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Abstract: The notion of compactness plays an important role in analysis. It has been extensively discussed on both metric and
topological spaces. Various properties of compactness have been proved under the underlying spaces. However, if we

consider these sets to be from similarity orbits of norm-attainable operators, little has been done to investigate their
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1. Introduction

The notion of similarity orbits of Hilbert space H operators was first initiated by Herrero [3] where he described the closure

of similarity orbits of a normal operator with perfect spectrum. Since then, the norm closure of similarity orbits has been

investigated extensively by many researchers such as Fialkow [1] and Hadwin et al. [2]. In this paper, we characterized

similarity orbits in terms of compactness which is a generalization of the property of closedness and boundedness of subsets

of the real line to topological space. Compactness can be characterized in many ways but the most fundamental ones are:

sequential compactness which was developed by Bolzano and Weierstrass [4] grew out of functions developed on sequences of

real numbers. The other characterization is in terms of open covers which was first introduced by Dirichlet and repeatedly

introduced by Heine and continuously developed by Cousin, Lebesgue, Alexandroff and Uryson [4]. Compact sets enjoy a

number of special properties not shared by other sets. For instance, compactness is preserved by continuous transformations.

This implies that real-valued functions are bounded on compact sets and attain their maxima and minima. In this study,

we regard similarity orbit as sets which consist of elements which are operators on which we assign a topology to become

a topological space. In particular, invariant subsets of similarity orbits generate invariant topological space. Hence, we

characterize similarity orbits of norm-attainable operators on invariant topological spaces in terms of compactness via the

concept of open covers.

2. Preliminaries

In this section, we recall some key definitions and a result that are fundamental in the study:

∗ E-mail: omokepriscah@yahoo.com
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Definition 2.1 ([5]). An operator T ∈ B(H) is said to be norm-attainable if there exists a unit vector x ∈ H such that

‖Tx‖ = ‖T‖. The set of all norm-attainable operators on H is denoted by NA(H).

Definition 2.2 ([8]). Let p be a point on a topological space (X, τ). A subset N of X is a neighborhood of p if and only if

N is a superset of an open set G containing p. That is p ⊆ G ⊆ N .

Definition 2.3 ([7]). A subspace M of H is an invariant subspace of the operator T if for each x ∈ M, Tx ∈ M i.e

TM ⊆M .M is also referred as T− invariant or M is invariant under T .

Definition 2.4. A subset SoNA(T ) of an invariant topological space (SNA(T ), τSNA(T )) is compact if every open cover

Oα, α ∈ Λ of SNA(T ) is reducible to a finite subcover. i.e. SoNA(T ) is compact if for every open cover {Oα : α ∈ Λ} of

SNA(T ) such that SoNA(T ) ⊆ ∪∞α=1Oα. For Γ ⊆ Λ, then there exist a finite subcover such that {Oi : i ∈ Γ} of Oα such that

{SoNA(T ) ⊆ ∪ni=1Oi}, (where Λ is an index set).

Definition 2.5 ([12]). A topological space denoted by (X, τ) is a non-empty set X together with a collection τ of subsets of

X(referred to as open sets) that satisfies the following conditions:

(1). the empty set ∅ and the whole space X are open sets.

(2). the union of any collection of open sets is itself an open set.

(3). the intersection of any finite collection of open sets is itself an open set.

Definition 2.6. Let SNA(T ) be a nonempty set and f be a map such that f : SNA(T ) → SNA(T ), then the set of all

invariant subsets of SNA(T ) related to f given by τf := {SoNA(T ) ⊆ SNA(T ) : f(SoNA(T )) ⊆ SoNA(T )} ⊆ P(SNA(T )) is a

topology on SNA(T ).

Proposition 2.7. Let SNA(T ) be a nonempty set and τf be a collection of all invariant subsets of SNA(T ) related to the

map f , then (SNA(T ), τf ) is a topological space.

Proof. Let τf be defined by τf := {SoNA(T ) ⊆ SNA(T ) : f(SoNA(T )) ⊆ SoNA(T )} ⊆ P(SNA(T )), then we need to show

that the three axioms of a topological space hold for τf .

