

International Journal of Mathematics And its Applications

Entropic Approximation

S. Kabbadj^{1,*}

- 1 Department of Mathematics, Faculty of Sciences of Meknes, B.P. 11201, Marocco.
- Abstract: In this article, we study the theoretical aspect of the entropic approximations of a convex function on R^p , we put in evidence it properties of regulirization and approximation of those approximates, we find the most of the approximal properties of Moreau-Yosida.
- Keywords: Convex minimization, Approximation of Moreau-Yosida, Bregman's function, Legendre's function, Entropic approximation.

© JS Publication.

1. Introduction

Let f be a lower semicontinuous, proper and convex function on a Hilbert H. Moreau introduced and studied the approximation Moreau-Yosida f_{λ} defined by

$$f_{\lambda}(x) := \inf_{z} \left\{ f(z) + \frac{1}{2\lambda} \parallel x - z \parallel^{2} \right\}, \ \forall \ x \in H, \ \forall \ \lambda > 0,$$

as well as the proximal mapping $prox_{\lambda f}$ defined by:

$$prox_{\lambda f}(x) := \arg\min_{z} \left\{ f(z) + \frac{1}{2\lambda} \parallel x - z \parallel^2 \right\}.$$

 f_{λ} regulates f and has several important properties that make it very useful in optimization theory; it provides numerical methods for solving convex optimization problems, including the algorithme of the proximal point [3,10]. In the same vein, where $H = R^p$, Teboulle [11,12] introduced a class of approximations, replacing the quadratic kernel with a so-called entropic kernel $D_h(.,.)$ defined by:

$$D_h(x,y) := h(x) - h(y) - \langle x - y, \nabla h(y) \rangle.$$

Thus, he defined the entropic approximation by:

$$f_{h\lambda}(x) := \inf \left\{ f(z) + \lambda^{-1} D_h(z, x) \right\},\,$$

and studied some properties of this function where h is a function of Legendre. On this labor we put in evidence the properties of regularization and approximation of those approximates , while $D_h(.,.)$ is not a distance. This study covers

 $^{^{*}}$ E-mail: kabbajsaid63@yahoo.com

most of the approximate properties of Moreau-Yosida, however the contraction of the operator $prox_{\lambda f}^{h}$ is realized only under reinforced conditions on h or on f. This study has a determining role for the study of the entropic proximal algorithms [7,11,12]

$$x^{n} := \arg\min_{z} \left\{ f(z) + \frac{1}{\lambda_{n}} D_{h}(z, x^{n-1}) \right\}, \lambda_{n} > 0.$$

In the section 2, we remind the fundamental properties of the approximate f_{λ} . and of the proximal mapping $prox_{\lambda f}$. In section the 3, we introduce the set of functions of Legendre L(C); the set of Bregman's functions B(S) as well as the set C(S) which is very useful for the convergence of inexact entropic proximal algorithms. We give in section 4 some examples of functions of these three sets. In the section 5, we study $f_{h\lambda}$ and $prox_{\lambda f}^{h}$, especially in the case where h is such as $Im\nabla h = R^{p}$, condition realised for most interesting kernel. Our notation is fairly standart; $\langle ., . \rangle$ is the scalar product on H; and the associated norm $\|.\|$. The closure of the set C (interior, relative interior) by \overline{C} (intC, riC, respectively). For any convex function f, we denote by :

- (1). $dom f = \{x \in H; f(x) < +\infty\}$ its effective domain,
- (2). $f(.) = \sup_{x} \{ \langle ., x \rangle f(x) \}$ its conjugate,
- (3). $\partial_{\epsilon} f(.) = \{v, f(y) \ge f(.) + \langle v, y . \rangle \epsilon, \forall y\}$ its ε -subdifferential
- (4). Arg min $_{x \in H} = \{x \in H; f(x) = \inf_{H} f\}$ its Argmin.

2. Approximation of Moreau-Yosida

Let $\Gamma_0(H)$ set of proper lower semicontinuous convex functions $f: H \to \overline{R}$. In this section we suppose that $f \in \Gamma_0(H)$, and we remind the properties of approximation of Moreau-Yosida.

Proposition 2.1 ([1]). Let $x \in H$ and $\lambda > 0$

- (1). $prox_{\lambda f}(x)$ exist and unique.
- (2). $J^f_{\lambda}(x) := prox_{\lambda f}(x) = (I + \lambda \partial f)^{-1}(x)$ where I is the identity operator of H.
- (3). $A_{\lambda}^{f}(x) := \left(\frac{I-J_{\lambda}^{f}}{\lambda}\right)(x) \in \partial f(J_{\lambda}^{f}(x)).$
- (4). The operator J_{λ}^{f} is contractor, i.e. $\forall x, x' \in H$, $\parallel J_{\lambda}^{f}(x) J_{\lambda}^{f}(x') \parallel \leq \parallel x x' \parallel$.

Proposition 2.2 ([1]). f_{λ} is Frechet differentiable on H and $\nabla f_{\lambda}(x) = A_{\lambda}^{f}(x), \forall x \in H$.

Proposition 2.3 ([1]). Let $f \in \Gamma_0(H)$, for all $x \in dom f$, we have the following properties:

- (1). $J^f_{\lambda}(x)$ converges strongly to x if $\lambda \to 0$,
- (2). $f(J^f_{\lambda}(x)) \to f(x)$ if $\lambda \to 0$.

3. Entropic Distances

In this section, we introduce the set of functions of Legendre L(C) for $H = R^p$, the set of Bregman's functions B(S) thus a new set C(S) where the role is determinant for the convergence of the inexact proximal algorithms. We then study the class of the kernels of $D_h(.,.)$ defined by:

$$D_h(x,y) = h(x) - h(y) - \langle x - y, \nabla h(y) \rangle$$

Definition 3.1 ([9]). Let C be a convex not empty of \mathbb{R}^p

- (1). A convex function $h: \mathbb{R}^p \to]-\infty, +\infty]$ is of Legendre on C if it verifies the three following conditions:
 - (a). C = int (domh)
 - (b). h is differentiable on C
 - (c). $\lim \|\nabla h(x_i)\| = +\infty$, for any sequence $\{x_i\}$ of C that converges towards a boundary point of C.
- (2). The class of strictly convex functions verifying a, b and c is called the class of Legendre's functions on C and denoted by L(C).
- (3). A regular convex function on \mathbb{R}^p (ie: finite and differentiable) is in particular essentially regular; the set of those functions are denoted by $L(\mathbb{R}^p)$.
- (4). *h* is co-finite if : $domh^* = R^p$.

