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Abstract: In the course of time several methods and algorithms has been developed to solve transportation problems for more
specific variations of its formulation. These approaches do not always find the true optimal solution. Instead, they will

often consistently find good solutions to the problems. These good solutions are typically considered to be good enough

simply because they are the best that can be found in a reasonable amount of time. Therefore, optimization often takes
the role of finding the best solution possible in a reasonable amount of time. The proposed sequential approach is studied

using modified Egerváry Theorem with numerical examples and comparative study on its algorithmic complexity. This

methods gives a true optimal solution to the transportation problem with reasonable short time.
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1. Introduction

The transportation theory is a branch of optimization in operation research to deal the study of optimal transportation

and allocation of resources in a transportation network. In 1941, Hitchcock originally developed the basic transportation

problem. In 1947, Koopmans independently study on the optimum utilization of transportation system. Subsequently

the linear programming formulation and the associated systematic procedure for solution were given by Dantzig in 1951.

Application of graph theory is one of the classical approach to obtain a perfect matching from a connected graph. Mohanta

and Das [8], studied the optimal solution of assignment problem in the environment of graph theory by modifying the

Egerváry Theorem. The same logical approach is being extended to the transportation network. This paper is being

developed on the basis of the key idea studied by Mohanta [7] to obtained an optimal solution of transportation problem.

In this paper we study the transportation theory on the basis of algorithmic graph theory though a logical sequence for the

allocation of resources.

In section 2, we recall some basic information on favorable matching and perfect matching. Section 3 deals with sequential

algorithmic approach in the environment connected bipartite graph. In section 4, we discuss proposed method with examples.

In section 5, we study the algorithmic complexity of the proposed method. Section 6 deals with the result analysis and

comparison.

∗ E-mail: smohanta129@gmail.com
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2. Preliminaries

The main objective of transportation problem is to transport a single homogeneous commodity that are initially stored

in different sources to different destination as per their requirements in such a way that the transportation cost will be

minimum. Application of graph theory can be modelled into a transportation network from a connected bipartite graph.

From Jackson [2], we recited some of these results. Let G be a graph with a set of vertices V (G) and a set of edges E(G).

Definition 2.1 ([2]). Let G be a graph and M ⊆ E(G). Then M is matching in G if no two edges of M have a common end-

vertex. we say that M is a maximum matching if it has maximum cardinality over all matching in G. A vertex v ∈ V (G) is

M-saturated if v is incident with an edge of M. we say that M is a perfect matching in G if every vertex of G is M-saturated.

Thus, if M is a perfect matching, then |M | = 1
2
|V (G)| and M is necessarily a maximum matching.

Definition 2.2 ([2]). Let G be a graph and U ⊆ V (G). we say that U is a cover of G if every edges of G is incident with a

vertex in U.

Definition 2.3 ([2]). The complete bipartite graph Km; m is the bipartite graph with bi-partition {X; Y } where |X| =

m, |Y | = n and each vertex of X is adjacent to every vertex of Y.

Definition 2.4 ([2]). Let N be a network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m,

V (N) = X ∪ Y and M be a perfect matching for N. Define f : V (N)→ Z such that f(v) equal to minimum weight(w > 0)

of an edge incident on v and w(xy) ≥ f(x) for each x ∈ X where xy is the edge in M. We define the depth of X by fX such

that fX =
∑
v∈X

f(v).

Definition 2.5 ([2]). If fX ≥ fY ; then the set of vertices X is said to be favorable in N where fX is the depth of X.

Lemma 2.6 ([2]). Let X be a favorable vertex matching and M be a perfect matching for N . Then w(M) ≥ fX .

Definition 2.7 ([2]). A favorable vertex matching X of N is said to be optimal; if the equality sub-graph GX for f in N is

the spanning sub-graph of N containing all edges for which fx = w(x) for each x ∈ X where M be a perfect matching in N .

Lemma 2.8 ([2]). Let X be a optimal favorable vertex matching and M be a perfect matching for N in the equality sub-graph

G(f). Then w(M) = fX and X is a maximum size favorable vertex matching of N.

Theorem 2.9 ([2]). Let N be a weighted complete bipartite graph. Then the maximum weight of a perfect matching in N

is equal to the minimum size of a feasible vertex labeling of N.

