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1. Introduction

Let f be a lower semicontinuous, proper and convex function on a Hilbert H. Moreau introduced and studied the approxi-

mation Moreau-Yosida fλ defined by

fλ(x) := inf
z

{
f(z) +

1

2λ
‖ x− z ‖2

}
, ∀ x ∈ H, ∀ λ > 0,

as well as the proximal mapping proxλf defined by:

proxλf (x) := arg min
z

{
f(z) +

1

2λ
‖ x− z ‖2

}
.

fλ regulates f and has several important properties that make it very useful in optimization theory; it provides numerical

methods for solving convex optimization problems, including the algorithme of the proximal point [3,10]. In the same vein,

where H = Rp, Teboulle [11,12] introduced a class of approximations, replacing the quadratic kernel with a so-called entropic

kernel Dh(., .) defined by:

Dh(x, y) := h(x)− h(y)− 〈x− y,∇h(y)〉.

Thus, he defined the entropic approximation by:

fhλ(x) := inf
z

{
f(z) + λ−1Dh(z, x)

}
,

and studied some properties of this function where h is a function of Legendre. On this labor we put in evidence the

properties of regularization and approximation of those approximates , while Dh(., .) is not a distance.This study covers
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Entropic Approximation

most of the approximate properties of Moreau-Yosida, however the contraction of the operator proxhλf is realized only under

reinforced conditions on h or on f. This study has a determining role for the study of the entropic proximal algorithms

[7,11,12]

xn := arg min
z

{
f(z) +

1

λn
Dh(z, xn−1)

}
, λn > 0.

In the section 2, we remind the fundamental properties of the approximate fλ. and of the proximal mapping proxλf . In

section the 3, we introduce the set of functions of Legendre L(C); the set of Bregman’s functions B(S) as well as the set

C(S) which is very useful for the convergence of inexact entropic proximal algorithms. We give in section 4 some examples

of functions of these three sets. In the section 5, we study fhλ and proxhλf , especially in the case where h is such as

Im∇h = Rp, condition realised for most interesting kernel. Our notation is fairly standart; 〈., .〉 is the scalar product on H;

and the associated norm ‖.‖. The closure of the set C (interior, relative interior) by C (intC , riC, respectively). For any

convex function f, we denote by :

(1). domf = {x ∈ H; f(x) < +∞} its effective domain,

(2). f(.) = supx{〈., x〉 − f(x)} its conjugate,

(3). ∂εf(.) = {v, f(y) ≥ f(.) + 〈v, y − .〉 − ε, ∀ y} its ε-subdifferential

(4). Argmin
x∈H

= {x ∈ H; f(x) = inf
H
f} its Argmin.

2. Approximation of Moreau-Yosida

Let Γ0(H) set of proper lower semicontinuous convex functions f : H → R. In this section we suppose that f ∈ Γ0(H), and

we remind the properties of approximation of Moreau-Yosida.

Proposition 2.1 ([1]). Let x ∈ H and λ > 0

(1). proxλf (x) exist and unique.

(2). Jfλ (x) := proxλf (x) = (I + λ∂f)−1(x) where I is the identity operator of H.

(3). Afλ(x) :=

(
I−Jf

λ
λ

)
(x) ∈ ∂f(Jfλ (x)).

(4). The operator Jfλ is contractor, i.e. ∀ x, x
′
∈ H, ‖ Jfλ (x)− Jfλ (x

′
) ‖≤‖ x− x

′
‖.

Proposition 2.2 ([1]). fλ is Frchet differentiable on H and ∇fλ(x) = Afλ(x), ∀x ∈ H.

Proposition 2.3 ([1]). Let f ∈ Γ0(H), for all x ∈ domf , we have the following properties:

(1). Jfλ (x) converges strongly to x if λ→ 0,

(2). f(Jfλ (x))→ f(x) if λ→ 0.

3. Entropic Distances

In this section, we introduce the set of functions of Legendre L(C) for H = Rp, the set of Bregman’s functions B(S) thus

a new set C(S) where the role is determinant for the convergence of the inexact proximal algorithms. We then study the

class of the kernels of Dh(., .) defined by:

Dh(x, y) = h(x)− h(y)− 〈x− y,∇h(y)〉.
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Definition 3.1 ([9]). Let C be a convex not empty of Rp

(1). A convex function h : Rp →]−∞,+∞] is of Legendre on C if it verifies the three following conditions:

(a). C = int (domh)

(b). h is differentiable on C

(c). lim ‖ ∇h(xi) ‖= +∞, for any sequence {xi} of C that converges towards a boundary point of C.

(2). The class of strictly convex functions verifying a, b and c is called the class of Legendre’s functions on C and denoted

by L(C).

(3). A regular convex function on Rp (ie: finite and differentiable) is in particular essentially regular; the set of those

functions are denoted by L(Rp).

(4). h is co-finite if : domh∗ = Rp.

Proposition 3.2 ([9]). Let h ∈ L(Rp).

h is co-finite ⇔ lim
‖xi‖−→+∞

‖∇h(xi)‖ = +∞

Proposition 3.3 ([9]). Let h ∈ L(C).

(1). h∗ ∈ L(C∗) where C∗ = int(domh∗).