Proposition 3.2 ([9]). Let $h \in L(\mathbb{R}^p)$.

h is co-finite
$$\Leftrightarrow \lim_{\|x_i\| \to +\infty} \|\nabla h(x_i)\| = +\infty$$

Proposition 3.3 ([9]). Let $h \in L(C)$.

- (1). $h^* \in L(C^*)$ where $C^* = int(domh^*)$.
- (2). $\nabla h^* = (\nabla h)^{-1}$.

(3).
$$h^*(\nabla h(z)) = \langle z, \nabla h(z) \rangle - h(z).$$

Let S be an convex open subset of \mathbb{R}^p and $h: \overline{S} \to \mathbb{R}$. Let us consider the following hypotheses:

 H_1 : h is continuously differentiable on S.

 H_2 : h is continuous and strictly convex on \overline{S} .

 H_3 : $\forall r \ge 0, \forall x \in \overline{S}, \forall y \in S$, the sets $L_1(x, r)$ and $L_2(y, r)$ are bounded where:

$$L_1(x,r) = \{ y \in S/D_h(x,y) \le r \}$$
$$L_2(y,r) = \{ x \in \overline{S}/D_h(x,y) \le r \}.$$

$$\begin{split} &H_4: \text{ If } \{y^k\}_k \subset S \text{ is such as } y^k \to y^* \in \overline{S} \text{ , so } D_h(y^*,y^k) \to 0. \\ &H_5: \text{ If } \{x^k\}_k \subset \overline{S} \text{ is such as } \{Y^k\}_k \subset S \text{ are such as:} \end{split}$$

 $y^k \longrightarrow y^* \in \overline{S} \ , \ \{x^k\}_k \ \text{is bounded}, \ \text{and} \ D_h(x^k,y^k) \longrightarrow 0, \ \text{then} \ x^k \longrightarrow y^*.$

 H_6 : If $\{x^k\}_k$ and $\{y^k\}_k$ are two sequences of S such as:

$$D_h(x^k, y^k) \longrightarrow 0 \text{ and } x^k \longrightarrow x^* \in S, \text{ then } y^k \longrightarrow x^*.$$

 H_7 : $Im\nabla h = R^p$.

Definition 3.4.

(1). $h: \overline{S} \to R$ is a Bregman function on S or "D-function" if h verify H_1, H_2, H_3, H_4 and H_5 .

(2). $D_h(.,.): \overline{S}XS \to R \text{ such } us: \forall x \in \overline{S}, \forall y \in S$

$$D_h(x,y) = h(x) - h(y) - \langle x - y, \nabla h(y) \rangle$$

is called entropic distance if h is a Bregman function. We put:

 $A(S) = \{h : \overline{S} \to R \text{ verifying } H_1 \text{ and } H_2\}$ $B(S) = \{h : \overline{S} \to R \text{ verifying } H_1, H_2, H_3, H_4 \text{ and } H_5\}$ $C(S) = \{h : \overline{S} \to R \text{ verifying } H_1, H_2, H_3, H_4 \text{ and } H_6\}.$

If $h \in A(\mathbb{R}^p)$, then the hypotheses H_4 and H_5 are verified.

Proposition 3.5. Let us assume:

(1). $h \in A(S)$,

(2). h is strongly convex on S with parametr α .

Then,

(a). $\forall x \in \overline{S}, \forall y \in S$, $D_h(x, y) \geq \frac{\alpha}{2} ||x - y||^2$.

(b). The hypotheses H_5 and H_6 are verified.

Proof.

(a). By virtue of the differentiability of h and 2, we have:

$$\forall u, v \in S, \langle \nabla h(u) - \nabla h(v), u - v \rangle \ge \alpha \|u - v\|^2.$$
(1)

For $x \in \overline{S}$ and $y \in S$, for all $t \in [0, 1[, y + t(x - y) \in S]$. Let $k : [0, 1] \to R$, the function defined by:

$$k(t) = h(y + t(x - y)).$$
(2)

k is a derivable convex and

$$k'(t) = \langle \nabla h(y + t(x - y)), x - y \rangle.$$

Then

$$k(1) = k(0) + \int_0^1 k'(t)dt$$

that means;

$$h(x) - h(y) - \langle \nabla h(y), x - y \rangle = \int_0^1 \langle \nabla h(y + t(x - y)) - \nabla h(y), x - y \rangle dt.$$
(3)

From (1), $D_h(x,y) \ge \alpha \int_0^1 t dt ||x-y||^2$, what establishes the wanted inequality.

(b). We get: $D_h(x,y) \ge \frac{\alpha}{2} ||x-y||^2$. We replace x by x^k and y by y^k in the previous inequality; we obtain then:

$$D_h(x^k, y^k) \ge \frac{\alpha}{2} ||x - y||^2.$$

If $D_h(x^k, y^k) \to 0$ and $y^k \to y^* \in \overline{S}$ then $x^k \to y^*$ i.e. H_5 . If $D_h(x^k, y^k) \to 0$ and $x^k \to x^* \in S$ then $y^k \to y^*$, i.e. H_6 .

Proposition 3.6 ([5]). If $h \in A(S)$; then:

$$D_h(x,y) = \begin{cases} 0 & \text{if } x = y, \\ > 0 & \text{if } x \neq y \end{cases}$$

Remark 3.7. $D_h(.,.)$ is not a distance because the properties of the symmetry and the triangle inequality are not verified. In [5], it was proven that $D_h(.,.)$ is symmetric in the unique case where h is defined by $h(x) = x^T Q x + q^T x$, $q \in R^p$ where Q a squared matrix of order p symmetric and positive definite.

Proposition 3.8. Let h and h' verify H_1 .

$$\forall \lambda, D_{\lambda h+h'}(.,.) = \lambda D_h(.,.) + D_{h'}(.,.)$$

Proposition 3.9. Let $h \in A(s)$ such as;

(1). h strongly convex on S with parameter α .

(2). It exist $\beta > 0$ such as: $\|\nabla h(x) - \nabla h(y)\| \le \beta \|x - y\|, \ \forall x, y \in S.$

Then:

$$\forall x \in \overline{S}, \forall y \in S, \ \frac{\alpha}{2} \|x - y\|^2 \le D_h(x, y) \le \frac{\beta}{2} \|x - y\|^2.$$

Lemma 3.10 ([11]). $\forall h \in A(S), \forall a \in \overline{S}, \forall b, c \in S$

$$D_h(a,b) + D_h(b,c) - D_h(a,c) = \langle a - b, \nabla h(c) - \nabla h(b) \rangle$$

Corollary 3.11.

(1). $\forall h \in A(S), \forall a, b \in S$,

$$D_h(a, b) + D_h(b, a) \le ||a - b|| ||\nabla h(a) - \nabla h(b)||$$

(2). Let $h \in A(S)$ and let $\{x^k\} \subset S$ such as $x^k \longrightarrow x^* \in S$, so $D_h(x^*, x^k) \longrightarrow 0$ and $D_h(x^k, x^*) \longrightarrow 0$.