Mohanta and Das [8], mainly focus to generate a set of edges (favorable matching) that will minimize the total weight of the

network through a logical approach to obtain an optimal solution by modifying the classical Egerváry Theorem and extend

it to the study of algorithm complexity of the proposed logical method. We revisited some of their results that will meet our

requirement. Let N be a network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m, V (N) = X∪Y

and M be a perfect matching for N. In the network N each vertex x ∈ X is adjacent to all vertex y ∈ Y. For instance,

let a vertex x1 ∈ X has m edges such as x1y1, x1y2, . . . x1ym with each edge has an integer weight w11, w12, . . . w1m

respectively. Let the weight of vertex x1 is w1 = w (x1) =
m∑
1

w1j is the total weight of all the edges incident on the vertex

x1 and the weight represent a single homogeneous components like distance or cost or time.

Theorem 2.10 ([8]). Let N be a weighted complete bipartite graph, the maximum weight of a perfect matching is w(M).

Then using proposed method to obtained an optimal favorable matching in N is SX and w (SX) = w (M) .
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Lemma 2.11 ([8]). Let N be a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | =

m, V (N) = X∪Y and each edge have an integer value cij and xij represent transportation cost per unit and amount of goods

to be transport from xi to yj respectively. The capacity of vertices in X and Y represent by ai and bj respectively. Suppose

we use the proposed sequential approach to construct a favorable matching in N. Then the number of times the method grows

an alternating favorable matching is at most 1
2
|V (N)| , where |V (N)| is cardinality of vertex set in N.

3. Sequential Approach and Computation Procedure

Let N be a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m, V (N) = X∪Y

and each edge have an integer value cij and xij represent transportation cost or time or distance per unit and amount of

goods to be transport from xi to yj respectively. The capacity of vertices in X and Y represent by ai and bj respectively.

Let M be a perfect matching of N obtained by MODI method. Now we define some of the following results to meet our

requirements.

Definition 3.1. Let N be a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m,

V (N) = X ∪ Y and each edge have an integer value cij and xij represent transportation cost per unit and amount of goods

to be transport from xi to yj respectively. The capacity of vertices in X and Y represent by ai and bj respectively. Let M be

a perfect matching for N. Define f : V (N)→ Z such that

f(xi) =


min.(cij) · xij , ai ≤ bj ;
m∑
i=1

ηi · ξi , ai > bj .
(1)

where xij = min.(ai, bj), ηi = min./next min.(cij) such that η1 ≤ η2 . . . ≤ ηm and ξ1 = min.(ai, bj), ξ2 = min.(ai −

bj , bs) . . . such that 1 ≤ s ≤ m and j 6= s.

Now w(xi) ≥ f(xi) for each xi ∈ X where w(xi) = cij · xij is the weight of xi and xij ∈ M. We define the depth of X by

fX such that fX =
∑
x∈X

f(x). The tie between two minimum cost of a vertex can be settle as; if in ith vertex there is a tie

on minimum cost i.e., cij = ci(j+1) then preference should be given to that cost having more total opportunity cost of that

cost i.e., C(yj) > C(yj+1); where C(yj) =
m∑
i=1

cij is the total opportunity cost for the cost cij .

Example 3.2.

Figure 1. Network representation of K3; 3

Let N is a network obtained from K3; 3 “Figure: 1” with bi-partition X = {x1, x2, x3} and Y = {y1, y2, y3} and giving

each edge have an integer value cij and xij represent transportation cost per unit and amount of goods to be transport from

xi to yj respectively. The following matrix is a opportunity cost matrix,
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Sources
Destinations

y1 y2 y3
Supply fx

x1 6 4 1 50 95

x2 3 8 7 40 200

x3 4 4 2 60 170

Demand 20 95 35

fy 60 380 35

Table 1. Transportation table

Now the following

f(x1) =

3∑
i=1

ηi · ξi = c13 · x13 + c12 · x12 = (1× 35) + (4× 15) = 95;

f(x2) =

3∑
i=1

ηi · ξi = c21 · x21 + c23 · x23 = (3× 20) + (7× 20) = 200;

f(x3) =

3∑
i=1

ηi · ξi = c33 · x33 + c32 · x32 = (2× 35) + (4× 25) = 170;

∴ fX = 95 + 200 + 170 = 465.

f(y1) = min.(ci1) · xi1 = c21 · x21 = 3× 20 = 60;

f(y2) =

3∑
i=1

ηiξi = c12 · x12 + c32 · x32 = (4× 50) + (4× 45) = 380;

f(y3) = min.(ci3) · xi3 = c13 · x13 = 1× 35 = 35;

∴ fY = 60 + 380 + 35 = 475.