(2). ∇h∗ = (∇h)−1.

(3). h∗(∇h(z)) = 〈z,∇h(z)〉 − h(z).

Let S be an convex open subset of Rp and h : S → R. Let us consider the following hypotheses:

H1: h is continuously differentiable on S.

H2: h is continuous and strictly convex on S.

H3: ∀ r ≥ 0, ∀x ∈ S,∀ y ∈ S, the sets L1(x, r) and L2(y, r) are bounded where:

L1(x, r) = {y ∈ S/Dh(x, y) ≤ r}

L2(y, r) = {x ∈ S/Dh(x, y) ≤ r}.

H4: If {yk}k ⊂ S is such as yk → y∗ ∈ S , so Dh(y∗, yk)→ 0.

H5: If {xk}k ⊂ S is such as {Y k}k ⊂ S are such as:

yk −→ y∗ ∈ S , {xk}k is bounded, and Dh(xk, yk) −→ 0, then xk −→ y∗.

H6: If {xk}k and {yk}k are two sequences of S such as:

Dh(xk, yk) −→ 0 and xk −→ x∗ ∈ S, then yk −→ x∗.

H7: Im∇h = Rp.

Definition 3.4.

(1). h : S → R is a Bregman function on S or ”D-function” if h verify H1, H2, H3, H4 and H5.
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(2). Dh(., .) : SXS → R such us : ∀ x ∈ S,∀ y ∈ S

Dh(x, y) = h(x)− h(y)− 〈x− y,∇h(y)〉

is called entropic distance if h is a Bregman function. We put:

A(S) = {h : S → R verifying H1 and H2}

B(S) = {h : S → R verifying H1, H2, H3, H4 and H5}

C(S) = {h : S → R verifying H1, H2, H3, H4 and H6}.

If h ∈ A(Rp), then the hypotheses H4 and H5 are verified.

Proposition 3.5. Let us assume:

(1). h ∈ A(S),

(2). h is strongly convex on S with parametr α.

Then,

(a). ∀ x ∈ S,∀ y ∈ S , Dh(x, y) ≥ α
2
‖x− y‖2.

(b). The hypotheses H5 and H6 are verified.

Proof.

(a). By virtue of the differentiability of h and 2, we have:

∀ u, v ∈ S , 〈∇h(u)−∇h(v), u− v〉 ≥ α‖u− v‖2. (1)

For x ∈ S and y ∈ S, for all t ∈ [0, 1[ , y + t(x− y) ∈ S. Let k : [0, 1]→ R, the function defined by:

k(t) = h(y + t(x− y)). (2)

k is a derivable convex and

k
′
(t) = 〈∇h(y + t(x− y)), x− y〉.

Then

k(1) = k(0) +

∫ 1

0

k
′
(t)dt,

that means;

h(x)− h(y)− 〈∇h(y), x− y〉 =

∫ 1

0

〈∇h(y + t(x− y))−∇h(y), x− y〉dt. (3)

From (1), Dh(x, y) ≥ α
∫ 1

0
tdt‖x− y‖2, what establishes the wanted inequality.

(b). We get: Dh(x, y) ≥ α
2
‖x− y‖2. We replace x by xk and y by yk in the previous inequality; we obtain then:

Dh(xk, yk) ≥ α

2
‖x− y‖2.

If Dh(xk, yk) → 0 and yk → y∗ ∈ S then xk → y∗ i.e. H5. If Dh(xk, yk) → 0 and xk → x∗ ∈ S then yk → y∗ , i.e.

H6.
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Proposition 3.6 ([5]). If h ∈ A(S); then:

Dh(x, y) =

 0 if x = y,

> 0 if x 6= y

Remark 3.7. Dh(., .) is not a distance because the properties of the symmetry and the triangle inequality are not verified.

In [5], it was proven that Dh(., .) is symmetric in the unique case where h is defined by h(x) = xTQx+ qTx, q ∈ Rp where

Q a squared matrix of order p symmetric and positive definite.

Proposition 3.8. Let h and h
′

verify H1.

∀ λ,Dλh+h′ (., .) = λDh(., .) +Dh′ (., .).

Proposition 3.9. Let h ∈ A(s) such as;

(1). h strongly convex on S with parameter α.

(2). It exist β > 0 such as: ‖∇h(x)−∇h(y)‖ ≤ β‖x− y‖, ∀x, y ∈ S.

Then:

∀ x ∈ S,∀ y ∈ S, α
2
‖x− y‖2 ≤ Dh(x, y) ≤ β

2
‖x− y‖2.

Lemma 3.10 ([11]). ∀ h ∈ A(S),∀ a ∈ S,∀ b, c ∈ S

Dh(a, b) +Dh(b, c)−Dh(a, c) = 〈a− b,∇h(c)−∇h(b)〉.

Corollary 3.11.

(1). ∀ h ∈ A(S), ∀ a, b ∈ S,

Dh(a, b) +Dh(b, a) ≤ ‖a− b‖‖∇h(a)−∇h(b)‖

(2). Let h ∈ A(S) and let {xk} ⊂ S such as xk −→ x∗ ∈ S , so Dh(x∗, xk) −→ 0 and Dh(xk, x∗) −→ 0.