(1). Let Oα be a collection of open sets in τf for all α ∈ Λ, then if Oα = ∅ ∈ τf and similarly if Oα = SNA(T ) ∈ τf .

(2). Let Oα ∈ τf for all α ∈ Λ, then f(∪αOα) = ∪αf(Oα) ⊆ ∪αOα ∈ τf .

(3). Let Oi ∈ τf for i = 1, ..., n, then f(∩ni=1Oi) = ∩ni=1f(Oi) ⊆ ∩ni=1Oi ∈ τf .

Since the three axioms are satisfied, this implies that (SNA(T ), τf ) is a topological space as required.

Remark 2.8.

(1). In this study (SNA(T ), τf ) is referred as an invariant topological space.

(2). The rest of this paper follow intuitively from Proposition 2.7.

14



P. O. Mogotu, N. B. Okelo and Omolo Ongati

3. Main results

We begin with basic facts about compact spaces.

Proposition 3.1. Let SNA(T ) be a non-empty set and (SNA(T ), τf ) be an invariant topological space. If SoNA(T ) is a finite

subset of SNA(T ), then SoNA(T ) is a compact set.

Proof. Suppose that SoNA(T ) is finite. This implies that either:

(1). SoNA(T ) = ∅.

(2). SoNA(T ) is a finite non-empty set.

(1). If SoNA(T ) = ∅, the proof is trivial since SoNA(T ) is vacuously compact. That is, the empty collection ∪i∈∅Oi (where

Oi ∩Oj = ∅, i.e. pairwise disjoint) is a finite subcover.

(2). Let SoNA(T ) be a non-empty finite set, then for n ∈ N, T1, ..., Tn ∈ SNA(T ) is such that SoNA(T ) = {T1, T2, ..., Tn}. Let

Oα∈Λ be a collection of open sets in SoNA(T ), then {T1, T2, ..., Tn} = SoNA(T ) ⊆ ∪Oi∈Oα∈ΛOi. This implies that Oα∈Λ is an

open cover for SoNA(T ). It suffices to show that SoNA(T ) is compact. Thus invoking Definition 2.4, for each Oi ∈ Oα∈Λ for

some {Ti ∈ Oi : i = 1, ..., n} and Γ ⊆ Λ, we have a finite sub-collection Oβ∈Γ of Oα∈Λ such that SoNA(T ) = {T1, T2, ..., Tm} ⊆

O1 ∪ O2∪, ...,∪Om = {∪mj=1Oj : Oj ∈ Oβ∈Γ} which also covers SoNA(T ). This shows that SoNA(T ) is a compact subset of

(SNA(T ), τf ).

Proposition 3.1 shows that every finite subset of any arbitrary invariant topological space is compact.

Lemma 3.2. Let (SNA(T ), τf ) be an invariant topological space and SoNA(T ) be a subset of SNA(T ), then SoNA(T ) is compact

if and only if each of its open cover contains a finite subcover.

Proof. Suppose that SoNA(T ) is compact, then invoking Definition 2.4, there exist a cover Oα∈Λ of SoNA(T ) by open subsets

of SNA(T ). For each T ∈ SoNA(T ) there exist a neighborhood NT of T and by Definition 2.2, we have that for each T , there

is an open set O such that T ⊆ O ⊆ NT . This shows that the collection Oα∈Λ = ∪nα=1Oα is an open cover for SoNA(T ).

Since SoNA(T ) is compact, then by Proposition 3.1 there exist a finite subcover of Oα∈Λ. Let {Oβ∈Γ : Γ ⊆ Λ} be such a

subcover, where {Oβ ⊆ NTj : j = 1, ...,m} and hence SoNA(T ) ⊆
⋃m
j=1 OTj ⊆

⋃m
j=1 NTj . This shows that the collection of

{NTj : j = 1, 2, ...,m} which is finite cover SoNA(T ) and hence compact.

Conversely, let Oα∈Λ be an open cover of SoNA(T ), this means that each T ∈ SoNA(T ) belong to some member of Oα∈Λ. This

implies that Oα∈Λ is itself a collection of neighborhood which covers SoNA(T ). Now, suppose there exist a finite subcover

{Oβ∈Γ : Γ ⊆ Λ} of Oα∈Λ such that SoNA(T ) ⊆ ∪
m

β=1Oβ∈Γ. Then invoking Definition 2.4 completes the proof.

