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1. Introduction

Let f be a lower semicontinuous, proper and convex function on a Hilbert H. Moreau introduced and studied the approxi-

mation Moreau-Yosida f defined by
NG, ::inf{f(z)—i—% ||x—z|\2}, VaecH VA>0,

as well as the proximal mapping proxy; defined by:

1
proxas(x) := argmin {f(z) + BTN | z—z ||2} .

fx regulates f and has several important properties that make it very useful in optimization theory; it provides numerical
methods for solving convex optimization problems, including the algorithme of the proximal point [3,10]. In the same vein,
where H = RP, Teboulle [11,12] introduced a class of approximations, replacing the quadratic kernel with a so-called entropic

kernel Dy/(.,.) defined by:

Di(z,y) = h(z) — h(y) — (z —y, Vh(y)).

Thus, he defined the entropic approximation by:
th(JI) = irzlf {f(z) + A_th(Z,w)} ,

and studied some properties of this function where h is a function of Legendre. On this labor we put in evidence the

properties of regularization and approximation of those approximates , while Dp(.,.) is not a distance.This study covers

* E-mail: kabbajsaid63Q@yahoo.com


http://ijmaa.in/

Entropic Approximation

most of the approximate properties of Moreau-Yosida, however the contraction of the operator proxf\‘ ¢ is realized only under
reinforced conditions on h or on f. This study has a determining role for the study of the entropic proximal algorithms

[7,11,12]
L

3 Dh(z,xnfl)} s An > 0.

z" ;= arg min {f(z) +

z
In the section 2, we remind the fundamental properties of the approximate fx. and of the proximal mapping prozxs. In
section the 3, we introduce the set of functions of Legendre L(C'); the set of Bregman’s functions B(S) as well as the set
C'(S) which is very useful for the convergence of inexact entropic proximal algorithms. We give in section 4 some examples
of functions of these three sets. In the section 5, we study funx and proz? ¢, especially in the case where h is such as

ImVh = RP, condition realised for most interesting kernel. Our notation is fairly standart; (.,.) is the scalar product on Hj;

and the associated norm ||.||. The closure of the set C (interior, relative interior) by C (intC , riC, respectively). For any

convex function f, we denote by :

(1). domf ={x € H; f(x) < +oo} its effective domain,

(2)- f() = sup,{(,,z) — f(x)} its conjugate,

(3). Ocf() =Av, fly) = f() + (v,y —.) — €,V y} its e-subdifferential

(4). Arg min = {r e H; f(z)= 1r1_1[f f} its Argmin.

2. Approximation of Moreau-Yosida

Let I'o(H) set of proper lower semicontinuous convex functions f : H — R. In this section we suppose that f € I'o(H), and
we remind the properties of approximation of Moreau-Yosida.

Proposition 2.1 ([1]). Letz € H and A >0

(1). proxxs(x) exist and unique.

(2). JL(x) := prozas(x) = (I + N0f) " (x) where I is the identity operator of H.

5). A= (55 @) e o1 o).

(4). The operator JAf is contractor, i.e. ¥z, € H, I J{(x) — J{(w,) I<|| =z — z ||
Proposition 2.2 ([1]). fx is Frchet differentiable on H and V fx(z) = Al (x), Yz € H.
Proposition 2.3 ([1]). Let f € To(H), for all x € domf, we have the following properties:
(1). JL(z) converges strongly to = if X — 0,

(2). f(J{(z)) = f(z) if X — 0.

3. Entropic Distances

In this section, we introduce the set of functions of Legendre L(C') for H = RP, the set of Bregman’s functions B(.S) thus
a new set C'(S) where the role is determinant for the convergence of the inexact proximal algorithms. We then study the

class of the kernels of Dy(.,.) defined by:

Dn(z,y) = h(z) = h(y) — {z =y, Vh(y)).
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Definition 3.1 ([9]). Let C be a convex not empty of RP

(1). A convezx function h : RP —] — 00, 400] is of Legendre on C if it verifies the three following conditions:

(a). C = int (domh)

(b). h is differentiable on C

(c). lim || Vh(z;) ||= +o0, for any sequence {x;} of C that converges towards a boundary point of C.