Proof.

(1). By replacing c by a in the Lemma 3.10, we obtain: Dh(a, b) +Dh(b, a) = 〈a− b,∇h(a)−∇h(b)〉, from when the result.

(2). By replacing a by x∗ and b by xk on (1), we have:

Dh(x∗, xk) +Dh(xk, x∗) ≤ ‖x∗ − xk‖‖∇h(xk)−∇h(x∗)‖,

which results that Dh(xk, x∗) −→ 0 and Dh(x∗, xk) −→ 0.

Proposition 3.12. Let h ∈ A(S). If Im∇h = Rp then h ∈ L(S).

Proof. (a) and (b) of the Definition 3.1 being verified, let’s demontrate that the condition (c) is verified too, which means:

lim
xi→x∗∈Fr(S)

‖∇h(xi)‖ = +∞.
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Let {xi} such as xi → x∗ ∈ Fr(S) = S/S. If lim
xi→x∗∈Fr(S)

‖∇h(xi)‖ 6= +∞ then it would exist a subsequence {∇h(xik )} of

{∇h(xi)} bounded, so it would exist a subsequence {∇h(xin)} of {∇h(xi)} such as

∇h(xin)→ u∗.

Since Im∇h = Rp it exists that u ∈ S, such as ∇h(u) = u∗. We have then;

∇h(xin)→ ∇h(u).

From another part , from the Corollary 3.11,

Dh(u, xin) +Dh(xin , u) ≤ ‖u− xin‖.‖∇h(u)−∇h(xin)‖

⇒ lim
in→∞

Dh(xin , u) = 0

⇒ Dh(x∗, u) = 0

⇒ x∗ = u,

thing which is contradictory with x∗ ∈ S\S since u ∈ S.

4. Examples of Bregman Functions

Example 4.1. If S0 = Rp and h0(x) = 1
2
‖ x ‖2 then Dh0(x, y) = 1

2
‖ x− y ‖2.

Example 4.2. If S1 = Rp++ := {x ∈ Rp/xi > 0, i = 1, . . . , p} and

h1(x) =

i=p∑
i=1

xi log xi − xi; ∀ x ∈ S1,

with the convention : 0 log 0 = 0, then

Dh1(x, y) =

p∑
i=1

xi log
xi
yi

+ yi − xi, ∀ (x, y) ∈ S1XS1.

Example 4.3. If S2 = ]−1, 1[p and h2(x) = −
i=p∑
i=1

√
1− x2i , then:

Dh2(x, y) = h2(x) +

p∑
i=1

1− xiyi√
1− y2i

, ∀ (x, y) ∈ S2XS2.

Proposition 4.4. hi ∈ B(Si) ∩ C(Si) ∩ L(Si), i = 1, 2, 3.

5. Entropic Approximations

On this paragraph, we introduce the entropic approximation defined in a point x ∈ S by:

inf
y∈S
{f(y) + λ−1Dh(y, x)},

thus the proximal entropic mapping defined by

arg min
y∈S
{f(y) + λ−1Dh(y, x)}.

We study the properties of those functions for the class of the functions h belonging at A(S) and verifying H7, covering the

most of the approximation properties of Moreau-Yosida reminded in 2.
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Proposition 5.1. Let f ∈ Γ0(Rp) and h ∈ A(S) such as dom f ∩ S 6= φ. Let x ∈ S and λ > 0 such as:

ri(dom f∗) ∩ int(λ−1(∇h(x)− dom h∗)) 6= φ.

Then, the function: u 7→ f(u) + λ−1Dh(u, x) reaches a minimum in a unique point on S.

Proof. Uniqueness: f(.) + λ−1Dh(., x) is strictly convex thanks to H2.

Existence: For that it’s enough to demonstrate that: ∀r ∈ R,

L(x, r) = {u : f(u) + λ−1Dh(u, x) ≤ r},

which is closed, and bounded when it’s not empty. Let y ∈ ri(dom f∗) ∩ int(λ−1(∇h(x) − dom h∗)). Since ri(dom f∗) ⊂

Im∂f , y ∈ Im∂f , which means: it exists z such as: ∀ u, f(u) ≥ f(z) + 〈u− z, y〉, it follows that ,

L(x, r) ⊂ {u : f(z) + 〈u− z, y〉+ λ−1Dh(u, x) ≤ r}

= {u : h(u)− 〈u,∇h(x)− λy〉 ≤ K},

where K = λ(r − f(z) + 〈z, y〉) + h(x)− 〈x,∇h(x)〉. Let

v := ∇h(x)− λy and g(u) := h(u)− 〈u, v〉.

To show that L(x, r) is bounded brings back then to prove that 0 ∈ int(dom g∗).

g∗(w) = sup
u
{〈w, u〉 − g(u)} = sup

u
{〈w + v, u〉 − h(u)} = h∗(w + v),

consequently,

dom g∗ = dom h∗ − v.

0 ∈ int(dom g∗)⇔ v ∈ int(dom h∗)⇔ ∇h(x)− λy ∈ int(dom h∗)⇔ y ∈ int(λ−1(∇h(x)− dom h∗)).