Example 3.3. For an arbitrary set, let SNA(T ) = {T, T1, T2}, invoking Definition 2.6 we have τf =

{{T}, {T1}, {T2}, {T, T1}, {T, T2}, {T1, T2}, ∅, SNA(T )} and Oα = {{T}, {T, T1}, {T, T2}, {T2, T3}}, then SNA(T ) is com-

pact. Indeed, Oα∈Λ is a cover since {T} ∪ {T, T1} ∪ {T, T2} ∪ {T2, T3} = {T, T1, T2} = SNA(T ). Moreover, Oα∈Λ

is an open cover since all elements of Oα∈Λ are also in τf . In addition, if we let Oβ∈Γ = {{T}, {T2, T3}} such that

{{T} ∪ {T2 ∪ T3}} = {T, T1, T2} = SNA(T ). Hence, Oβ∈Γ is a subcover of SNA(T ). Therefore this implies that SNA(T ) is

compact

Example 3.4. Let S′NA(T ) = R1 and SNA(T ) = R2, then the interval (a, b) is open in S′NA(T ) but not in SNA(T ) since

none of the points in S′NA(T ) is an interior point of SNA(T ). This therefore implies that if SoNA(T ) ⊆ S′NA(T ) ⊆ S′′NA(T )

and SoNA(T ) open relative to S′NA(T ) and S′NA(T ) open relative to S′′NA(T ) does not necessary imply that SoNA(T ) is open

relative to S′′NA(T ).
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Example 3.4 implies that; the openness and closedness of a set depends on which space the set is embedded. But for

compactness, this is not the case as shown by the following theorem.

Theorem 3.5. Let (SNA(T ), τf ) be an invariant compact topological space and SoNA(T ) ⊆ S′NA(T ) ⊆ SNA(T ), then SoNA(T )

is compact relative to SNA(T ) if and only if SoNA(T ) is compact relative to S′NA(T ).

Proof. Suppose that SoNA(T ) is compact relative to SNA(T ). This implies that if we take a collection of open subsets

with respect to SNA(T ) whose countable union also covers SoNA(T ), then there will be a finite subcover of these sets which

also covers SoNA(T ). It suffices to show that SoNA(T ) is compact relative to SNA(T ). Let us consider the open covers Oα∈Λ

of SoNA(T ) relative to S′NA(T ). Since S′NA(T ) has a subspace topology relative to SNA(T ), then from [4], (if A ⊆ X, then

H ⊆ A is open relative to A if and only if H = A∩G for some open subset G of X). Using this result, let Vα ⊆ SNA(T ) be

a collection of open sets relative to SNA(T ) such that Oα∈Λ = S′NA(T )∩Vα∈Λ. Then Vα∈Λ forms an open cover for SoNA(T )

in SNA(T ). Moreover, since SoNA(T ) is compact relative to SNA(T ), so there exist a finite subcover Vβ∈Γ of Vα∈Λ such that

SoNA(T ) ⊆ ∪mβ=1Vβ∈Γ. But, SoNA(T ) ⊆ S′NA(T ). This implies that SoNA(T ) = SoNA(T ) ∩ S′NA(T ) ⊆ (∪mβ=1Vβ∈Γ) ∩ S′NA(T ) =

∪mβ=1(Vβ∈Γ ∩ S′NA(T )) = ∪mβ=1Oβ∈Γ, where Oβ∈Γ is a finite subcover of Oα∈Λ. This shows that SoNA(T ) is compact relative

to S′NA(T ).

Conversely, suppose that SoNA(T ) is compact relative to S′NA(T ). Let Oα∈Λ be open subsets of SNA(T ) which covers SoNA(T ).

Let Oα∈Λ = SNA(T )∩Vα∈Λ where Vα∈Λ is open in S′NA(T ). Then Vα∈Λ forms an open cover for SoNA(T ) in S′NA(T ). Since

SoNA(T ) is compact relative to S′NA(T ), then this open cover Vα∈Λ has a finite subcover Vβ∈Γ of SoNA(T ) in S′NA(T ) such that

SoNA(T ) ⊆ ∪mβ=1Vβ∈Γ. Since SoNA(T ) ⊆ SNA(T ), this implies that SoNA(T ) = SoNA(T ) ∩ SNA(T ) ⊆ (∪mβ=1Vβ∈Γ) ∩ SNA(T ) =

∪mβ=1(Vβ∈Γ ∩ SNA(T )) = ∪mβ=1Oβ∈Γ, which is a finite subcover that covers SoNA(T ). This implies that SoNA(T ) is compact

relative to SNA(T ).