Let M = {x12, x13, x21, x22, x32} be a perfect matching by MODI method with maximum weight in N is

w(M) = c12 · x12 + c13 · x13 + c21 · x21 + c22 · x22 + c32 · x32,

= (4× 15) + (1× 35) + (3× 20) + (8× 20) + (4× 60) = 555.

clearly fY > fX , so the set of vertex Y is favorable for matching in N.

Definition 3.3. Let N be a transportation network obtained from a complete bipartite graph Km; m with bi-partition {X; Y }

such that |X| = m, |Y | = m, V (N) = X ∪ Y and M be a perfect matching for N. Define EX be the set of edges generates

by f over X is

EX = {ξi : ξi is an edge or edges associated with f(xi), 1 ≤ i ≤ m} (2)

such that

fX =
∑
v∈X

f(v) =
∑
ξ∈EX

w(ξ) = w(EX). (3)

and similarly EY be the set of edges generates by f over Y is

EY = {ξj : ξj is an edge or edges associated with f(yj), 1 ≤ j ≤ m} (4)

such that

fY =
∑
v∈Y

f(v) =
∑
ξ∈EY

w(ξ) = w(EY). (5)

Where

ξi =

 ξ1 = min.(ai, bj), ai ≤ bj;

ξ1 = min.(ai, bj), ξ2 = min.(ai − bj , bs) . . . s. t. 1 ≤ s ≤ m and j 6= s, ai > bj.
(6)

by setting for a vertex xi.
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Definition 3.4. Let N be a network obtained from a complete bipartite graph Km; m with bi-partition {X; Y } such that

|X| = m, |Y | = m, V (N) = X ∪ Y and f : V (N)→ Z such that

f(xi) =


min.(cij) · xij , ai ≤ bj ;
m∑
i=1

ηiξi , ai > bj .
(7)

where xij = min .(ai, bj), ηi = min./next min.(cij) such that η1 ≤ η2 . . . ≤ ηm and ξ1 = min.(ai, bj), ξ2 = min.(ai −

bj , bs) . . . such that 1 ≤ s ≤ m and j 6= s. The depth of X by fX such that fX =
∑
v∈X

f(v). The function f generates

a favorable matching EX be a set of edges obtained from a set of favorable vertices X and M be a perfect matching for N .

Then w(M) ≥ w(EX); where w(EX) = fX .

Definition 3.5. A favorable matching S of N is said to be optimal; if the equality sub-graph GS for f in N is the spanning

sub-graph of N containing all edges ε for which w(ε) = w(e) for each ε ∈ S where e ∈M be a perfect matching in N.

Lemma 3.6. Let S be an optimal favorable matching and M be a perfect matching for a transportation network N. Then

w(M) = w(S) and S is a maximum size favorable matching of N with |S| = 2m− 1.

Proof. Let N be a transportation network obtained from a complete bipartite graph Km; m with bi-partition {X; Y }

such that |X| = m, |Y | = m, V (N) = X ∪ Y and M be a perfect matching for N. Let S be the set of edges generates by f

over X is

S = {ξi : ξi is an edge or edges associated with f(xi), 1 ≤ i ≤ m} (8)

such that

fX =
∑
v∈X

f(v) =
∑
ξ∈S

w(ξ) = w(S). (9)

Where

ξi =

 ξ1 = min.(ai, bj), ai ≤ bj ;

ξ1 = min.(ai, bj), ξ2 = min.(ai − bj , bs) . . . s. t. 1 ≤ s ≤ m and j 6= s, ai > bj .
(10)

by setting for a vertex xi. Since S be an optimal favorable matching, so for each ξi ∈ S and e ∈ M we have w(ξi) = w(e).