Theorem 5.2. Let f ∈ Γ0(Rp) and h ∈ A(S) such as dom f ∩ S 6= φ. If one of the two following conditions are verified:

(1). inf
S
f > −∞ and h verify H3.

(2). Im∇h = Rp.

Then for all x ∈ S, for all λ > 0, the function u 7−→ f(u) + λ−1Dh(u, v) reaches it minimum in a unique point on S.

Proof.

(1). As previously, it ’s enought to demonstrate that: ∀ r ∈ R,

L(x, r) := {u : f(u) + λ−1Dh(u, x) ≤ r}

is bounded when it is not empty.

u ∈ L(x, r)⇒f(u) + λ−1Dh(u, x) ≤ r

⇒ Dh(u, x) ≤ λ(r − inf
S
f).

It follows that

L(x, r) ⊂ L2

(
x, λ

(
r − inf

S
f

))
,

thanks to H3, L2

(
x, λ

(
r − inf

S
f

))
is bounded , which leads that L(x, r) is bounded too.
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(2). Im∇h = Rp and Im∇h ⊂ domh∗ ⇒ dom h∗ = Rp. Consequently, the condition of the Proposition 5.1 is verified, for

all x ∈ S and for all λ > 0, whence the desired result.

Definition 5.3. f and h verify the hypotheses of the Theorem 5.2.

(1). The entropic approximation of f compared to h, of parameter λ(λ > 0) is the function defined by :

fhλ(x) := inf
y∈S
{f(y) + λ−1Dh(y, x)}, ∀ x ∈ S.

(2). The application entropic proximal of f comparing to h, of parameter λ is the operator defined by:

hfλ(x) := proxhλf (x) := arg min
y∈S
{f(y) + λ−1Dh(y, x)}, ∀ x ∈ S.

Now, we search at which conditions

hfλ(x) ∈ S, ∀ x ∈ S,

this is in order to verify the effectiveness of algorithms [9].

Theorem 5.4 ([7]). Let f ∈ Γ0(Rp) and h ∈ B(S). If one of the two following conditions are verified:

(1). f is at finite values and inff > −∞

(2). dom f ⊆ S and h verify H7.

Then hfλ(x) ∈ S, ∀ x ∈ S.

From another approach, we are going to improve the condition 2. of this Theorem.

Lemma 5.5. If h ∈ L(S). Then ∀ u ∈ S,

∂(Dh(., u))(x∗) =

 {∇h(x∗)−∇h(u)} if x∗ ∈ S

∅ if not

Proof. Since h is a Legendre function on S, Dh(., u) it is too. By application of Theorem 26.1 [9], ∂(Dh(.;u)) verifies:

−If x∗ ∈ int(dom Dh(., u)) = S then ∂(Dh(., u))(x∗) = {∇(Dh(., u)(x∗)}

Dh(x, u) = h(x)− h(u)− 〈x− u,∇h(u)〉,

h is differentiable on S, so ∇(Dh(., u)(x∗) = ∇h(x∗)−∇h(u).

−If x∗ /∈ S then ∂(Dh(., u))(x∗) = ∅.

Theorem 5.6 ([9]). If f1, f2, . . . , fm are convex and proper functions on Rp, then:

∂(f1, f2 + · · ·+ fm)(x) ⊃ ∂f1(x) + ∂f2(x) + · · ·+ ∂fm(x).

If furthermore, ∩(ri dom fi) 6= ∅, then;

∂(f1, f2 + · · ·+ fm)(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fm(x), ∀ x.
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Theorem 5.7. Let h ∈ L(S) and f ∈ Γ0(Rp) such as ri(dom f) ∩ S 6= ∅. Let x ∈ S and λ > 0 such as ri(dom f∗) ∩

int(λ−1(∇h(x)− dom h∗)) 6= ∅. Then hfλ(x) ∈ S.

Proof. From the Proposition 5.1. hfλ(x) ∈ S. Let’s suppose that hfλ(x) /∈ S.

hfλ(x) = arg min
y∈S
{f(y) + λ−1Dh(y, x)},

which leads to

0 ∈ ∂(f + λ−1Dh(., x))(hfλ(x)).

ri(dom f) ∩ ri(dom Dh(., x)) = ri(dom f) ∩ ri(S) = ri(dom f) ∩ S 6= ∅, and from the Theorem 5.6;

0 ∈ ∂f(hfλ(x)) + λ−1∂(Dh(., x))(hfλ(x)).

It follows that: ∃ u : u ∈ ∂f(hfλ(x)). Such as:

−λu ∈ ∂(Dh(., x)(hfλ(x)).

Is in contradiction with the Lemma 5.5.

Corollary 5.8. Let h ∈ A(S) and f ∈ Γ0(Rp) such as:

(1). ri(dom f) ∩ S 6= φ,

(2). Im∇h = Rp.

Then hfλ(x) ∈ S, ∀ x ∈ S, ∀ λ > 0.

Proof. We get, Im∇h ⊂ dom h∗, since Im∇h = Rp, we deduce from this, that dom h∗ = Rp. Consequently;

ri(dom f∗) ∩ int(λ−1(∇h(x)− dom h∗)) 6= ∅, ∀ x ∈ S,∀ λ > 0.