The property of a space being compact and closed subset of an invariant topological space are related but are not equivalent

in an arbitrary invariant topological space as shown in the sequel.

Theorem 3.6. Let (SNA(T ), τf ) be an invariant topological space and SoNA(T ) ⊆ S′NA(T ) such that S′NA(T ) is a compact

subset of SNA(T ). In particular if SoNA(T ) is closed then it is also compact.

Proof. Let SoNA(T ) ⊆ S′NA(T ) ⊆ SNA(T ) and let SoNA(T ) be a closed subset of a compact space S′NA(T ). We want to

prove that SoNA(T ) is compact. From Proposition 3.1, we can take Oα∈Λ to be an open cover for SoNA(T ). Since S′NA(T )

is compact we want to get an open cover of S′NA(T ). Let Q = (SoNA(T ))c ∪ Oα∈Λ be an open cover for S′NA(T ), moreover

since S′NA(T ) is compact, then there exist some finite subcover

{Oβ∈Γ}mβ=1 ∪ [SoNA(T )]c (1)

of Q which covers S′NA(T ) and also covers SoNA(T ). But Expression 1 shows that we have extended to a bigger cover which

has [SoNA(T )]c which was not in the original cover Oα∈Λ and this implies that {Oβ∈Γ}mβ=1 ∪ [SoNA(T )]c it is not a subcover

of Oα∈Λ. Hence we have to remove [SoNA(T )]c to get a finite subcover of Oα∈Λ which still covers SoNA(T ) and hence SoNA(T )

is compact. Therefore closed subset of compact set is also compact.

Corollary 3.7. Let (SNA(T ), τf ) be an invariant topological space and SoNA(T ), S′NA(T ) be subsets of SNA(T ). If SoNA(T )

is closed and S′NA(T ) compact, then SoNA(T ) ∩ S′NA(T ) is compact.
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Proof. Let SoNA(T ) ⊆ S′NA(T ) ⊆ SNA(T ) and since S′NA(T ) is compact, then by Theorem 3.6 it is closed. Consequently,

we can deduce that SoNA(T ) and S′NA(T ) are closed relative to SNA(T ) and hence from intersection property of closed sets

it implies that SoNA(T ) ∩ S′NA(T ) is also closed. Moreover, since

SoNA(T ) ∩ S′NA(T ) ⊆ S′NA(T ) ⊆ SNA(T ), (2)

Expression 2 implies that S′NA(T ) ∩ SoNA(T ) is a closed subset of a compact space S′NA(T ) and invoking Theorem 3.6 this

implies that S′NA(T ) ∩ SoNA(T ) is compact.

From Theorem 3.6, we can deduce that closedness implies compactness but compactness does not necessarily imply closed-

ness. Therefore, for any arbitrary invariant topological space, the converse of Theorem 3.6 is not generally true as shown in

the following counterexample.

Example 3.8. A compact subset of an arbitrary an invariant topological space (SNA(T ), τf ) is not closed since there exist

topological spaces whose finite subsets are not all closed. Indeed, let SNA(T ) = R and SoNA(T ) ⊆ SNA(T ) = [0, 2]. The

collection

{(n− 1, n+ 1 : n = −∞, ...,∞)} (3)

which can be {(−1, 1), (1, 3)} is an open cover of [0, 2] which is a collection of open sets and

[0, 2] ⊆ (−1, 1) ∪ (1, 3) = (−1, 3). (4)

Using Expression 3, it shows that Expression 4 is open in R but not in [0, 2]. Moreover, consider a set SNA(T ) = {T, T1}, its

subset SoNA(T ) = {T} and Sierpinski topology {∅, {T}, {T, T1}}. The set SoNA(T ) is compact since it is finite but not closed

since its complement {T1} is not open in the said topology.