Now the following ∑
ξi∈S

w(ξi) =
∑
e∈M

w(e), ⇒ w(S) = w(M).

Again each vertex of favorable vertex set X of the transportation network N will give(s) at least one edge to the optimal

favorable matching S satisfying the demand and supply of N. Since the problem is balance, so the favorable matching S will

have exactly m+m− 1 = 2m− 1 number of edges satisfying each demand and supply of the network.

Example 3.7. In Example 3.2; M = {x12, x13, x21, x22, x32} be the perfect matching for the transportation network N

with total weight w(M) = 555. Let us suppose that EY = {x12, x13, x21, x32} be the initial favorable matching for the N

obtained by set of favorable vertices Y. Now we can verify the definitions as follows:

f(y1) = c21 · x21 = 3× 20 = w(x21) = w(ξ1); ξ1 = x21,

f(y2) = c12 · x12 + c32 · x32 = (4× 50) + (4× 45) = w(x12) + w(x32) = w(ξ2) + w(ξ3); where ξ2 = x12, ξ3 = x32,

f(y3) = c13 · x13 = 1× 35 = w(x13) = w(ξ4); ξ4 = x13,

∴ fY = f(y1) + f(y2) + f(y3) + f(y4) = w(ξ1) + w(ξ2) + w(ξ3) + w(ξ4) = w(EY) = 475.
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We may also write, weight of a vertex w(yj) = f(yj); j = 1, 2, 3, 4 is the sum of weight of edges in EY incident on the

vertex such as follows

w(y1) = w(x21) = c21 · x21 = 3× 20,

w(y2) = w(x12) + w(x32) = c12 · x12 + c32 · x32 = (4× 50) + (4× 45),

w(y3) = w(x13) = c13 · x13 = 1× 35.

Where weight of an edge is w(xij) = cij ·xij for all edges in xij ∈ EY . Now we have w(M) = 555 and w(EY ) = 475 satisfying

w(M) > w(EY ). The inequality in Definition 3.4 holds good for each edges in favorable matching EY . The equality sub-graph

G(EY ) of initial favorable matching EY of the transportation network N is as follows:

Figure 2. Equality sub-graph G(EY )

Theorem 3.8 (Extension of Egerváry Theorem on Transportation Network). Let N be a transportation network obtained

from a weighted complete bipartite graph Km; m and M is a perfect matching obtained by MODI method with maximum weight

is w(M). Let EX be an optimal favorable matching in N is obtained by using the proposed method. Then w(EX) = w(M).

Proof. The Definitions 3.1; 3.3; 3.4; 3.5 and Lemma 3.6 together will established the statement.

3.1. Proposed method

Suppose N is a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m,

V (N) = X ∪ Y and each edge have an integer value cij and xij represent transportation cost per unit and amount of goods

to be transport from xi to yj respectively. The capacity of vertices in X and Y represent by ai and bj respectively. Let M

be a perfect matching for N. The algorithm iterative constructs a sequence of favorable matching EX1 ; EX2 , dots EXm for

N such that w(EXi+1) > w(EXi) and a sequence of matching EXi such that EXi is a favorable matching in the equality

sub-graph GEXi
(f) for all 1 ≤ i ≤ m. It stops when it finds a optimal favorable matching EXi .

Basis step:

� Compute δx for each x ∈ X, if X is a favorable vertex matching; else compute δy for each y ∈ Y, where

δi = δ(xi) = {max . cij − (min. cij + next min . cij) : for all j}, 1 ≤ i ≤ m,

δj = δ(yi) = {max . cij − (min. wij + next min . cij) : for all i}, 1 ≤ j ≤ m.

� Construct a new favorable matching, EX∗ = {ξi : ξi is or are associated with f(xi); 1 ≤ i ≤ m} starting from the

vertex having min. δx followed by next x ∈ X. Where ξi are edges as in Definition 3.3.
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� let us suppose that a tie on min. δx in the ith vertex; preference should be given to that one having min. cij , for all j;

but in case of tie on both min. δx and min. cij preference should be given to that min. cij having greater total cost

of vertex, i.e. C(yj) =
m∑
i=1

cij as compare to other.

Recursive step: Suppose that we have constructed a favorable matching EXi of N with total weight w(EXi) and maximum

matching M in G for some i ≥ 1.

