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Abstract: In this paper, the estimation of the parameter of the Bayesian Weibull model with time-varying effect is considered.

The Laplace approximation was developed and compared to the maximum likelihood approach achieved via the Newton-

Raphson procedure. The efficiency of the two methods was analyzed using Monte-Carlo samples drawn from the time-
varying Weibull model.
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1. Introduction

Rodrıguez [5] described four modelling approaches for parametric survival models namely; parametric families, proportional

hazard, accelerated failure time and proportional odds. However, we decided to use the parametric families approach because

of its simplicity and flexibility. Now, suppose T is an event time that follows Weibull distribution with shape and scale

parameters define as(a, b), its density function, hazard function and survival function are (Alharpy and Ibrahim [2]; Collet

[3]; Tseng [7]; Aalen [1]; Sparling [6]);

f (t | a, b) =
(a
b

)( t
b

)a−1

exp

[
−
(
t

b

)a]
, t > 0, a, b > 0 (1)

h (t | a, b) =
(a
b

)( t
b

)a−1

, t > 0, a, b > 0 (2)

S (t | a, b) = exp

[
−
(
t

b

)a]
, t > 0, a, b > 0 (3)

Using the parametric family approach, the covariate associated with the event time T can be modelled via the scale parameter

b as,

b = exp
[
x′β
]
⇒ log b = x′β (4)

The form of parameterization in (4) is when the fixed time covariate or proportional assumption is satisfied. But when

time-varying covariate z(t) exist, (4) can be modified as;

b = exp
[
x′β + γz(t)

]
(5)
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Where β and γ represent the parameters of fixed and time varying covariate. For the mortality model, z(t) is a binary vector

representing infection at the varying interval of time before the end of the udy. The matrix x represents the fixed covariate

such as gender, age, marital status etc. substituting (5) in (1), we can obtain the density function for Weibull with fixed

and time varying covariate effects as;

f (t | a, x, z(t)) =

(
a

exp [x′β + γz(t)]

)(
t

exp [x′β + γz(t)]

)a−1

exp

[
−
(

t

exp [x′β + γz(t)]

)a]
(6)

Now assuming z(t) to be a piece-wise function as in the case of TB infection occurring with HIV infection, z(t) can be define

as;

z (t) =

 0, t < tc

1, t ≥ tc

Where tc is the time at which the covariate z(t) changes. This implies that f (t | a, x, z(t)) will also be a piece-wise function.

Therefore f (t | a, x, z(t)) can be define as;

f (t | a, x, z(t)) =

 f (t | a, x) , t < tc

f (t | a, x, γz(t)) , t ≥ tc

f (t | a, x, z (t)) =


(

a
exp[x′β]

)(
t

exp[x′β]

)a−1

exp
[
−
(

t
exp[x′β]

)a]
, t < tc(

a
exp[x′β+γz(t)]

)(
t

exp[x′β+γz(t)]

)a−1

exp
[
−
(

t
exp[x′β+γz(t)]

)a]
, t ≥ tc

Consequently, the hazard function h (t | a, x, z(t)) associated with T can be obtained as;

h (t | a, x, z(t)) =


(

a
exp[x′β]

)(
t

exp[x′β]

)a−1

, t < tc(
a

exp[x′β+γz(t)]

)(
t

exp[x′β+γz(t)]

)a−1

, t ≥ tc

The cumulative hazard function H (t | a, x, z(t)) associated with T can be obtained as;

H (t | a, x, z(t)) =


∫ t
0

(
a

exp[x′β]

)(
u

exp[x′β]

)a−1

du, t < tc∫ t
0

(
a

exp[x′β+γz(u)]

)(
u

exp[x′β+γz(u)]

)a−1

du, t ≥ tc

Thus;

For t < tc,

H (t | a, x, z(t)) =

∫ t

0

(
a

exp [x′β]

)(
u

exp [x′β]

)a−1

du

=

(
1

exp [x′β]

)a ∫ t

0

aua−1du

H (t | a, x, z(t)) =

(
t

exp [x′β]

)a

For t ≥ tc,

H (t | a, x, z(t)) =

∫ t

0

(
a

exp [x′β + γ]

)(
u

exp [x′β + γ]

)a−1

du

=

∫ tc

0

(
a

exp [x′β + γz(t)]

)(
u

exp [x′β + γz(t)]

)a−1

du+

∫ t

tc

(
a

exp [x′β + γz(t)]

)(
u

exp [x′β + γz(t)]

)a−1

du

=

∫ tc

0

(
a

exp [x′β]

)(
u

exp [x′β]

)a−1

du+

∫ t

tc

(
a

exp [x′β + γ]