Theorem 3.9. Let (SNA(T ), τf ) be an invariant topological space and S′NA(T ) and S′′NA(T ) be compact subsets of SNA(T ).

Then the following are compact

(1). S′NA(T ) ∪ S′′NA(T ).

(2). S′NA(T ) ∩ S′′NA(T ).

Proof.

(1). Let S′NA(T ) and S′′NA(T ) be compact sets. Suppose Oα∈Λ is an open covering of S′NA(T ) ∪ S′′NA(T ), then by property

of union, it is a covering of S′NA(T ) and S′′NA(T ). Since these sets are compact, then from Proposition 3.1 we can

choose a finite subcovers {O′β∈Γ : β = 1, ..., l} of Oα∈Λ to cover S′NA(T ) and {O′′β∈Γ : β = l + 1, ...,m} of Oα∈Λ to

cover S′′NA(T ). Hence, the finite subcover {Oβ∈Γ : β = 1, ...,m} covers S′NA(T ) ∪ S′′NA(T ). This therefore implies that

S′NA(T ) ∪ S′′NA(T ) is compact.

(2). Since S′NA(T ) and S′′NA(T ) are compact by (1), using Heine-Borel Theorem [4], we can deduce that S′NA(T ) and S′′NA(T )

are closed sets. Let {Ci : i = 1, ..., n} be a finite collection of closed sets in S′NA(T ), then ∪ni=1Ci is closed. Using De

Morgan’s law and the fact that for any collection of open sets its union is open [4], we have [∩α∈ΛCα]c = ∪α∈ΛCcα is

open and this implies that

∩α∈ΛCα (5)
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is closed. Since S′NA(T )∩ S′′NA(T ) ⊆ S′NA(T ) and from Expression 5, we can deduce that S′NA(T )∩ S′′NA(T ) is a closed

subset of the set S′NA(T ). Thus, invoking Theorem 3.6, it follows that S′NA(T )∩ S′′NA(T ) is compact as a closed subset

of a compact space.

Theorem 3.10. Let SoNA(T ) be a subset of a T2−space SNA(T ). In particular if SoNA(T ) is compact, then it is closed.

Proof. Let SoNA(T ) be a compact subset of a T2−space SNA(T ) and T ∈ SoNA(T ). It suffices to show that if SoNA(T )

is closed then its complement is open. Let To ∈ (SoNA(T ))c = SNA(T )\SoNA(T ), this implies that T 6= To. Since SNA(T )

is a T2−space, then we can separate To and SoNA(T ) by neighborhoods. Hence, by T2 separation axiom there exist open

sets (S′NA(T ))To , (S′′NA(T ))T such that To ∈ (S′NA(T ))To ⊆ (SoNA(T ))c, T ∈ (S′′NA(T ))T and (S′NA(T ))To ∩ (S′′NA(T ))T = ∅.

This implies that SoNA(T ) ⊆ ∪{(S′′NA(T ))T : T ∈ SNA(T )} is an open cover of SoNA(T ). But by the compactness of SoNA(T ),

there exist a finite subcover {(S′′NA(T ))T1 , (S
′′
NA(T ))T2 , ..., (S

′′
NA(T ))Tn} of SoNA(T ) such that SoNA(T ) ⊆ {(S′′NA(T ))T1 ∪

... ∪ (S′′NA(T ))Tn}. Thus, S′′NA(T ) = ∪ni=1(S′′NA(T ))Ti is the required neighborhood of SoNA(T ). Similarly it follows that

S′NA(T ) = ∩ni=1(S′NA(T ))Toi forms the neighborhood of To which does not intersect SoNA(T ) since it does not intersect any

of the elements of {(S′′NA(T ))Ti : i = 1, 2, .., n}. Then it follows that S′NA(T ) ⊆ (SoNA(T ))c and (SoNA(T ))c = ∪S′NA(T ),

which implies that (SoNA(T ))c is a neighborhood of each of its points and hence open. Therefore SoNA(T ) = ((SoNA(T ))c)c is

closed which completes the proof.

Corollary 3.11. Let SoNA(T ) be a subset of a T2−space SNA(T ), then SoNA(T ) is compact if and only if it is closed.