Proof.

(1). By replacing c by a in the Lemma 3.10, we obtain: $D_h(a,b) + D_h(b,a) = \langle a-b, \nabla h(a) - \nabla h(b) \rangle$, from when the result.

(2). By replacing a by x^* and b by x^k on (1), we have:

$$D_h(x^*, x^k) + D_h(x^k, x^*) \le ||x^* - x^k|| ||\nabla h(x^k) - \nabla h(x^*)||_{\mathcal{H}}$$

which results that $D_h(x^k, x^*) \longrightarrow 0$ and $D_h(x^*, x^k) \longrightarrow 0$.

Proposition 3.12. Let $h \in A(S)$. If $Im\nabla h = R^p$ then $h \in L(S)$.

Proof. (a) and (b) of the Definition 3.1 being verified, let's demontrate that the condition (c) is verified too, which means:

$$\lim_{x_i \to x^* \in Fr(S)} \left\| \nabla h(x_i) \right\| = +\infty.$$

27

Let $\{x_i\}$ such as $x_i \to x^* \in Fr(S) = \overline{S}/S$. If $\lim_{x_i \to x^* \in Fr(S)} \|\nabla h(x_i)\| \neq +\infty$ then it would exist a subsequence $\{\nabla h(x_{i_k})\}$ of $\{\nabla h(x_i)\}$ bounded, so it would exist a subsequence $\{\nabla h(x_{i_n})\}$ of $\{\nabla h(x_i)\}$ such as

$$\nabla h(x_{i_n}) \to u^*$$

Since $Im\nabla h = R^p$ it exists that $u \in S$, such as $\nabla h(u) = u^*$. We have then;

$$\nabla h(x_{i_n}) \to \nabla h(u).$$

From another part , from the Corollary 3.11,

$$D_h(u, x_{i_n}) + D_h(x_{i_n}, u) \le ||u - x_{i_n}|| \cdot ||\nabla h(u) - \nabla h(x_{i_n})||$$

$$\Rightarrow \qquad \lim_{i_n \to \infty} D_h(x_{i_n}, u) = 0$$

$$\Rightarrow \qquad D_h(x^*, u) = 0$$

$$\Rightarrow \qquad x^* = u,$$

thing which is contradictory with $x^* \in \overline{S} \setminus S$ since $u \in S$.

4. Examples of Bregman Functions

Example 4.1. If $S_0 = R^p$ and $h_0(x) = \frac{1}{2} ||x||^2$ then $D_{h_0}(x, y) = \frac{1}{2} ||x - y||^2$.

Example 4.2. If $S_1 = R_{++}^p := \{x \in R^p / x_i > 0, i = 1, ..., p\}$ and

$$h_1(x) = \sum_{i=1}^{i=p} x_i \log x_i - x_i; \ \forall \ x \in \overline{S_1}$$

with the convention : $0 \log 0 = 0$, then

$$D_{h_1}(x,y) = \sum_{i=1}^{p} x_i \log \frac{x_i}{y_i} + y_i - x_i, \ \forall \ (x,y) \in \overline{S}_1 X S_1.$$

Example 4.3. If $S_2 =]-1, 1[^p \text{ and } h_2(x) = -\sum_{i=1}^{i=p} \sqrt{1-x_i^2}$, then:

$$D_{h_2}(x,y) = h_2(x) + \sum_{i=1}^p \frac{1 - x_i y_i}{\sqrt{1 - y_i^2}}, \ \forall \ (x,y) \in \overline{S_2} X S_2.$$

Proposition 4.4. $h_i \in B(S_i) \cap C(S_i) \cap L(S_i), i = 1, 2, 3.$

5. Entropic Approximations

On this paragraph, we introduce the entropic approximation defined in a point $x \in S$ by:

$$\inf_{y\in\overline{S}} \{f(y) + \lambda^{-1} D_h(y,x)\},\$$

thus the proximal entropic mapping defined by

$$\arg\min_{y\in\overline{S}} \{f(y) + \lambda^{-1} D_h(y,x)\}.$$

We study the properties of those functions for the class of the functions h belonging at A(S) and verifying H_7 , covering the most of the approximation properties of Moreau-Yosida reminded in 2.

Proposition 5.1. Let $f \in \Gamma_0(\mathbb{R}^p)$ and $h \in A(S)$ such as dom $f \cap \overline{S} \neq \phi$. Let $x \in S$ and $\lambda > 0$ such as:

$$ri(dom \ f^*) \cap int(\lambda^{-1}(\nabla h(x) - dom \ h^*)) \neq \phi.$$

Then, the function: $u \mapsto f(u) + \lambda^{-1} D_h(u, x)$ reaches a minimum in a unique point on \overline{S} .

Proof. Uniqueness: $f(.) + \lambda^{-1}D_h(., x)$ is strictly convex thanks to H_2 .

Existence: For that it's enough to demonstrate that: $\forall r \in R$,

$$L(x,r) = \{ u : f(u) + \lambda^{-1} D_h(u,x) \le r \},\$$

which is closed, and bounded when it's not empty. Let $y \in ri(dom \ f^*) \cap int(\lambda^{-1}(\nabla h(x) - dom \ h^*))$. Since $ri(dom \ f^*) \subset Im\partial f$, $y \in Im\partial f$, which means: it exists z such as: $\forall u, f(u) \ge f(z) + \langle u - z, y \rangle$, it follows that ,

$$L(x,r) \subset \{u : f(z) + \langle u - z, y \rangle + \lambda^{-1} D_h(u,x) \le r\}$$
$$= \{u : h(u) - \langle u, \nabla h(x) - \lambda y \rangle \le K\},\$$

where $K = \lambda(r - f(z) + \langle z, y \rangle) + h(x) - \langle x, \nabla h(x) \rangle$. Let

$$v := \nabla h(x) - \lambda y$$
 and $g(u) := h(u) - \langle u, v \rangle$.

To show that L(x, r) is bounded brings back then to prove that $0 \in int(dom g^*)$.

$$g^*(w) = \sup_{u} \{ \langle w, u \rangle - g(u) \} = \sup_{u} \{ \langle w + v, u \rangle - h(u) \} = h^*(w + v),$$

consequently,

$$dom \ g^* = dom \ h^* - v.$$

 $0 \in int(dom \ g^*) \Leftrightarrow v \in int(dom \ h^*) \Leftrightarrow \nabla h(x) - \lambda y \in int(dom \ h^*) \Leftrightarrow y \in int(\lambda^{-1}(\nabla h(x) - dom \ h^*)).$

Theorem 5.2. Let $f \in \Gamma_0(\mathbb{R}^p)$ and $h \in A(S)$ such as dom $f \cap \overline{S} \neq \phi$. If one of the two following conditions are verified:

(1). $\inf_{\overline{\alpha}} f > -\infty$ and h verify H_3 .