By application of Theorem 5.7 and of the Proposition 3.10, we obtain the result.

Remark 5.9. The Theorem 5.4, 2. appears then as a consequence of Corollary 5.8 it brings a prove at the affirmation below

of Chen and Teboulle on [11]:

If ridom f ⊂ S and Im∇h = Rp, then hfλ(x) ∈ S, for all x ∈ S. We give the properties of the proximal entropic function

hfλ such as propositions.

Proposition 5.10. Let A := {x ∈ S, hfλ(x) ∈ S}. If ri(dom f) ∩ S 6= ∅, then

(1).
∇h(x)−∇h(hf

λ
(x))

λ
∈ ∂f(hfλ(x)), ∀ x ∈ A;

(2). hfλ = (∇h+ λ∂f)−1o∇h, on A.

Proof.

(1). hfλ(x) = argu min{f(u) + λ−1Dh(u, x)} ⇔ 0 ∈ ∂
[
f(.) + λ−1Dh(., x)

]
(hfλ(x)). As ri(dom f)∩S 6= ∅, from the Theorem

5.6,

0 ∈ ∂f(hfλ(x)) + λ−1∇(Dh(., x))(hfλ(x)),

thanks to Lemma 5.5, we deduct (1).
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(2). (1)⇔ ∇h(x) ∈ ∇h(hfλ(x))+λ∂f(hfλ(x))⇔ hfλ(x) ∈ (∇h+λ∂f)−1∇h(x). f is convex and h is strictly convex, ∇h+λ∂f

is then a strictly monotone operator. (∇h+λ∂f)−1 is then a univocale operator and; hfλ(x) = (∇h+λ∂f)−1(∇h(x)).

Remark 5.11. Replacing h by h0 at the Proposition 5.10, we obtain the result of the Proposition 2.2.

Proposition 5.12. We suppose that h and f verify the conditions of Corollary 5.8.

(1). If Argmin f 6= ∅ then, for all x∗ ∈ Argmin f, for all x ∈ S, we get:

Dh(x∗, hfλ(x)) +Dh(hfλ(x), x) ≤ Dh(x∗, x) (4)

(2). If inff > −∞ then, for all ε > 0, for all x∗ such as 0 ∈ ∂εf(x∗), for all x ∈ S, we get:

Dh(x∗, hfλ(x)) +Dh(hfλ(x), x) ≤ Dh(x∗, x) + ε. (5)

Proof.

(1). From (1) of the Proposition 5.10,

∇h(x)−∇h(hfλ(x))

λ
∈ ∂f(hfλ(x)) and 0 ∈ ∂f(x∗)

∂f is the monotone operator, so;

〈∇h(x)−∇h(hfλ(x)), x∗ − hfλ(x)〉 ≤ 0, (6)

and by vertue of Lemma 3.10, we get:

Dh(x∗, hfλ(x)) +Dh(hfλ(x), x) ≤ Dh(x∗, x).

(2). From a similar way to (1),

〈∇h(x)−∇h(hfλ(x)), x∗ − hfλ(x)〉 ≤ ε,

whence the inequality (5).

Corollary 5.13. We suppose that h anf f verify the conditions of Corollary 5.8. If inf(f) > −∞ and h verifies H3, then

hfλ : S −→ S is a continued application.

Proof. Let x ∈ S and xn ∈ S such as xn −→ x, let’s show that hfλ(xn) −→ hfλ(x). Let x∗ such as 0 ∈ ∂εf(x∗), by replacing

x by xn on (5), we obtain:

Dh(x∗, hfλ(xn)) +Dh(hfλ(xn), xn) ≤ Dh(x∗, xn) + ε.

We get then

Dh(x∗, hfλ(xn)) ≤ Dh(x∗, xn) + ε.

As xn −→ x ∈ S,Dh(x∗, xn) −→ Dh(x∗, x), so the previous inequality leads that the sequence {Dh(x∗, hfλ(xn))} is bounded.

From H3, we deduce that {hfλ(xn)} is bounded too. Let {hfλ(xni)}n a subsequence of {hfλ(xn)}n such as hfλ(xni) −→ u, we

get,

f(hfλ(xni)) + λ−1Dh(hfλ(xni), xni) ≤ f(v) + λ−1Dh(v, xni)
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Passing by at the limit, f(u) + λ−1Dh(u, x) ≤ f(v) + λ−1Dh(v, x), which means

u = hfλ(x).

hfλ(x) is unique, whence hfλ(xn) −→ hfλ(x) with an enhancement of conditions on h or f, we can establish the contradiction

of the operator hfλ for λ large enough.

Proposition 5.14. We suppose that h and f verify the conditions of the Corollary 5.8. If furthermore h or f is strongly

convex with parameter α, we have then,

‖hfλo(∇h)−1(x)− hfλ ◦ (∇h)−1(y)‖ ≤ 1

α
‖x− y‖.

Proof. hfλ = (∇h+ λ∂f)−1 ◦ ∇h⇒ hfλ ◦ (∇h)−1 = (∇h+ λ∂f)−1. ∇h+ λ∂f is a strongly convex operator, from [10] we

have the inequality.