� if w(M) 6= w(EXi), then construct a new favorable matching EXi+1 for N as follows:

in ith vertex; set δ = min. (cij), for all j. Now modify our δx for each x ∈ X such that

δx =


δx + δ, δx < 0;

δx − δ, δx > 0;

δx, δx = 0.

(11)

� Construct favorable matching, EXi+1 = {ξi : ξi is or are associated with f(xi); 1 ≤ i ≤ m} starting from the larger

δx to small for each x ∈ X.

� if w(M) = w(EXi+1) or i = m; then stop and out put EXi+1 and w(EXi+1); else iterate.

Remark 3.9. Some key points to be noted about the method:

a. The method must terminate since each iteration decreases the number of vertices, and depth of favorable matching is

bounded above by the weight of perfect matching of N.

b. When the algorithm terminates it outputs an optimal favorable matching EXi and a perfect matching Mi in the equality

sub-graph GEX (f) such that w(Mi) = w(EXi).

c. When a transportation network is unbalanced. We can modify the network by adding dummy vertices with each edge

having cost c(xy) = 0 and having capacity
∑
bj −

∑
ai or

∑
ai −

∑
bj whichever is deemed fit the problem. Now we

can apply the logical approach to find the optimal favorable matching.

d. Maximization problem can be solve by converting it in to minimization.

4. Examples

Numerical examples on transportation problem are studied to illustrate the process of calculation for the proposed sequential

approach.

Example 4.1. Let N be a transportation network obtained from the complete bipartite graph K3; 4 with partition source and

destination {S; D} such that |S| = 3, |D| = 4, V (N) = S ∪D and each edge have an integer value cij and xij represent

transportation cost per unit and amount of goods to be transport from xi to yj respectively. The capacity of vertices in source

S and destination D represent by ai and bj respectively. Let M = {x12, x13, x14, x23, x31, x34} be a perfect matching for

N obtained by MODI method with maximum weight w(M) = 149. The following transportation table represents cost per unit

of goods to be transport from source S to destination D.
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Sources
Destinations

D1 D2 D3 D4
Supply

S1 6 3 5 4 22

S2 5 9 2 7 15

S3 5 7 8 6 8

Demand 7 12 17 9

Table 2. Transportation table

This is a balance transportation problem with total supply equal to total demand i.e.,
∑
ai =

∑
bj = 45. Now let us calculate

depth of each source and destination to find the favorable set of vertex for favorable matching as follows

f(S1) =

4∑
i=1

ηi · ξi = c12 · x12 + c14 · x14 = (3× 12) + (4× 9) + (5× 1) = 77,

f(S2) =

4∑
i=1

ηi · ξi = c23 · x23 = (2× 15) = 30;

f(S3) =

4∑
i=1

ηi · ξi = c31 · x31 + c34 · x34 = (5× 7) + (6× 1) = 41;

∴ fS =
∑
Si∈S

f(Si) = 77 + 30 + 41 = 148.

f(D1) = min . (ci1) · xi1 = c31 · x31 = (5× 7) = 35;

f(D2) = min . (ci2) · xi2 = c12 · x12 = (3× 12) = 36;

f(D3) =

3∑
i=1

ηi · ξi = c23 · x23 + c13 · x13 = (2× 15) + (5× 2) = 40;

f(D4) = min . (ci4) · xi4 = c14 · x14 = (4× 9) = 36;

∴ fD =
∑

Di ∈ D

f(Di) = 35 + 36 + 40 + 36 = 147.

Since fS > fD; so ES = {x12, x13, x14, x23, x31, x34} be the initial favorable matching for N. Now let us calculate δs for

each s ∈ S and represent in the transportation table as follows:

Sources
Destinations

D1 D2 D3 D4
Supply δs

S1 6 3 5 4 22 -1

S2 5 9 2 7 15 2

S3 5 7 8 6 8 -3

Demand 7 12 17 9

Table 3. Transportation table

Since δs = −3, is the smallest value associated with S3; so our favorable matching will start from this source as follows