(2). The class of strictly convez functions verifying a, b and c is called the class of Legendre’s functions on C and denoted

by L(C).

(3). A regular convex function on RP (ie: finite and differentiable) is in particular essentially regular; the set of those

functions are denoted by L(RP).
(4). h is co-finite if : domh™ = RP.
Proposition 3.2 ([9]). Let h € L(RP).

h is co-finite < lim

lzill—+

Proposition 3.3 ([9]). Let h € L(C).
(1). h* € L(C*) where C* = int(domh™).
(2). Vh* = (Vh)™ .

(3). B*(Vh(2)) = (2, Vh(2)) — h(z).

IVh(z:)|| = +o0

)

Let S be an convex open subset of RP and h : S — R. Let us consider the following hypotheses:

Hi: h is continuously differentiable on S.

H,: h is continuous and strictly convex on S.

Hz: Vr>0,Vze8,Vy¢€S, the sets Li(x,r) and La(y,r) are bounded where:

Li(z,r) ={y € S/Dn(z,y) <r}

La(y,r) = {z € §/D(a,y) < r}.

Hy: If {y*}, € Sissuch as y* = y* €5, s0 Di(y*,y*) — 0.

Hs: If {z*}, C S is such as {Y*}, C S are such as:

y* — y* €S, {2"} is bounded, and Dy, (z",4y*) — 0, then z* — y*.

He: If {z*};, and {y"}x are two sequences of S such as:

Dy (2*,y*) — 0 and 2* — z* € S, then y* — z*.

H7: ImVh = RP.

Definition 3.4.

(1). h: S — R is a Bregman function on S or ”D-function” if h verify H1, Ha, Hs, Hy and Hs.
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(2). Dp(.,.): SXS — Rsuchus :Yx€S,VyeS

Dy (x,y) = h(z) = h(y) — (z — y, Vh(y))
is called entropic distance if h is a Bregman function. We put:

A(S)={h:S — R verifying Hy and H>}
B(S) ={h:S — Rwverifying Hi, Ha, H3, Hy and Hs}

C(S) ={h:S — Rwverifying Hi, Ha, H3, Hy and He}.

If h € A(RP), then the hypotheses Hy and Hs are verified.
Proposition 3.5. Let us assume:

(1). h € A(S),

(2). h is strongly convex on S with parametr o.

Then,

(). VeeSNVyeS, Dula,y) > %z —y|>

(b). The hypotheses Hs and Hg are verified.

Proof.

(a). By virtue of the differentiability of h and 2, we have:
Y u,v €S, (Vh(u) — Vh(v),u —v) > allu —v|>. (1)
Forz e Sandy € S, for all t € [0,1],y +t(x —y) € S. Let k: [0,1] — R, the function defined by:

k(t) = h(y + t(z —y)). )

k is a derivable convex and

/

k (t) = (Vh(y + t(z —y)),z —y).
Then
k(1) = k(0) +/01k/(t)dt7
that means;
h(z) = h(y) = (Vh(y),z —y) = /01<Vh(y +t(z —y)) — Vh(y),z — y)dt. 3)

From (1), Dp(z,y) > « fol tdt||z — y||?, what establishes the wanted inequality.

(b). We get: Dp(z,y) > %|lz — y||>. We replace x by z® and y by 4* in the previous inequality; we obtain then:
e
Du(z*,y") = S llz — yl*.

If Dyp(z",y*) = 0 and y* — y* € S then 2 — y* i.e. Hs. If Dp(z*, y¥) = 0 and 2* — z* € S then v* — 3, ie.

Hs. O
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Proposition 3.6 ([5]). If h € A(S); then:

0 if z=uy,
>0 if x#y

Dh(xvy) =

Remark 3.7. Dy(.,.) is not a distance because the properties of the symmetry and the triangle inequality are not verified.
In [5], it was proven that Dy(.,.) is symmetric in the unique case where h is defined by h(z) = 27 Qx + ¢"z, ¢ € RP where

Q a squared matriz of order p symmetric and positive definite.