)(
u

exp [x′β + γ]

)a−1

du
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=

(
tc

exp [x′β]

)a
+

∫ t

tc

(
a

exp [x′β + γ]

)(
u

exp [x′β + γ]

)a−1

du

H (t | a, x, z(t)) =

(
tc

exp [x′β]

)a
+

(
t

exp [x′β + γ]

)a
−
(

tc
exp [x′β + γ]

)a
Therefore,

H (t | a, x, z(t)) =


(

t
exp[x′β]

)a
, t < tc(

tc
exp[x′β]

)a
+
(

t
exp[x′β+γ]

)a
−
(

tc
exp[x′β+γ]

)a
, t ≥ tc

The survival function S (t | a, x, z(t)) follows as;

S (t | a, x, z(t)) = exp [−H (t | a, x, z(t))]

S (t | a, x, z(t)) =

 exp
[
−
(

t
exp[x′β]

)a]
, t < tc

exp
{
−
[(

tc
exp[x′β]

)a
+
(

t
exp[x′β+γ]

)a
−
(

tc
exp[x′β+γ]

)a]}
, t ≥ tc

2. Parameter Estimation for Weibull Time-Varying Covariate Model

Following Lessafre and Lawson (2013) the likelihood of a parametric survival model with right censored times can be defined

as;

L(θ) =
∏
uce

f(tuce|θ)
∏
ce

S(tce|θ) (7)

Where uce denote uncensored and ce denotes right censored. The likelihood in (7) can be simplified if a censoring indicator

si that takes 0 for censored and 1 for uncensored is assumed. Thus,

L(θ) =

n∏
i=1

h (ti | θ)siS(ti|θ) (8)

For the case of time-dependent covariate, we define ci to be the time dependent indicator as a piece-wise function;

ci =

 0, if the value of covariates is not updated

1, if the value of covariates is updated

The likelihood for Weibull time-dependent covariate model is;

L (a, β, γ) =

n∏
i=1

(1− ci)h (ti | a, β, x)siS (ti | a, β, x) +

n∏
i=1

cih (ti | a, β, γ, x)siS (ti | a, β, γ, x)

L (a, β, γ) =

n∏
i=1

(1− ci)

[(
a

exp [xi′β]

)(
ti

exp [xi′β]

)a−1
]si

exp

[
−
(

ti
exp [xi′β]

)a]

+

n∏
i=1

ci

[(
a

exp [xi′β + γ]

)(
ti

exp [xi′β + γ]

)a−1
]si

×
(

exp

{
−
[(

tci
exp [xi′β]

)a
+

(
ti

exp [xi′β + γ]

)a
−
(

tci
exp [xi′β + γ]

)a]})
The corresponding log-likelihood is;

l (a, β, γ) =

n∑
i=1

(1− ci)

[
silog

[(
a

exp [xi′β]

)(
ti

exp [xi′β]

)a−1
]
−
[(

ti
exp [xi′β]

)a]]

+

n∑
i=1

ci

{
silog

[(
a

exp [xi′β + γ]

)(
ti

exp [xi′β + γ]

)a−1
]

+

[(
tci

exp [xi′β]

)a
+

(
ti

exp [xi′β + γ]

)a
−
(

tci
exp [xi′β + γ]

)a]}
The model parameters a, β, γ can be obtained using Newthe ton-Raphson algorithm to find the solution of the likelihood

equations given above. However, we have used the SPLUS function nlminb to obtain the results.
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3. Bayesian Weibull Time-Varying Covariate Model

The Bayesian approach to the estimation of the parameter Ω = {a, β, γ}, can be defined as:

p (Ω = {a, β, γ} |t, x) =
p (Ω = {a, β, γ})× L (t, x|a, β, γ)∫

a

∫
β

∫
γ
p (Ω = {a, β, γ})× L (t, x|a, β, γ) dadβdγ

(9)

p (Ω = {a, β, γ} |t, x) ∝ p (Ω = {a, β, γ})× L (t, x|a, β, γ) (10)

Where p (Ω = {a, β, γ} |t, x) and p (Ω = {a, β, γ}) are the posterior and prior distributions of the parameter space Ω =

{a, β, γ}. Equation (9) is the standard posterior of a procedure estimation procedure for Weibull time-varying covariate

model. However, because of the intractability of the denominator of (9), it is often drop in practice as it only ensure the

summing of p (Ω = {a, β, γ} |t, x) to one (Lesafree & Lawson, 2013). Thus, the estimation of the Bayesian model in this

paper is developed using (10). The Laplace approximation involves using the maximum likelihood procedure to estimate

the parameter of the posterior in (10). The log of (10) can be defined as:

log [p (Ω= {a, β, γ} |t, x)] = log [p (Ω = {a, β, γ})] + log [L (t, x|a, β, γ)] (11)