(2).
$$Im\nabla h = R^p$$
.

Then for all $x \in S$, for all $\lambda > 0$, the function $u \mapsto f(u) + \lambda^{-1}D_h(u, v)$ reaches it minimum in a unique point on \overline{S} . Proof.

(1). As previously, it is enought to demonstrate that: $\forall r \in R$,

$$L(x,r) := \{ u : f(u) + \lambda^{-1} D_h(u,x) \le r \}$$

is bounded when it is not empty.

$$u \in L(x, r) \Rightarrow f(u) + \lambda^{-1} D_h(u, x) \le r$$
$$\Rightarrow \qquad D_h(u, x) \le \lambda(r - \inf_{\overline{S}} f).$$

It follows that

$$L(x,r) \subset L_2\left(x,\lambda\left(r-\inf_{\overline{S}}f\right)\right),$$

thanks to $H_3, L_2\left(x, \lambda\left(r - \inf_{\overline{S}} f\right)\right)$ is bounded, which leads that L(x, r) is bounded too.

(2). $Im\nabla h = R^p$ and $Im\nabla h \subset domh^* \Rightarrow dom h^* = R^p$. Consequently, the condition of the Proposition 5.1 is verified, for all $x \in S$ and for all $\lambda > 0$, whence the desired result.

Definition 5.3. f and h verify the hypotheses of the Theorem 5.2.

(1). The entropic approximation of f compared to h, of parameter $\lambda(\lambda > 0)$ is the function defined by :

$$f_{h\lambda}(x) := \inf_{y \in \overline{S}} \{ f(y) + \lambda^{-1} D_h(y, x) \}, \ \forall \ x \in S$$

(2). The application entropic proximal of f comparing to h, of parameter λ is the operator defined by:

$$h_{\lambda}^{f}(x) := prox_{\lambda f}^{h}(x) := \arg\min_{y \in \overline{S}} \{f(y) + \lambda^{-1} D_{h}(y, x)\}, \ \forall \ x \in S.$$

Now, we search at which conditions

$$h_{\lambda}^{f}(x) \in S, \ \forall \ x \in S,$$

this is in order to verify the effectiveness of algorithms [9].

Theorem 5.4 ([7]). Let $f \in \Gamma_0(\mathbb{R}^p)$ and $h \in B(S)$. If one of the two following conditions are verified:

- (1). f is at finite values and $inff > -\infty$
- (2). dom $f \subseteq S$ and h verify H_7 .
- Then $h_{\lambda}^{f}(x) \in S, \forall x \in S.$

From another approach, we are going to improve the condition 2. of this Theorem.

Lemma 5.5. If $h \in L(S)$. Then $\forall u \in S$,

$$\partial(D_h(.,u))(x^*) = \begin{cases} \{\nabla h(x^*) - \nabla h(u)\} & \text{if } x^* \in S \\ \emptyset & \text{if not} \end{cases}$$

Proof. Since h is a Legendre function on S, $D_h(., u)$ it is too. By application of Theorem 26.1 [9], $\partial(D_h(., u))$ verifies: -If $x^* \in int(dom \ D_h(., u)) = S$ then $\partial(D_h(., u))(x^*) = \{\nabla(D_h(., u)(x^*))\}$

$$D_h(x, u) = h(x) - h(u) - \langle x - u, \nabla h(u) \rangle,$$

h is differentiable on S, so $\nabla(D_h(., u)(x^*) = \nabla h(x^*) - \nabla h(u)$. -If $x^* \notin S$ then $\partial(D_h(., u))(x^*) = \emptyset$.

Theorem 5.6 ([9]). If f_1, f_2, \ldots, f_m are convex and proper functions on \mathbb{R}^p , then:

$$\partial (f_1, f_2 + \dots + f_m)(x) \supset \partial f_1(x) + \partial f_2(x) + \dots + \partial f_m(x).$$

If furthermore, \cap (ri dom f_i) $\neq \emptyset$, then;

$$\partial (f_1, f_2 + \dots + f_m)(x) = \partial f_1(x) + \partial f_2(x) + \dots + \partial f_m(x), \forall x.$$

30

Theorem 5.7. Let $h \in L(S)$ and $f \in \Gamma_0(\mathbb{R}^p)$ such as $ri(dom \ f) \cap S \neq \emptyset$. Let $x \in S$ and $\lambda > 0$ such as $ri(dom \ f^*) \cap int(\lambda^{-1}(\nabla h(x) - dom \ h^*)) \neq \emptyset$. Then $h^f_{\lambda}(x) \in S$.

Proof. From the Proposition 5.1. $h_{\lambda}^{f}(x) \in \overline{S}$. Let's suppose that $h_{\lambda}^{f}(x) \notin S$.

$$h_{\lambda}^{f}(x) = \arg\min_{y\in\overline{S}} \{f(y) + \lambda^{-1}D_{h}(y,x)\},\$$

which leads to

$$0 \in \partial (f + \lambda^{-1} D_h(., x))(h_{\lambda}^f(x)).$$

 $ri(dom \ f) \cap ri(dom \ D_h(.,x)) = ri(dom \ f) \cap ri(\overline{S}) = ri(dom \ f) \cap S \neq \emptyset$, and from the Theorem 5.6;

$$0 \in \partial f(h_{\lambda}^{f}(x)) + \lambda^{-1} \partial (D_{h}(.,x))(h_{\lambda}^{f}(x)).$$

It follows that: $\exists u : u \in \partial f(h_{\lambda}^{f}(x))$. Such as:

$$-\lambda u \in \partial(D_h(.,x)(h^f_\lambda(x))).$$

Is in contradiction with the Lemma 5.5.

Corollary 5.8. Let $h \in A(S)$ and $f \in \Gamma_0(\mathbb{R}^p)$ such as:

- (1). $ri(dom \ f) \cap S \neq \phi$,
- (2). $Im\nabla h = R^p$.

.

Then
$$h_{\lambda}^{f}(x) \in S, \forall x \in S, \forall \lambda > 0.$$

Proof. We get, $Im\nabla h \subset dom \ h^*$, since $Im\nabla h = R^p$, we deduce from this, that $dom \ h^* = R^p$. Consequently;

$$ri(dom \ f^*) \cap int(\lambda^{-1}(\nabla h(x) - dom \ h^*)) \neq \emptyset, \forall \ x \in S, \forall \ \lambda > 0$$

By application of Theorem 5.7 and of the Proposition 3.10, we obtain the result.