Proposition 5.15. We suppose that h and f verify the conditions of the Corollary 5.8. furthermore, h verifies:

∃β >,∀ x, y ∈ S, ‖∇h(x)−∇h(y)‖ ≤ β‖x− y‖.

(a). If f is strongly convex with parameter α(α > 0), then,

∀ x, y ∈ S, ‖hfλ(x)− hfλ(y)‖ ≤ β

αλ
‖x− y‖.

If β
α
≤ λ, then hfλ is a contraction.

(b). If h is strongly convex on S with parameter α(α > 0), then:

∀ x, y ∈ S, ‖hfλ(x)− hfλ(y)‖ ≤ β

α
‖x− y‖.

If β = α, then hfλ is a contraction.

Proof.

(a). We put hfλ(x) = x∗ and hfλ(y) = y∗. From the Proposition 5.10,

∇h(x)−∇h(x∗)

λ
∈ ∂f(x∗),

∇h(y)−∇h(y∗)

λ
∈ ∂f(y∗).

f is strongly convex with parameter α, then

〈∇h(x)−∇h(x∗)−∇h(y) +∇h(y∗), x∗ − y∗〉 ≥ αλ‖x∗ − y∗‖2

Which equals at;

〈∇h(x)−∇h(y), x∗ − y∗〉 ≥ αλ‖x∗ − y∗‖2 + 〈∇h(x∗)−∇h(y∗), x∗ − y∗〉

⇒〈∇h(x)−∇h(y), x∗ − y∗〉 ≥ αλ‖x∗ − y∗‖2

⇒ αλ‖x∗ − y∗‖2 ≤ ‖∇h(x)−∇h(y)‖.‖x∗ − y∗‖

⇒ ‖x∗ − y∗‖2 ≤ β

λα
‖x∗ − y∗‖‖x− y‖

⇒ ‖x∗ − y∗‖ ≤ β

λα
‖x− y‖

If β
α
≤ λ then β

λα
≤ 1 and then ‖hfλ(x)− hfλ(y)‖ ≤ ‖x− y‖.
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(b). ∂f is a monoyone operator, then;

〈∇h(x)−∇h(x∗)−∇h(y) +∇h(y∗), x∗ − y∗〉 ≥ 0

⇒ 〈∇h(x)−∇h(y), x∗ − y∗〉 ≥ 〈∇h(x∗)−∇h(y∗), x∗ − y∗〉

⇒ 〈∇h(x)−∇h(y), x∗ − y∗〉 ≥ α‖x∗ − y∗‖2.

As the same as previous, we conclude that : ‖x∗ − y∗‖ ≤ β
λ
‖x− y‖.

Theorem 5.16.

(a). Let h ∈ A(S) and f ∈ Γ0(Rp) such as ri(dom f) ∩ S 6= ∅. Then: ∀ x ∈ S,∀ λ > 0, we get :

fhλ(x) + (f∗ � (λ−1h)∗)(λ−1∇h(x)) = λ−1(〈x,∇h(x)〉 − h(x)). (7)

Where � is inf concvolution.

(b). Let h ∈ L(S), f ∈ Γ0(Rp), x ∈ S and λ > 0 verifying the theorem conditions 5.7, we get :

(i). inf
u
{f(u) + λ−1Dh(u, x)} + inf

v
{f∗(v) + λ−1h∗(∇h(x) − λv)} = λ−1h∗(∇h(x)). Those two infima are finite and

achieved respectively in u∗ and v∗ such as :

∇h(x) = ∇h(u∗) + λv∗. (8)

(ii). If dom h∗ = Im∇h, then the second infimum is achieved in a unique point v∗ verifying (8).

Proof.

(a). fhλ(x) = inf
u
{f(u) + λ−1Dh(u, x)}

= − sup{〈λ−1∇h(x), u〉 − (f(u) + λ−1h(u))}+ λ−1(〈x,∇h(x)〉 − h(x))

⇒ fhλ(x) + (f + λ−1h)∗(λ−1∇h(x)) = λ−1(〈x,∇h(x)〉 − h(x)).

As ri(dom f)
⋂
S 6= ∅, from the Theorem 16, 4 [9], we have

(f + λ−1h)∗(λ−1∇h(x)) = (f∗ � (λ−1h)∗)(λ−1∇h(x)),

which leads the equality (7)

(b). (i). By application of the Proposition 5.10, we get :

u∗ = hfλ(x)⇔∇h(x)−∇h(u∗)

λ
∈ ∂f(u∗)

⇔u∗ ∈ ∂f∗
(
∇h(x)−∇h(u∗)

λ

)
⇔0 ∈ ∂f∗

(
∇h(x)−∇h(u∗)

λ

)
−∇h∗(∇h(u∗))

(∇h∗ = (∇h)−1 because h ∈ L(S)). Let v∗ such as : ∇h(x) = ∇h(u∗) + λv∗,

u∗ = hfλ(x)⇒0 ∈ ∂f∗(v∗)−∇h∗(∇h(x)− λv∗)

⇒v∗ ∈ Argmin
v
{f∗(v) + λ−1h∗(∇h(x)− λv)}

which establishes (8).
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(ii). Let v∗ such as :

v∗ ∈ Argmin
v
{f∗(v) + λ−1h∗(∇h(x)− λv)}.