One of the popular prior distribution usually assumed for this kind of model is the product of exponential distribution with

parameter τ for parameter a and Gaussian distribution with parameter µ and σ2 for the joint vector ω = {β, γ}. Thus, we

can rewrite (11) as:

log [p (Ω = {a, β, γ} |t, x)] = log

{
τ exp(−aτ)× 1√

2πσ2
exp

[
− (ω − µ)2

2σ2

]}
+

n∑
i=1

(1− ci)

[
silog

[(
a

exp [xi′β]

)(
ti

exp [xi′β]

)a−1
]
−
[(

ti
exp [xi′β]

)a]]

+

n∑
i=1

ci

{
silog

[(
a

exp [xi′β + γ]

)(
ti

exp [xi′β + γ]

)a−1
]

+

[(
tci

exp [xi′β]

)a
+

(
ti

exp [xi′β + γ]

)a
−
(

tci
exp [xi′β + γ]

)a]}
(12)

log [p (Ω = {a, β, γ} |t, x)] = log [τ exp(−aτ)] + log

[
1√

2πσ2
exp

[
− (ω − µ)2

2σ2

]]
+

n∑
i=1

(1− ci)

[
silog

[(
a

exp [xi′β]

)(
ti

exp [xi′β]

)a−1
]
−
[(

ti
exp [xi′β]

)a]]

+

n∑
i=1

ci

{
silog

[(
a

exp [xi′β + γ]

)(
ti

exp [xi′β + γ]

)a−1
]

+

[(
tci

exp [xi′β]

)a
+

(
ti

exp [xi′β + γ]

)a
−
(

tci
exp [xi′β + γ]

)a]}
(13)

The model parameters a, β, γ can again be obtained using the Newton-Raphson algorithm to find the solution of equation

(13). However, we have used the SPLUS function optim to obtain the results.

4. Simulation Studies

The estimation methods were evaluated using the following simulation procedure. The following parameters; a = 0.5, β = 2

and γ = 1 was set as true values. The covariate xi ∼ Binomial(1, 0.5), tci ∼ Weibull(shape = 2, scale = 0.04). Censoring

rates 20% was used to check the effect of censoring rate on parameter estimates. Also, sample sizes n = 50, and n = 500

were used to study the effect of sample size on parameter estimates. Performance metrics used to assess the estimating
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methods are standard error (SE), bias and Mean Square error (MSE). The formulas based on 1000 repetition of the study

are;

SE(θ̂) =

√√√√√ 1000∑
j=1

(
θ̂j − θ̂

)
1000

2

bias(θ̂) =

1000∑
j=1

(
θ̂j − θ

)
1000

MSE(θ̂) =

1000∑
j=1

(
θ̂j − θ

)2
1000

5. Results and Discussion

Table 1 shows the results for small and large sample size 50 and 500 and censoring rate 20%. For all the performance metrics

used, the results of the proposed Laplace Bayesian method are better than the competing MLE method. Specifically, the

proposed method is more stable in terms of low average standard error, consistent in terms of low average bias as well as

efficient in terms of low mean square error. However, the exciting results are more attributable to the fixed and time-varying

effect parameters γ & β which is the main focus.

Statistic Parameter
n = 50 n = 500

MLE LAPLACE BAYES MLE LAPLACE BAYES

θ̂

a = 0.5 0.2739 0.3098 0.2758 0.3165

β = 2 1.1014 1.9995 1.1139 1.9947

γ = 1 2.9292 1.0002 3.0226 1.0019

SE(θ̂)

a 0.0259 0.0275 0.0094 0.0089

β 0.3482 0.0003 0.1076 0.0008

γ 0.7468 0.0001 0.2694 0.0003

bias(θ̂)

a 0.2261 0.1902 0.2242 0.1835

β 0.8986 0.0005 0.8861 0.0053

γ 1.9292 0.0002 2.0226 0.0019

MSE(θ̂)

a 0.0511 0.0362 0.0503 0.0337

β 0.8074 0.0000 0.7852 0.0000

γ 3.7220 0.0000 4.0910 0.0000

Table 1: Simulation results for average bias (bias(θ̂)), average standard error (SE(θ̂)) and average mean square error

(MSE(θ̂)) based on 1000 replications for sample size n = 50, 500 and censoring rate 20%.

6. Conclusion

In this paper, we have presented a new estimation strategy for Bayesian time-varying model using Laplace approximation.

The results from the performance analysis showed that the Laplace approximation procedure is more consistent, efficient

and precise than the maximum likelihood estimator (MLE).
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