Remark 5.9. The Theorem 5.4, 2. appears then as a consequence of Corollary 5.8 it brings a prove at the affirmation below of Chen and Teboulle on [11]:

If ridom $f \subset S$ and $Im\nabla h = R^p$, then $h_{\lambda}^f(x) \in S$, for all $x \in S$. We give the properties of the proximal entropic function h_{λ}^f such as propositions.

Proposition 5.10. Let $A := \{x \in S, h_{\lambda}^{f}(x) \in S\}$. If $ri(dom \ f) \cap S \neq \emptyset$, then

(1).
$$\frac{\nabla h(x) - \nabla h(h_{\lambda}^{f}(x))}{\lambda} \in \partial f(h_{\lambda}^{f}(x)), \ \forall \ x \in A;$$

(2).
$$h_{\lambda}^{f} = (\nabla h + \lambda \partial f)^{-1} o \nabla h$$
, on A.

Proof.

(1).
$$h_{\lambda}^{f}(x) = \arg_{u} \min\{f(u) + \lambda^{-1}D_{h}(u, x)\} \Leftrightarrow 0 \in \partial \left[f(.) + \lambda^{-1}D_{h}(., x)\right](h_{\lambda}^{f}(x))$$
. As $ri(dom \ f) \cap S \neq \emptyset$, from the Theorem 5.6,

$$0 \in \partial f(h_{\lambda}^{f}(x)) + \lambda^{-1} \nabla (D_{h}(.,x))(h_{\lambda}^{f}(x)),$$

thanks to Lemma 5.5, we deduct (1).

(2). (1) $\Leftrightarrow \nabla h(x) \in \nabla h(h_{\lambda}^{f}(x)) + \lambda \partial f(h_{\lambda}^{f}(x)) \Leftrightarrow h_{\lambda}^{f}(x) \in (\nabla h + \lambda \partial f)^{-1} \nabla h(x)$. f is convex and h is strictly convex, $\nabla h + \lambda \partial f$ is then a strictly monotone operator. $(\nabla h + \lambda \partial f)^{-1}$ is then a univocale operator and; $h_{\lambda}^{f}(x) = (\nabla h + \lambda \partial f)^{-1} (\nabla h(x))$.

Remark 5.11. Replacing h by h_0 at the Proposition 5.10, we obtain the result of the Proposition 2.2.

Proposition 5.12. We suppose that h and f verify the conditions of Corollary 5.8.

(1). If Argmin $f \neq \emptyset$ then, for all $x^* \in Argmin f$, for all $x \in S$, we get:

$$D_h(x^*, h^f_\lambda(x)) + D_h(h^f_\lambda(x), x) \le D_h(x^*, x)$$

$$\tag{4}$$

(2). If $\inf f > -\infty$ then, for all $\varepsilon > 0$, for all x^* such as $0 \in \partial_{\varepsilon} f(x^*)$, for all $x \in S$, we get:

$$D_h(x^*, h^f_\lambda(x)) + D_h(h^f_\lambda(x), x) \le D_h(x^*, x) + \varepsilon.$$
(5)

Proof.

(1). From (1) of the Proposition 5.10,

$$\frac{\nabla h(x) - \nabla h(h_{\lambda}^{f}(x))}{\lambda} \in \partial f(h_{\lambda}^{f}(x)) \quad and \quad 0 \in \partial f(x^{*})$$

 ∂f is the monotone operator, so;

$$\langle \nabla h(x) - \nabla h(h_{\lambda}^{f}(x)), x^{*} - h_{\lambda}^{f}(x) \rangle \le 0,$$
(6)

and by vertue of Lemma 3.10, we get:

$$D_h(x^*, h_{\lambda}^f(x)) + D_h(h_{\lambda}^f(x), x) \le D_h(x^*, x).$$

(2). From a similar way to (1),

$$\langle \nabla h(x) - \nabla h(h_{\lambda}^{f}(x)), x^{*} - h_{\lambda}^{f}(x) \rangle \leq \varepsilon_{A}$$

whence the inequality (5).

Corollary 5.13. We suppose that h and f verify the conditions of Corollary 5.8. If $inf(f) > -\infty$ and h verifies H_3 , then $h_{\lambda}^f: S \longrightarrow S$ is a continued application.

Proof. Let $x \in S$ and $x^n \in S$ such as $x^n \longrightarrow x$, let's show that $h^f_{\lambda}(x^n) \longrightarrow h^f_{\lambda}(x)$. Let x^* such as $0 \in \partial_{\varepsilon} f(x^*)$, by replacing x by x^n on (5), we obtain:

$$D_h(x^*, h^f_{\lambda}(x^n)) + D_h(h^f_{\lambda}(x^n), x^n) \le D_h(x^*, x^n) + \varepsilon$$

We get then

$$D_h(x^*, h^f_\lambda(x^n)) \le D_h(x^*, x^n) + \varepsilon.$$

As $x^n \longrightarrow x \in S$, $D_h(x^*, x^n) \longrightarrow D_h(x^*, x)$, so the previous inequality leads that the sequence $\{D_h(x^*, h_\lambda^f(x^n))\}$ is bounded. From H_3 , we deduce that $\{h_\lambda^f(x^n)\}$ is bounded too. Let $\{h_\lambda^f(x^{n_i})\}_n$ a subsequence of $\{h_\lambda^f(x^n)\}_n$ such as $h_\lambda^f(x^{n_i}) \longrightarrow u$, we get,

$$f(h_{\lambda}^{f}(x^{n_{i}})) + \lambda^{-1} D_{h}(h_{\lambda}^{f}(x^{n_{i}}), x^{n_{i}}) \leq f(v) + \lambda^{-1} D_{h}(v, x^{n_{i}})$$

32

Passing by at the limit, $f(u) + \lambda^{-1}D_h(u, x) \leq f(v) + \lambda^{-1}D_h(v, x)$, which means

$$u = h_{\lambda}^{f}(x).$$

 $h_{\lambda}^{f}(x)$ is unique, whence $h_{\lambda}^{f}(x^{n}) \longrightarrow h_{\lambda}^{f}(x)$ with an enhancement of conditions on h or f, we can establish the contradiction of the operator h_{λ}^{f} for λ large enough.

Proposition 5.14. We suppose that h and f verify the conditions of the Corollary 5.8. If furthermore h or f is strongly convex with parameter α , we have then,

$$\|h_{\lambda}^{f}o(\nabla h)^{-1}(x) - h_{\lambda}^{f}\circ(\nabla h)^{-1}(y)\| \le \frac{1}{\alpha}\|x - y\|$$

Proof. $h_{\lambda}^{f} = (\nabla h + \lambda \partial f)^{-1} \circ \nabla h \Rightarrow h_{\lambda}^{f} \circ (\nabla h)^{-1} = (\nabla h + \lambda \partial f)^{-1}$. $\nabla h + \lambda \partial f$ is a strongly convex operator, from [10] we have the inequality.