Proof. The proof follows from Theorem 3.6 and Theorem 3.10.

From Corollary 3.11, we can conclude that compact sets in T2−space are always closed.

An important property of compactness as a topological concept is that it is invariant under continuous mapping as shown

in the following theorem.

Lemma 3.12. Let (S′NA(T ), τf1) and (S′′NA(T ), τf2) be invariant topological spaces and f : S′NA(T )→ S′′NA(T ) be a contin-

uous map. If SoNA(T ) ⊆ S′NA(T ) is compact, then f(SoNA(T )) is also a compact subset of S′′NA(T ).

Proof. Let SoNA(T ) be compact and Oα∈Λ be an open cover of f(SoNA(T )). We need to get the inverse image of these

open sets. Let f−1(Oα∈Λ) be the open inverse of each Oα∈Λ which is an open cover for SoNA(T ) since f is continuous this

implies that the inverse image of an open set is open. By the compactness of SoNA(T ), any arbitrary open cover Oα∈Λ of

f(SoNA(T )) has a finite subcover. Hence, there exist say, for all β ∈ Γ;

f−1(Oβ1) ∪ ... ∪ f−1(Oβm). (6)

Applying f to both Expression 6 and on SoNA(T ) we get Oβ1 ∪ ...∪Oβm which is a finite subcover for f(SoNA(T )). Therefore,

this implies that f(SoNA(T )) is compact.

Theorem 3.13. Let (S′NA(T ), τf1) and (S′′NA(T ), τf2) be invariant topological spaces such that f : S′NA(T )→ S′′NA(T ) is a

continuous surjective map. If S′NA(T ) is compact, then S′′NA(T ) is also compact.

Proof. Let S′NA(T ) be compact and since f is surjective; that is f(S′NA(T )), we want to show that S′′NA(T ) is compact.

Invoking Lemma 3.12, let Oα∈Λ be an open cover of S′′NA(T ). It suffices to proof that this open cover has a finite subcover.

By the continuity of f , Oα∈Λ has an inverse image in S′NA(T ) which must also be open. Let the inverse image be denoted
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by Vα∈Λ. Hence, Vα : Vα = f−1(Oα∈Λ) = S′NA(T ). By the compactness of S′NA(T ), there exist a finite subcover Vβ∈Γ of

S′NA(T ) such that

S′NA(T ) = ∪mβ=1Vβ∈Γ. (7)

Using the property of the image of a function and the union of them in [4], that is;

g(A ∪B) = g(A) ∪ g(B). (8)

Since S′NA(T ) = ∪mβ=1Vβ∈Γ = Vβ1 ∪ Vβ2∪, ... ∪ Vβm , applying Equality 8 on Equality 7 we have f(Vβ1 ∪ Vβ2∪, ... ∪ Vβm) =

f(Vβ1) ∪ f(Vβ2)∪, ... ∪ f(Vβn). Since S′NA(T ) = ∪mβ=1Vβ∈Γ, then we can write f(S′NA(T )) = ∪mβ=1f(Vβ∈Γ). Moreover, since

Vβ∈Γ is the inverse of Oα∈Λ, then we have

∪mβ=1f(Vβ∈Γ) = ∪mi=1f(f−1(Oβ∈Γ)

= ∪mβ=1Oβ∈Γ

But ∪mβ=1Oβ∈Γ ⊆ f(S′NA(T )) = S′′NA(T ). This implies that S′′NA(T ) = f(S′NA(T )) ⊆ ∪mβ=1Oβ∈Γ ⊆ f(S′NA(T )) = S′′NA(T ).

Hence, S′′NA(T ) ⊆ ∪mβ=1Oβ∈Γ which completes the proof.

Lemma 3.14. Let (S′NA(T ), τf1) and (S′′NA(T ), τf2) be homeomorphic and invariant topological spaces such that f :

(S′NA(T ), τf1)→ (S′′NA(T ), τf2), then S′′NA(T ) is a T2−space if and only if S′NA(T ) is T2−space.