Proposition 3.8. Let h and X verify Hi.
VA Dypyn () = ADR(..) + Dy ().

Proposition 3.9. Let h € A(s) such as;
(1). h strongly convex on S with parameter «.
(2). It exist 8 > 0 such as: ||Vh(z) — Vh(y)|| < Bllz —yll, Vz,y € S.

Then:

— «
VeeSVyes, Syl < Duwy) < e -yl

Lemma 3.10 ([11]). Vh € A(S),Ya € S,V b,ce S
Dy(a,b) + Di(b,c) — Dp(a,c) = {(a — b, Vh(c) — Vh(b)).

Corollary 3.11.

(1). Vhe A(S),Ya,be S,
Dy (a,b) + Di(b,a) < |la — b[[[[Vh(a) — VR(b)||

(2). Let h € A(S) and let {x*} C S such as 2* — z* € S, s0 Dp(z*,2") — 0 and Dp(z",2*) — 0.
Proof.
(1). By replacing c by a in the Lemma 3.10, we obtain: Dy (a,b) + Dy (b, a) = (a — b, Vh(a) — Vh(b)), from when the result.

(2). By replacing a by z* and b by z* on (1), we have:
* _k k _x * k k *
Dn(z",27) + Dn(z”,z7) < |lz" — 2"||[[Vh(z") — Vh(z")],

which results that Dp(z",2*) — 0 and Dy (z*, ") — 0. O
Proposition 3.12. Let h € A(S). If ImVh = RP then h € L(S).

Proof.  (a) and (b) of the Definition 3.1 being verified, let’s demontrate that the condition (c) is verified too, which means:

lim |Vh(zs)|| = +oo.

z;—ax*EFT(S)
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Let {x;} such as z; — z* € Fr(S) = 5/S. If lim . [IVh(z:)|| # +oo then it would exist a subsequence {Vh(x;, )} of

x;—~x*EFTr

{Vh(z;)} bounded, so it would exist a subsequence {Vh(z;,)} of {Vh(x;)} such as
Vh(xi,) — u*.
Since ImVh = RP it exists that u € S, such as Vh(u) = u*. We have then;
Vh(zi,) = Vh(u).
From another part , from the Corollary 3.11,

D (u, zi,) + Du(®i,,u) < |lu — x4, |.[|VR(u) — Vh(2:,)|l

= lim Dp(zs,,u) =0
Gy — 00

Dp(z*,u) =0

= " = u,

thing which is contradictory with z* € S\S since u € S.

4. Examples of Bregman Functions
Example 4.1. If So = R” and ho(z) = L || || then Dy, (z,y) = % |2 —y ||
Example 4.2. If S =R} :={z € R’/x; >0,i=1,...,p} and

i=p
hi(z) = sz logx; —xs; ¥V o € S,
i=1
with the convention : 0log0 = 0, then

Dy, (z,y) Zmzlog——kyl—zl, v (2,9) € S1XS1.

i=1

Example 4.3. If So =]-1,1[° and ha(z) = — Z V1 — 22, then:

— T
th( 7y —hz Z iYi SC y ESQXSQ

\/727
Proposition 4.4. h; € B(S;) N C(S;) N L(S:),i=1,2,3.
5. Entropic Approximations

On this paragraph, we introduce the entropic approximation defined in a point x € S by:

yirelg{f(y) + A7 Da(y, )},

thus the proximal entropic mapping defined by

arg min{f(y) + A" Di(y, @)}

We study the properties of those functions for the class of the functions h belonging at A(S) and verifying H7, covering the

most of the approximation properties of Moreau-Yosida reminded in 2.
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Proposition 5.1. Let f € I'o(R?) and h € A(S) such as dom fNS # ¢. Let x € S and A > 0 such as:
ri(dom f*)Nint(A\" (Vh(z) — dom h*)) # ¢.

Then, the function: u s f(u) + A" "Dp(u,z) reaches a minimum in a unique point on S.