We deduct that

0 ∈ ∂f∗(v∗)−∇h∗(∇h(x)− λv∗).

Since ∇h(x)− λv∗ ∈ dom h∗ = Im∇h, it exists u∗ ∈ S such as

∇h(x)− λv∗ = ∇h(u∗)

We have then :

0 ∈ ∂f∗
(
∇h(x)−∇h(u∗)

λ

)
−∇h∗(∇h(u∗))

⇒ u∗ ∈ ∂f∗
(
∇h(x)−∇h(u∗)

λ

)
⇒ u∗ = hfλ(x).

Which result the uniqueness of v∗.

Until now, we study the properties of the entropic approximation fhλ.

Proposition 5.17.

(1). If h ∈ A(S), then; ∀ λ ≥ µ > 0, ∀ x ∈ S, fhλ(x) ≤ fhµ(x) ≤ f(x).

(2). If h and f verify the hypotheses of Corollary 5.8, then: inf
S
fhλ = inf

S
f .

Proof.

(1). ∀ y ∈ S,∀ x ∈ S,Dh(y, x) ≥ 0. Therefore

µ ≤ λ⇒λ−1Dh(y, x) ≤ µ−1Dh(y, x), ∀ y ∈ S,∀ x ∈ S

⇒ fhλ(x) ≤ fhµ(x).

Moreover:

fhµ(x) ≤ f(y) + µ−1Dh(y, x), ∀ y ∈ S.

Replacing y by x, we obtain

fhµ(x) ≤ f(x), ∀ x ∈ S.

(2). inf
x∈S

fhλ(x) = inf
x∈S
{ inf
u∈S

(f(u) + λ−1Dh(u, x))}

= inf
x∈S
{ inf
u∈S

(f(u) + λ−1Dh(u, x))}

= inf
u∈S

inf
x∈S
{(f(u) + λ−1Dh(u, x)}

= inf
u∈S
{(f(u) + inf

x∈S
λ−1Dh(u, x)}.

inf
x∈S

λ−1Dh(u, x) = 0 for u ∈ S, whence inf
S
fhλ = inf

S
f .
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Proposition 5.18. We suppose that h and f verify the hypotheses of Corollary 5.13. If h is twice Continuously Differentiable

on S and Dh(., .) and jointly convex; then fhλ is continually differentiable, convex and such as:

∀ x ∈ S,∇fhλ(x) = λ−1H(x)(x− hfλ(x)) where H = ∇2h

Proof. Dh(., .) is jointly convex and f is convex , fhλ is then convex. Lets show that:

∀ x ∈ S, ∂fhλ(x) ⊂ ∂(λ−1Dh(x∗, .))(x) when x∗ = hfλ(x). (9)

∀ x ∈ S, fhλ(x) = f(x∗) + λ−1Dh(x∗, x). Let y ∈ S, we get:

fhλ(y) = f(x∗ + λ−1Dh(x∗, y).

Let u ∈ ∂fhλ(x), we have:

fhλ(y) ≥ fhλ(x) + 〈u, y − x〉

x∗ = hfλ(x) ∈ dom f ⇒ λ−1Dh(x∗, y) ≥ λ−1Dh(x∗, x) + 〈u, y − x〉 which means: λu ∈ ∂(Dh(x∗, .))(x), which shows (9). h

is two times conditionally differentiable, therefore:

λu = ∇(Dh(x∗, .))(x)

λu = −∇2h(x)(x∗ − x)

u = λ−1H(x)(x− x∗).

Consequently, ∇fhλ(x) = λ−1H(x)(x− hfλ(x)).

Proposition 5.19. We suppose that h and f verify the hypotheses of the Corollary 5.8. If furthermore,

(1). h is twice Continuously Differentiable on S and Dh(., .) is convex jointly,

(2). H is defined positive.

Then Argmin
S
f = Argmin

S
fhλ.

Proof. Let u∗ ∈ Argmin
S
fhλ.

fhλ(u∗) = inf
S
fhλ ⇔ 0 ∈ ∂fhλ(u∗)

⇔ 0 = ∇fhλ(u∗)

⇔λ−1H(u∗)(u∗ − hfλ(u∗)) = 0.

Since H is defined positive, we from then deduct that u∗ = hf∀(u
∗). From the Proposition 5.10, we have:

u∗ = hfλ(u∗)⇒ 0 ∈ ∂f(u∗)⇒ u∗ ∈ arg min
S
f.

We get then: Argmin
S
fhλ ⊂ Argmin

S
f reciprocally, let x∗ such that f(x∗) = inf

S
f .

f(x∗) = inf
S
fhλ ≤ fhλ(x∗) ≤ f(x∗).

Thus we have f(x∗) = inf
S
fhλ = fhλ(x∗), which complete the demonstration.
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Proposition 5.20. Let f ∈ Γ0(Rp) and h ∈ A(S) verifying H3 and H7.

(a). ∀ x ∈ S ∩ domf, lim
λ−→0

proxhλf (x) = x

(b). ∀ x ∈ S, lim
λ−→0

fhλ(x) = f(x).