S3 :
∑

min. (c3j) · x3j = c31 · x31 + c34 · x34 = (5× 7) + (6× 1) = 41,

where x31 = min. (a3, b1) = 7; x34 = min. (a3 − b1, b4) = 1; here capacity of S3 and demand of D1 reduces to zero. So

they delete from table for next calculation. But demand of D4 reduces to b4 = 8,

S1 :
∑

min. (c1j) · x1j = c12 · x12 + c14 · x14 + c13 · x13 = (3× 12) + (4× 8) + (5× 2) = 78,

where x12 = min. (a1, b2) = 12; x14 = min. (a1 − b2, b4) = 8; x13 = min. (a1 − b2 − b4, b3) = 2, here capacity of S1 and

demand of D2, D4 reduces to zero. So they delete from table for next calculation. But demand of D3 reduces to b3 = 15,

S2 :
∑

min. (c2j) · x2j = c23 · x23 = (2× 15) = 30;
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where x23 = min. (a2, b3) = 15, here capacity of S2 and demand of D3 reduces to zero. After first iteration our favorable

matching is ES = {x31, x34, x12, x14, x13, x23} with depth fS = 149 = w(ES) = w(M) and |ES | = m+ n− 1 = 6. Where

M = {x12, x13, x14, x23, x31, x34} is a perfect matching of N obtained by MODI method. Hence ES is optimal favorable

matching for the transportation network N. Hence the algorithm will terminate.

Example 4.2. Let N be a transportation network obtained from the complete bipartite graph K4; 4 with partition source and

destination {S; D} such that |S| = 4, |D| = 4, V (N) = S ∪D and each edge have an integer value cij and xij represent

transportation cost per unit and amount of goods to be transport from xi to yj respectively. The capacity of vertices in source

S and destination D represent by ai and bj respectively. Let M = {x12, x14, x23, x24, x31, x34, x41} be a perfect matching

for N obtained by MODI method with maximum weight w(M) = 965. The following transportation table represents cost per

unit of goods to be transport from source S to destination D.

Sources
Destinations

D1 D2 D3 D4
Supply

S1 6 1 9 3 70

S2 11 5 2 8 55

S3 10 12 4 7 70

S4 0 0 0 0 20

Demand 85 35 50 45

Table 4. Transportation table

Here S4 is a dummy source used in the transportation network with capacity a4 = 20. Now this is a balance transportation

problem with total supply equal to total demand i.e.,
∑
ai =

∑
bj = 215. Now let us calculate depth of each source and

destination to find the favorable set of vertex for favorable matching as follows

f(S1) =

4∑
i=1

ηi · ξi = c12 · x12 + c14 · x14 = (1× 35) + (3× 35) = 140;

f(S2) =

4∑
i=1

ηi · ξi = c23 · x23 + c24 · x24 = (2× 50) + (8× 5) = 140;

f(S3) =

4∑
i=1

ηi · ξi = c33 · x33 + c34 · x34 = (4× 50) + (7× 20) = 340;

f(S4) =

4∑
i=1

ηi · ξi = c41 · x41 = (0× 20) = 0;

∴ fS =
∑
Si∈S

f(Si) = 140 + 140 + 340 = 620.

f(D1) =

4∑
i=1

ηi · ξi = c41 · x41 + c11 · x11 = (0× 20) + (6× 65) = 390;

f(D2) =

4∑
i=1

ηi · ξi = c42 · x22 + c22 · x22 = (0× 20) + (1× 15) = 15;

f(D3) =

4∑
i=1

ηi · ξi = c43 · x43 + c23 · x23 = (0× 20) + (2× 30) = 60;

f(D4) =

4∑
i=1

ηi · ξi = c44 · x44 + c14 · x14 = (0× 20) + (3× 25) = 75;

∴ fD =
∑
Di∈D

f(Di) = 390 + 15 + 60 + 75 = 540.