Proposition 5.15. We suppose that h and f verify the conditions of the Corollary 5.8. furthermore, h verifies:

$$\exists \beta >, \forall x, y \in S, \|\nabla h(x) - \nabla h(y)\| \le \beta \|x - y\|.$$

(a). If f is strongly convex with parameter $\alpha(\alpha > 0)$, then,

$$\forall x, y \in S, \|h_{\lambda}^{f}(x) - h_{\lambda}^{f}(y)\| \leq \frac{\beta}{\alpha\lambda} \|x - y\|.$$

If $\frac{\beta}{\alpha} \leq \lambda$, then h_{λ}^{f} is a contraction.

(b). If h is strongly convex on S with parameter $\alpha(\alpha > 0)$, then:

$$\forall x, y \in S, \|h_{\lambda}^{f}(x) - h_{\lambda}^{f}(y)\| \leq \frac{\beta}{\alpha} \|x - y\|.$$

If $\beta = \alpha$, then h_{λ}^{f} is a contraction.

Proof.

(a). We put $h_{\lambda}^{f}(x) = x^{*}$ and $h_{\lambda}^{f}(y) = y^{*}$. From the Proposition 5.10,

$$\frac{\nabla h(x) - \nabla h(x^*)}{\lambda} \in \partial f(x^*),$$
$$\frac{\nabla h(y) - \nabla h(y^*)}{\lambda} \in \partial f(y^*).$$

f is strongly convex with parameter α , then

$$\langle \nabla h(x) - \nabla h(x^*) - \nabla h(y) + \nabla h(y^*), x^* - y^* \rangle \ge \alpha \lambda ||x^* - y^*||^2$$

Which equals at;

$$\begin{split} \langle \nabla h(x) - \nabla h(y), x^* - y^* \rangle &\geq \alpha \lambda \|x^* - y^*\|^2 + \langle \nabla h(x^*) - \nabla h(y^*), x^* - y^* \rangle \\ \Rightarrow \langle \nabla h(x) - \nabla h(y), x^* - y^* \rangle &\geq \alpha \lambda \|x^* - y^*\|^2 \\ \Rightarrow \qquad \alpha \lambda \|x^* - y^*\|^2 &\leq \|\nabla h(x) - \nabla h(y)\| . \|x^* - y^*\| \\ \Rightarrow \qquad \|x^* - y^*\|^2 &\leq \frac{\beta}{\lambda \alpha} \|x^* - y^*\| \|x - y\| \\ \Rightarrow \qquad \|x^* - y^*\| &\leq \frac{\beta}{\lambda \alpha} \|x - y\| \end{split}$$

 $\text{If } \tfrac{\beta}{\alpha} \leq \lambda \text{ then } \tfrac{\beta}{\lambda \alpha} \leq 1 \text{ and then } \|h_{\lambda}^f(x) - h_{\lambda}^f(y)\| \leq \|x - y\|.$

(b). ∂f is a monoyone operator, then;

$$\begin{split} \langle \nabla h(x) - \nabla h(x^*) - \nabla h(y) + \nabla h(y^*), x^* - y^* \rangle &\geq 0 \\ \Rightarrow & \langle \nabla h(x) - \nabla h(y), x^* - y^* \rangle \geq \langle \nabla h(x^*) - \nabla h(y^*), x^* - y^* \rangle \\ \Rightarrow & \langle \nabla h(x) - \nabla h(y), x^* - y^* \rangle \geq \alpha \|x^* - y^*\|^2. \end{split}$$

As the same as previous, we conclude that : $||x^* - y^*|| \le \frac{\beta}{\lambda} ||x - y||$.

Theorem 5.16.

(a). Let $h \in A(S)$ and $f \in \Gamma_0(\mathbb{R}^p)$ such as $ri(dom \ f) \cap S \neq \emptyset$. Then: $\forall \ x \in S, \forall \ \lambda > 0$, we get :

$$f_{h\lambda}(x) + (f^* \diamond (\lambda^{-1}h)^*)(\lambda^{-1}\nabla h(x)) = \lambda^{-1}(\langle x, \nabla h(x) \rangle - h(x)).$$
(7)

Where \diamond is inf concolution.

- (b). Let $h \in L(S), f \in \Gamma_0(\mathbb{R}^p), x \in S$ and $\lambda > 0$ verifying the theorem conditions 5.7, we get :
 - (i). $\inf_{u} \{f(u) + \lambda^{-1} D_{h}(u, x)\} + \inf_{v} \{f^{*}(v) + \lambda^{-1} h^{*}(\nabla h(x) \lambda v)\} = \lambda^{-1} h^{*}(\nabla h(x)).$ Those two infima are finite and achieved respectively in u^{*} and v^{*} such as :

$$\nabla h(x) = \nabla h(u^*) + \lambda v^*.$$
(8)

(ii). If dom $h^* = Im\nabla h$, then the second infimum is achieved in a unique point v^* verifying (8).

Proof.

(a).

$$f_{h\lambda}(x) = \inf_{u} \{ f(u) + \lambda^{-1} D_h(u, x) \}$$

$$= -\sup\{ \langle \lambda^{-1} \nabla h(x), u \rangle - (f(u) + \lambda^{-1} h(u)) \} + \lambda^{-1} (\langle x, \nabla h(x) \rangle - h(x))$$

$$\Rightarrow f_{h\lambda}(x) + (f + \lambda^{-1} h)^* (\lambda^{-1} \nabla h(x)) = \lambda^{-1} (\langle x, \nabla h(x) \rangle - h(x)).$$

As $ri(dom \ f) \bigcap S \neq \emptyset$, from the Theorem 16, 4 [9], we have

$$(f + \lambda^{-1}h)^*(\lambda^{-1}\nabla h(x)) = (f^* \diamond (\lambda^{-1}h)^*)(\lambda^{-1}\nabla h(x))$$

which leads the equality (7)

(b). (i). By application of the Proposition 5.10, we get :

$$\begin{split} u^* &= h^f_{\lambda}(x) \Leftrightarrow \frac{\nabla h(x) - \nabla h(u^*)}{\lambda} \in \partial f(u^*) \\ &\Leftrightarrow u^* \in \partial f^* \left(\frac{\nabla h(x) - \nabla h(u^*)}{\lambda} \right) \\ &\Leftrightarrow 0 \in \partial f^* \left(\frac{\nabla h(x) - \nabla h(u^*)}{\lambda} \right) - \nabla h^* (\nabla h(u^*)) \end{split}$$

 $(\nabla h^* = (\nabla h)^{-1}$ because $h \in L(S)$). Let v^* such as : $\nabla h(x) = \nabla h(u^*) + \lambda v^*$,

$$u^* = h_{\lambda}^f(x) \Rightarrow 0 \in \partial f^*(v^*) - \nabla h^*(\nabla h(x) - \lambda v^*)$$
$$\Rightarrow v^* \in \operatorname{Arg\,min}_v \{f^*(v) + \lambda^{-1}h^*(\nabla h(x) - \lambda v)\}$$

which establishes (8).