Proof. This Lemma show that the property of a space being T2−space is preserved under homeomorphism. Let S′NA(T )

and S′′NA(T ) be homeomorphic and S′NA(T ) be a T2−space. It suffices to show that S′′NA(T ) must be a T2−space under

homeomorphism. Let T1, T2 ∈ S′NA(T ) be such that T1 6= T2 and map these points to S′′NA(T ) using homeomorphism f , so

that f(f1(x)) = A1 and f(f2(x)) = A2 for any x ∈ H. Since f is one−to−one, this implies that A1 6= A2. Next, lets take two

arbitrary open sets around T1 and T2, O1 and O2 respectively such that O1∩O2 = ∅ since T1 6= T2 and again map these open

sets to S′′NA(T ) using f , that is f(O1) and f(O2). These sets are also open in S′′NA(T ), A1 ∈ O1, A2 ∈ O2 and f(O1) 6= A2

by homeomorphism. Moreover, f is an onto mapping and f(O1)∩ f(O2) = ∅ which implies that, A1, A2 ∈ S′′NA(T ) are such

that A1 6= A2 and hence S′′NA(T ) is a T2−space.

Theorem 3.15. If (S′NA(T ), τf1) and (S′′NA(T ), τf2) are homeomorphic and invariant topological spaces, then S′NA(T ) is

compact if and only if S′′NA(T ) is compact.

Proof. Suppose that S′NA(T ) is compact and from Lemma 3.14, let (S′NA(T ), τf1) and (S′′NA(T ), τf2) be homeomorphic

topological spaces, then there exist an operator T which induces a one-to-one and onto correspondence between the open

sets of S′NA(T ) and the open sets of S′′NA(T ), such that for all open set O1 ∈ τf1 , O2 ∈ τf2 , f(O1) = f(O2),⇒ O1 = O2 and

f(O1) = O2. Since T is bijective, it implies that

(f−1)−1(O1)c = f(O1)c. (9)

Where (O1)c is a closed subset of the compact space S′NA(T ). From Theorem 3.10, this implies that (O1)c is a compact set.

Hence f(O1)c is a compact subset of the S′′NA(T ) that is, f(O1)c is a closed set in S′′NA(T ). Next we need to show that O1

is an open set in (S′NA(T ), τ). From Equation 9, (f−1)−1(O1)c is a closed set which implies that f(O1) = (f−1)−1(O1) =

S′′NA(T )\(f−1)−1(O1)c is an open set. Hence f−1 : (S′′NA(T ), τf2)→ (S′NA(T ), τf1) is continuous.

The converse follows from Theorem 3.13, that S′NA(T ) is compact if and only if S′′NA(T ) is compact.
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Corollary 3.16. Suppose that (S′NA(T ), τf1) is an invariant compact topological space and (S′′NA(T ), τf1) be a T2−space

such that f : S′NA(T )→ S′′NA(T ) is a continuous map, if S′NA(T ) is compact then f(S′NA(T )) is closed in S′′NA(T ).

Proof. The proof follows from Theorem 3.13 that guarantees that f(S′NA(T )) is compact. Similarly by Theorem 3.6,

f(S′NA(T )) is closed.

Theorem 3.13 is very important in the sense that continuous real-valued functions are compact sets and attain their maximum

and minimum values as demonstrated by the following theorem.

Theorem 3.17. Let f : S′NA(T ) → R be a continuous function where S′NA(T ) is an invariant topological space and

SoNA(T ) ⊆ S′NA(T ) be compact. Then there are T1, T2 ∈ SoNA(T ) such that f(T1) ≤ f(T ) ≤ f(T2), ∀ T ∈ SoNA(T ).

Proof. Since f is continuous then by Theorem 3.13, f(SoNA(T )) is compact in R. Consequently, by Heine-Borel theorem,

f(SoNA(T )) is closed and bounded. This implies that we have m = inf(f(SoNA(T ))) and M = sup(f(SoNA(T ))) both in

f(SoNA(T )). Hence, there exist T1 ∈ SoNA(T ) with f(T1) = m and T2 ∈ SoNA(T ) with f(T2) = M such that for any

T ∈ SoNA(T ) we have f(T1) ≤ f(T ) ≤ f(T2).

4. Conclusion

In this paper, we introduced the concept of compactness of similarity orbits of norm-attainable operators on an invariant

topological spaces via the notion of open covers and characterized their properties. The results obtained are useful in

mathematical physics and quantum information theory.
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