Proof.

(a). From the Theorem 5.2, proxhλf (x) := xλ ∈ S ∩ dom f , we have: fhλ(x) = f(xλ) + λ−1Dh(xλ, x), and fh1(x) ≤ f(u) +

Dh(u, x). Replacing u by xλ on the previous inequality, we deduce that: fh1(x)−Dh(xλ, x) + λ−1Dh(xλ, x) ≤ fhλ(x)

or

Dh(xλ, x)(λ−1 − 1) ≤ fhλ(x)− fh1(x)

Dh(xλ, x)(1− λ) ≤ λ [fhλ(x)− fh1(x)]

For 0 < λ < 1,

0 ≤ Dh(xλ, x) ≤ λ

1− λ [f(x)− fh1(x)]

When λ −→ 0, Dh(xλ, x) −→ 0. From H3, the generalized sequence {xλ}λ∈I is bounded. Let x∗ an adherence value of

{xλ}λ∈I , it exists then a sub-sequence {xα(λ)} such as xα(λ) −→ x∗. We get:

Dh(xα(λ), x) = h(xα(λ))− h(x)− 〈x− xα(λ),∇h(x)〉,

Whence, by passage to the limit, Dh(x∗, x) = 0. That means that x∗ = x and therefore, xλ −→ x as λ −→ 0.

(b). We get: f(xλ) ≤ fhλ(x) ≤ f(x).

xλ −→ x and fs.c.i.⇒ f(x) ≤ limf(xλ) ≤ limfhλ(x) ≤ limfhλ(x) ≤ f(x)⇒ lim
λ−→0

fhλ(x) = f(x).

If h is strongly convex on the module 1, then the approximation of f by fhλ is better than by fλ, as the following

proposition shows.

Proposition 5.21. Let h, h
′
∈ A(S)

(1). If h− h′ is a convex function, then: ∀ x ∈ S,∀ λ > 0, fh′λ(x) ≤ fhλ(x) ≤ f(x).

(2). If h is strongly convex of module 1, then: ∀ x ∈ S,∀ λ > 0, fλ(x) ≤ fhλ(x) ≤ f(x).

Proof.

(1). Let x ∈ S and λ > 0. By value of the Proposition 3.8, ∀ y ∈ S,Dh−h′(y, x) = Dh(x, y) −Dh′(y, x). Since h − h′ is a

convex function, we get: ∀ y ∈ S,Dh−h′(y, x) ≥ 0. We deduct that ∀ y ∈ S,Dh′(y, x) ≤ Dh(y, x). From this inequality,

we obtain ∀ y ∈ S, f(y) + λ−1Dh′(y, x) ≤ f(y) + λ−1Dh(y, x). We have then fh′λ(x) ≤ fhλ(x). According to the

Proposition 5.17 (1), we deduct the wanted inequality.

(2). h is strongly convex on the module 1, means that h - h0 is convex . Consequently, from (1), we have fh
0λ

(x) ≤ fhλ(x) ≤

f(x). fh0λ = fλ, whence the result.

37



Entropic Approximation

6. Conclusion

Replacing h by h0 in all the result developed previously, we find all the properties of regularity and approximation given

by Moreau and Yosida in spite of the non-symmetry of Dh(., .) and the absence of the triangular inequality. These results

make it easy to establish the convergence of the algorithmic type :

xn := arg min
z

{
f(z) +

1

λn
Dh(z, xn−1)

}
, λn > 0.

This sequence converges towards a minimum of f.

References

[1] H. Attouch, Variational convergence for functions and operator, Pitman Advanced Publishing Program, (1984).

[2] H. Attouch and R. J. B. Wets, Isometrie for the Legendre-Fencheltransform, Trans .A.M.S., 296(1986), 33-60.

[3] M. A. Bahraoui, Diagonal Bundle Methods for Convex Minimization, Theoritical Aspect, Int. J. Math. And Appl.,

6(4)(2018), 5157.

[4] H. Brezis, Oprateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies,

5(1973).

[5] Y. Censor and A. Lent, An iterative row action method for interval convex programming, Journal of Optimization

Theory and Applications, 34(3)(1981), 321-353.

[6] A. R. De Pierro and A. N. Iusem, A relaxed version of Bregman’s method for convex programming, Journal of Opti-

mization theory and Application, 5(3)(1986), 421-440.

[7] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming,

Mathematics of Operations Research, 18(1(1993), 202-226.

[8] J. J. Moreau, Proximit et dualit dans un espace Hilbertien, Bull.Soc. Math. France, 93(1965), 273-299.

[9] R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, Princeton University Press, (1970).

[10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization,

14(5)(1975), 877-898.

[11] M. Teboulle and Gong Chen, Convergence analysis of a proximal-like minimization algorithm using Bregman function,

SIAM Journal on Optimization, 3(3)(1993), 538-543.

[12] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, Mathematics of Operations

Research, 17(3)(1992), 670-690.

38


	Introduction
	Approximation of Moreau-Yosida
	Entropic Distances
	Examples of Bregman Functions 
	Entropic Approximations
	Conclusion
	References

