − cxy

y + 1

(4)

For the purpose of understanding and analysis, b = 0, p = 2, q = 1 are taken. Equations (4) reduce to

dx

dt
= a− x2y

dy

dt
= x2y − cxy

y + 1

(5)

The equilibrium points of equations (5) are

(
1

2

[
c−

√
c2 − 4a

]
,
−2a+ c2 + c

√
c2 − 4a

2a

)

and (
1

2

[
c+

√
c2 − 4a

]
,
−2a+ c2 − c

√
c2 − 4a

2a

)
Linearising the system (5) about its equilibrium point, the Jacobean matrix is

M =

 −2x0y0 −x20

2x0y0 − cy0
1+y0

x20 + cx0y0
(1+y0)

2 − cx0
1+y0


where the elements in the linearised matrix are to be treated as the functions of the parameter c. The characteristic equation

of this matrix has the form λ2 − Sλ+D = 0 where

S (c) = the trace of M = −2x0y0 + x20 +
cx0y0

(1 + y0)2
− cx0

1 + y0

and

D = determinant of M = − 2cx20y
2
0

(1 + y0)2
+
cx20y0
1 + y0

The two eigenvalues of this matrix λ1 and λ2 are function of c

λ1, λ2 =
1

2

[
S (c) +

√
S2 (c)− 4D (c)

]

A Hopf bifurcation occurs when the real part of the eigenvalues is equal to zero and the imaginary part is nonzero. Solving

for the parameter c after setting the trace to zero

(1). −2x0y0 + x20 + cx0y0
(1+y0)

2 − cx0
1+y0

= 0 ⇒ c = (x0 − 2y0) (1 + y0)2

(2). d
dc

(Trace) = x0y0
(1+y0)

2 − cx0
1+y0

6= 0.

(1) is the non-hyperbolicity condition and (2) is the transversality condition. Thus showing the existence of a Hopf bifurcation

for the parameter c. A simulation of the limit cycle is shown in Figure 2.
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Figure 2. A limit cycle of equations (5) for the values of the parameter a = 1.8; c = 1; p = 2; q = 1.

3. Qualitative Analysis of Trimolecular Reaction

From the chemical reactions the dynamical equations corresponding to Belousov’s reaction [9, 10] can be represented as

d [B]

dt
= [A]−K1 [B]−K2 [B]p [C]q

d [C]

dt
= K2 [B]p [C]q −K3 [C]

where the square brackets denote the concentration of the substance. K1, K2, K3 are the reaction rates, p and q represent

the number of molecules of the chemical B and C. After readjusting the constants and relabeling the concentrations, this

equation can be written as

dx

dt
= 1− ax− xpyq

dy

dt
= b (xpyq − y)

(6)

where x, y ≥ 0, integers p, q ≥ 0 and parameters a ≥ 0, b ≥ 0. A particular case of trimolecular equations i.e. p + q = 3 is

discussed. Let p = 1, q = 2. The following result given in [8] is used.

Theorem 3.1 ([8]). Suppose that p, q ∈ N , q > 1,

a > 0, b >
aq

q − 1

a < a0 =

(
pp (q − 1)q−1

(p+ q − 1)p+q−1

) 1
p

and

σ =

(
p

a (p− 1) + b (q − 1)

)p(
b (q − 1)− a

a (p− 1) + b (q − 1)

)q−1

= 1

(i). If b 6= a(p+2q−1)
q−1

then at most one limit cycle arises from a Hopf bifurcation. The cycle is stable when b > a(p+2q−1)
q−1

and unstable when

aq

q − 1
< b <

a (p+ 2q − 1)

q − 1

(ii). If b = a(p+2q−1)
q−1

then at most two limits cycles arises from Hopf bifurcation.

To satisfy the conditions of this theorem, the values of the parameters are taken as p = 1, q = 2, b > 2a

a > a0 =

(
11.11

22

)
=

1

4
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Let us take = 1
5

= 0.2, b > 2
5

= 0.4

σ =

(
1

b

) (
b− a
b

)
= 1

Therefore b2 − b + a = 0 ⇒ b = 0.7236 or 0.2764. Take b = 0.7236 (b > 2a). Thus p = 1, q = 2, a = 0.2, b = 0.7236. The

plot corresponding to these values is shown in Figure 3.

Figure 3. Unstable limit cycle in system (6) with a = 0.2, b = 0.7236.

The system is

dx

dt
= ẋ = 1− 0.2x− xy2,

dy

dt
= ẏ = 0.7236

(
xy2 − y

)
.

For Case (ii) of the theorem, if a = 0.16 then

b =
a (p+ 2q − 1)

q − 1
=

(0.16) (1 + 4− 1)

1
= 0.64

Therefore take p = 1, q = 2, a = 0.16, b = 0.64. The system (6) is

dx

dt
= ẋ = 1− 0.16x− xy2

dy

dt
= ẏ = 0.64

(
xy2 − y

) (7)

A limit cycle arises which can be seen in Figure (4).

Figure 4. Phase plane of system (6) with parameter values p = 1, q = 2, a = 0.16, b = 0.64.

The system is ẋ = 1− 0.16x− xy2, ẏ = 0.649
(
xy2 − y

)
. Further, let b = 0.8,

σ =

(
1

b

)(
b− a
b

)
= 1
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∴ b2 − b + a = 0

a = b− b2 = 0.8− 0.64 = 0.16

Therefore take p = 1, q = 2, a = 0.16, b = 0.8. The system (6) is

ẋ = 1− 0.16x− xy2

ẏ = 0.8
(
xy2 − y

)
A stable limit cycle arises since

(
b > a(p+2q−1)

q−1

)
which can be seen in Figure 5.

Figure 5. Stable limit cycle in system (6) with parameter values p = 1, q = 2, a = 0.16, b = 0.8.

The system is ẋ = 1− 0.16x− x2y, ẏ = 0.8
(
xy2 − y

)
.

4. Conclusions

• Starting with a simple enzyme reaction a dynamical system is derived.

• The similarity between Michaelis-Menten enzyme reaction and the Holling Type 2 predation term is shown.

• A dynamical analysis of the generalized enzyme reaction is performed.

• The criteria for the existence of limit cycles and Hopf Bifurcation is studied.

• Using different values of the parameters the phase portraits are plotted.
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