(ii). Let v^* such as :

$$v^* \in Arg \min_{v} \{f^*(v) + \lambda^{-1}h^*(\nabla h(x) - \lambda v)\}.$$

We deduct that

$$0 \in \partial f^*(v^*) - \nabla h^*(\nabla h(x) - \lambda v^*).$$

Since $\nabla h(x) - \lambda v^* \in dom \ h^* = Im \nabla h$, it exists $u^* \in S$ such as

$$\nabla h(x) - \lambda v^* = \nabla h(u^*)$$

We have then :

$$0 \in \partial f^* \left(\frac{\nabla h(x) - \nabla h(u^*)}{\lambda} \right) - \nabla h^* (\nabla h(u^*))$$

$$\Rightarrow u^* \in \partial f^* \left(\frac{\nabla h(x) - \nabla h(u^*)}{\lambda} \right)$$

$$\Rightarrow u^* = h_{\lambda}^f(x).$$

Which result the uniqueness of v^* .

Until now, we study the properties of the entropic approximation $f_{h\lambda}$.

Proposition 5.17.

(1). If $h \in A(S)$, then; $\forall \lambda \ge \mu > 0, \forall x \in S, f_{h\lambda}(x) \le f_{h\mu}(x) \le f(x)$.

(2). If h and f verify the hypotheses of Corollary 5.8, then: $\inf_{S} f_{h\lambda} = \inf_{S} f$.

Proof.

(1). $\forall y \in \overline{S}, \forall x \in S, D_h(y, x) \ge 0$. Therefore

$$\mu \leq \lambda \Rightarrow \lambda^{-1} D_h(y, x) \leq \mu^{-1} D_h(y, x), \forall \ y \in \overline{S}, \forall \ x \in S$$
$$\Rightarrow \qquad f_{h\lambda}(x) \leq f_{h\mu}(x).$$

Moreover:

$$f_{h\mu}(x) \le f(y) + \mu^{-1} D_h(y, x), \forall \ y \in \overline{S}.$$

Replacing y by x, we obtain

$$f_{h\mu}(x) \le f(x), \forall \ x \in S.$$

(2).
$$\inf_{x \in S} f_{h\lambda}(x) = \inf_{x \in S} \{ \inf_{u \in \overline{S}} (f(u) + \lambda^{-1} D_h(u, x)) \}$$
$$= \inf_{x \in S} \{ \inf_{u \in S} (f(u) + \lambda^{-1} D_h(u, x)) \}$$
$$= \inf_{u \in S} \inf_{x \in S} \{ (f(u) + \lambda^{-1} D_h(u, x)) \}$$
$$= \inf_{u \in S} \{ (f(u) + \inf_{x \in S} \lambda^{-1} D_h(u, x) \}.$$
$$\inf_{x \in S} \lambda^{-1} D_h(u, x) = 0 \text{ for } u \in S, \text{ whence } \inf_S f_{h\lambda} = \inf_S f.$$

Proposition 5.18. We suppose that h and f verify the hypotheses of Corollary 5.13. If h is twice Continuously Differentiable on S and $D_h(.,.)$ and jointly convex; then $f_{h\lambda}$ is continually differentiable, convex and such as:

$$\forall x \in S, \nabla f_{h\lambda}(x) = \lambda^{-1} H(x)(x - h_{\lambda}^{f}(x)) \text{ where } H = \nabla^{2} h$$

Proof. $D_h(.,.)$ is jointly convex and f is convex, $f_{h\lambda}$ is then convex. Lets show that:

$$\forall x \in S, \partial f_{h\lambda}(x) \subset \partial (\lambda^{-1} D_h(x^*, .))(x) \text{ when } x^* = h_{\lambda}^f(x).$$
(9)

 $\forall x \in S, f_{h\lambda}(x) = f(x^*) + \lambda^{-1} D_h(x^*, x).$ Let $y \in S$, we get:

$$f_{h\lambda}(y) = f(x^* + \lambda^{-1}D_h(x^*, y))$$

Let $u \in \partial f_{h\lambda}(x)$, we have:

$$f_{h\lambda}(y) \ge f_{h\lambda}(x) + \langle u, y - x \rangle$$

 $x^* = h_{\lambda}^f(x) \in dom \ f \Rightarrow \lambda^{-1}D_h(x^*, y) \ge \lambda^{-1}D_h(x^*, x) + \langle u, y - x \rangle$ which means: $\lambda u \in \partial(D_h(x^*, .))(x)$, which shows (9). It is two times conditionally differentiable, therefore:

$$\lambda u = \nabla (D_h(x^*, .))(x)$$
$$\lambda u = -\nabla^2 h(x)(x^* - x)$$
$$u = \lambda^{-1} H(x)(x - x^*).$$

Consequently, $\nabla f_{h\lambda}(x) = \lambda^{-1} H(x)(x - h_{\lambda}^{f}(x)).$

(1). h is twice Continuously Differentiable on S and $D_h(.,.)$ is convex jointly,

- (2). H is defined positive.
- Then $Arg \min_{S} f = Arg \min_{S} f_{h\lambda}$.
- *Proof.* Let $u^* \in Arg \min_{S} f_{h\lambda}$.

$$f_{h\lambda}(u^*) = \inf_{S} f_{h\lambda} \Leftrightarrow \qquad 0 \in \partial f_{h\lambda}(u^*)$$
$$\Leftrightarrow \qquad 0 = \nabla f_{h\lambda}(u^*)$$
$$\Leftrightarrow \lambda^{-1} H(u^*)(u^* - h_{\lambda}^f(u^*)) = 0.$$

Since H is defined positive, we from then deduct that $u^* = h^f_{\forall}(u^*)$. From the Proposition 5.10, we have:

$$u^* = h^f_{\lambda}(u^*) \Rightarrow 0 \in \partial f(u^*) \Rightarrow u^* \in \arg\min_S f.$$

We get then: $Arg \min_{S} f_{h\lambda} \subset Arg \min_{S} f$ reciprocally, let x^* such that $f(x^*) = \inf_{S} f$.

$$f(x^*) = \inf_{S} f_{h\lambda} \le f_{h\lambda}(x^*) \le f(x^*).$$

Thus we have $f(x^*) = \inf_{S} f_{h\lambda} = f_{h\lambda}(x^*)$, which complete the demonstration.