Since fS > fD; so ES = {x12, x14, x23, x24, x33, x34, x41} be the initial favorable matching for N. Now let us calculate

δs for each s ∈ S and represent in the transportation table as follows:
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Sources
Destinations

D1 D2 D3 D4
Supply δs

S1 6 1 9 3 70 5

S2 11 5 2 8 55 4

S3 10 12 4 7 70 1

S4 0 0 0 0 20 0

Demand 85 35 50 45

Table 5. Transportation table

Since δs = 0 is the smallest value associated with S4; so our favorable matching will start from this source as follows

f(S4) =

4∑
i=1

ηi · ξi = c41 · x41 = (0× 20) = 0;

here capacity of S4 reduces to zero, so it may be deleted from the table. But demand of D1 reduces to b1 = 65,

f(S1) =

4∑
i=1

ηi · ξi = c12 · x12 + c14 · x14 = (1× 35) + (3× 35) = 140;

here capacity of S1 and demand of D2 reduces to zero, so it may be deleted from the table. But demand of D4 reduces to

b4 = 10,

f(S2) =

4∑
i=1

ηi · ξi = c23 · x23 + c24 · x24 = (2× 50) + (8× 5) = 140;

here capacity of S2 and demand of D3 reduces to zero, so it may be deleted from the table. But demand of D4 reduces to

b4 = 5,

f(S3) =

4∑
i=1

ηi · ξi = c34 · x34 + c31 · x31 = (7× 5) + (10× 65) = 685;

here capacity of S3 and demand of D1, D4 reduces to zero, so it may be deleted from the table.But demand of D4 reduces

to b4 = 5,

∴ fS =
∑
Si∈S

f(Si) = 140 + 140 + 685 = 965.

After first iteration our favorable matching is ES = {x41, x12, x14, x23, x24, x31, x34} with depth fS = 965 = w(ES) =

w(M) and |ES | = m + n − 1 = 7. Where M is a perfect matching of N obtained by MODI method. Hence ES is optimal

favorable matching for the transportation network N. Hence the algorithm will terminate.

5. Algorithm Complexity

In this section our keen interest is study the efficiency of the algorithm (time complexity). The complexity of an algorithm

is simply the number of computational steps that it takes to transform the input data to the result of a computation. Now

we mainly focus on our proposed algorithm and for this purpose we have the following results.

Theorem 5.1. Let N be a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m,

V (N) = X ∪ Y and each edge have an integer value cij and xij represent transportation cost per unit and amount of goods

to be transport from xi to yj respectively. The capacity of vertices in X and Y represent by ai and bj respectively. Then the

proposed method finds a favorable matching in N in time O(|V (N)|2) where |V (N)| is cardinality of vertex set in N ; under

the assumption that all elementary arithmetic operations take constant time.
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Proof. Let N be a transportation network obtained from Km; m with partition {X; Y } such that |X| = m, |Y | = m,

V (N) = X ∪ Y and each edge have an integer value cij and xij represent transportation cost per unit and amount of

goods to be transport from xi to yj respectively with cardinality of vertex set |V (N))| = 2m. The algorithm proceeds by

growing alternating favorable matching EXi for 1 ≤ i ≤ m. Growing an alternating favorable matching in an equality

sub-graph G(EXi) by breadth first search takes 2m time. Now growing an m-alternating favorable matching in an equality

sub-graph G(EXi) takes at most 2m×m = 2m2 time. Thus the total time spent on alternating favorable vertex matching

is O(2m2) = O(m2) = O(|V (N)|2). This established the result.

6. Result Analysis

In this section the results obtained by proposed method are compared with results obtained by MODI methods with their

optimal solutions. The following table “Table 6” summarize all the results.

Methods
Optimal(w(EX) or w(M))

Ex.1 Ex.2

Proposed method 149 965

MODI method 149 965

Table 6. Comparison table

The optimal favorable matching of a transportation network N by proposed logical method and MODI method are coincide

with the same numerical value. The time complexity of proposed logical method is fairly less than as compare to complexity

of MODI method. Here total number of algebraic calculations needed to convert the input data to the optimal solution is

multiple of n2, i.e., O(n2) under the assumption that all algebraic calculations can take equal time.

7. Conclusions

A large number of real world problems can be modeled as an transportation problem because of its combinatirial nature.

Till date several methods and algorithms has been develop to solve the transportation problem. But, it is very important

to choose the perfect method or approach to deal the problem, to an obtained optimal solution or closer to optimal solution

depending on the nature of complexity of the problem. In recent trends some approaches are top choice for the solution

of an transportation problem because they produce good but not certainly optimal solution. In this context our proposed

method produce good as well as optimal solution in reasonable short amount of time.
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