Proposition 5.20. Let $f \in \Gamma_0(\mathbb{R}^p)$ and $h \in A(S)$ verifying H_3 and H_7 .

(a). $\forall x \in S \cap domf$, $\lim_{\lambda \to \to 0} prox_{\lambda f}^{h}(x) = x$ (b). $\forall x \in S$, $\lim_{\lambda \to 0} f_{h\lambda}(x) = f(x)$.

Proof.

(a). From the Theorem 5.2, $prox_{\lambda f}^{h}(x) := x_{\lambda} \in \overline{S} \cap dom \ f$, we have: $f_{h\lambda}(x) = f(x_{\lambda}) + \lambda^{-1}D_{h}(x_{\lambda}, x)$, and $f_{h1}(x) \leq f(u) + D_{h}(u, x)$. Replacing u by x_{λ} on the previous inequality, we deduce that: $f_{h1}(x) - D_{h}(x_{\lambda}, x) + \lambda^{-1}D_{h}(x_{\lambda}, x) \leq f_{h\lambda}(x)$ or

$$D_h(x_\lambda, x)(\lambda^{-1} - 1) \le f_{h\lambda}(x) - f_{h1}(x)$$
$$D_h(x_\lambda, x)(1 - \lambda) \le \lambda \left[f_{h\lambda}(x) - f_{h1}(x) \right]$$

For $0 < \lambda < 1$,

$$0 \le D_h(x_\lambda, x) \le rac{\lambda}{1-\lambda} \left[f(x) - f_{h1}(x)\right]$$

When $\lambda \longrightarrow 0$, $D_h(x_\lambda, x) \longrightarrow 0$. From H_3 , the generalized sequence $\{x_\lambda\}_{\lambda \in I}$ is bounded. Let x^* an adherence value of $\{x_\lambda\}_{\lambda \in I}$, it exists then a sub-sequence $\{x_{\alpha(\lambda)}\}$ such as $x_{\alpha(\lambda)} \longrightarrow x^*$. We get:

$$D_h(x_{\alpha(\lambda)}, x) = h(x_{\alpha(\lambda)}) - h(x) - \langle x - x_{\alpha(\lambda)}, \nabla h(x) \rangle,$$

Whence, by passage to the limit, $D_h(x^*, x) = 0$. That means that $x^* = x$ and therefore, $x_\lambda \longrightarrow x$ as $\lambda \longrightarrow 0$.

(b). We get: $f(x_{\lambda}) \leq f_{h\lambda}(x) \leq f(x)$.

$$x_{\lambda} \longrightarrow x \text{ and } fs.c.i. \Rightarrow f(x) \leq \underline{lim}f(x_{\lambda}) \leq \underline{lim}f_{h\lambda}(x) \leq \overline{lim}f_{h\lambda}(x) \leq f(x) \Rightarrow \lim_{\lambda \longrightarrow 0} f_{h\lambda}(x) = f(x)$$

If h is strongly convex on the module 1, then the approximation of f by $f_{h\lambda}$ is better than by f_{λ} , as the following proposition shows.

Proposition 5.21. Let $h, h' \in A(S)$

- (1). If h h' is a convex function, then: $\forall x \in S, \forall \lambda > 0, f_{h'\lambda}(x) \leq f_{h\lambda}(x) \leq f(x)$.
- (2). If h is strongly convex of module 1, then: $\forall x \in S, \forall \lambda > 0, f_{\lambda}(x) \leq f_{h\lambda}(x) \leq f(x)$.

Proof.

- (1). Let $x \in S$ and $\lambda > 0$. By value of the Proposition 3.8, $\forall y \in \overline{S}, D_{h-h'}(y,x) = D_h(x,y) D_{h'}(y,x)$. Since h h' is a convex function, we get: $\forall y \in \overline{S}, D_{h-h'}(y,x) \ge 0$. We deduct that $\forall y \in \overline{S}, D_{h'}(y,x) \le D_h(y,x)$. From this inequality, we obtain $\forall y \in \overline{S}, f(y) + \lambda^{-1}D_{h'}(y,x) \le f(y) + \lambda^{-1}D_h(y,x)$. We have then $f_{h'\lambda}(x) \le f_{h\lambda}(x)$. According to the Proposition 5.17 (1), we deduct the wanted inequality.
- (2). h is strongly convex on the module 1, means that h h_0 is convex. Consequently, from (1), we have $f_{h_0\lambda}(x) \leq f_{h\lambda}(x) \leq f(x)$. $f_{h_0\lambda} = f_{\lambda}$, whence the result.

6. Conclusion

Replacing h by h_0 in all the result developed previously, we find all the properties of regularity and approximation given by Moreau and Yosida in spite of the non-symmetry of $D_h(.,.)$ and the absence of the triangular inequality. These results make it easy to establish the convergence of the algorithmic type :

$$x^{n} := \arg\min_{z} \left\{ f(z) + \frac{1}{\lambda_{n}} D_{h}(z, x^{n-1}) \right\}, \lambda_{n} > 0.$$

This sequence converges towards a minimum of f.

References

- [1] H. Attouch, Variational convergence for functions and operator, Pitman Advanced Publishing Program, (1984).
- [2] H. Attouch and R. J. B. Wets, Isometrie for the Legendre-Fencheltransform, Trans A.M.S., 296(1986), 33-60.
- [3] M. A. Bahraoui, Diagonal Bundle Methods for Convex Minimization, Theoritical Aspect, Int. J. Math. And Appl., 6(4)(2018), 5157.
- [4] H. Brezis, Oprateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5(1973).
- [5] Y. Censor and A. Lent, An iterative row action method for interval convex programming, Journal of Optimization Theory and Applications, 34(3)(1981), 321-353.
- [6] A. R. De Pierro and A. N. Iusem, A relaxed version of Bregman's method for convex programming, Journal of Optimization theory and Application, 5(3)(1986), 421-440.
- [7] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Mathematics of Operations Research, 18(1(1993), 202-226.
- [8] J. J. Moreau, Proximit et dualit dans un espace Hilbertien, Bull.Soc. Math. France, 93(1965), 273-299.
- [9] R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, Princeton University Press, (1970).
- [10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization, 14(5)(1975), 877-898.
- [11] M. Teboulle and Gong Chen, Convergence analysis of a proximal-like minimization algorithm using Bregman function, SIAM Journal on Optimization, 3(3)(1993), 538-543.
- [12] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, Mathematics of Operations Research, 17(3)(1992), 670-690.