Proof. Uniqueness: f(.) 4+ A"'Dy(.,z) is strictly convex thanks to Ho.

Existence: For that it’s enough to demonstrate that: Vr € R,
L(I,T) = {u : f(u) + Aith(uax) < T}v

which is closed, and bounded when it’s not empty. Let y € ri(dom f*) Nint(A\~*(Vh(z) — dom h*)). Since ri(dom f*) C

Imdf, y € Imof, which means: it exists z such as: V u, f(u) > f(2) + (u — z,y), it follows that ,
L(z,r) C {u: f(z) + (u—29) + A\ "Dp(u,z) < r}
={u:h(u) = (u, Vh(z) = Ay) < K},
where K = A(r — f(2) + (z,9)) + h(z) — (x, Vh(z)). Let
v = Vh(z) — My and g(u) := h(u) — (u,v).

To show that L(z,r) is bounded brings back then to prove that 0 € int(dom g*).

" (w) = sup{ {w,u) — ()} = sup{(w +v,w) = h(w)} = h*(w+v),

consequently,

dom g* = dom h" —v.
0 € int(dom g*) & v € int(dom h*) & Vh(z) — Ay € int(dom h*) < y € int(A\™ (Vh(z) — dom h*)). O
Theorem 5.2. Let f € T'o(R?) and h € A(S) such as dom f NS # ¢. If one of the two following conditions are verified:
(1). i%ff > —oo and h verify Hs.
(2). ImVh = RP.
Then for all © € S, for all X > 0, the function u — f(u) + A"'Dy,(u,v) reaches it minimum in a unique point on S.
Proof.
(1). As previously, it ’s enought to demonstrate that: V r € R,
L(z,r) :={u: f(u)+ /\71Dh(u,x) <r}
is bounded when it is not empty.

u € L(z,7) =f(u) + X' Dp(u,z) < r

= Dy (u,z) < X(r — inf f).
5

L(z,7r) C Lo <:c,,\ <r — inf f)) ,

thanks to Hs, Lo (ac, A (r — inf f>) is bounded , which leads that L(z,r) is bounded too.
S

It follows that
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(2). ImVh = RP and ImVh C domh* = dom h™ = RP. Consequently, the condition of the Proposition 5.1 is verified, for

all x € S and for all A > 0, whence the desired result. O
Definition 5.3. f and h verify the hypotheses of the Theorem 5.2.

(1). The entropic approzimation of f compared to h, of parameter A\(A > 0) is the function defined by :
fur(w) = inf {f(y) + A ' Du(y, @)}, Yz €S.
S
(2). The application entropic proximal of f comparing to h, of parameter X is the operator defined by:

hl(z) == promﬁf(a:) = argmin{f(y) + A 'Du(y,z)}, Yz € S.
yeSs

Now, we search at which conditions

hl{(z) € S, VxeS,
this is in order to verify the effectiveness of algorithms [9].
Theorem 5.4 ([7]). Let f € I'o(RP) and h € B(S). If one of the two following conditions are verified:
(1). fis at finite values and inff > —oco
(2). dom f C S and h verify Hr.
Then hi(z) € S,V z € S.
From another approach, we are going to improve the condition 2. of this Theorem.
Lemma 5.5. Ifh € L(S). ThenV u € S,

{Vh(z*) — Vh(u)} if 2" €S
U] if not

O(Dn(.,u))(x") =

Proof.  Since h is a Legendre function on S, Dj(.,u) it is too. By application of Theorem 26.1 [9], (Dp(.;u)) verifies:
—If «* € int(dom Dp(.,u)) = S then O(Dp(.,w))(z") = {V(Dn(.,u)(z")}

Dy (z,u) = h(z) — h(u) — (z — u, Vh(u)),

h is differentiable on S, so V(D (., u)(z") = Vh(z") — Vh(u).
—If * ¢ S then O(Dy(.,u))(z*) = 0. O

Theorem 5.6 ([9]). If f1, f2,..., fm are convex and proper functions on RP, then:

Ofr, fat -+ fm)(x) D 0fi(2) + Of2(x) + -+ + O fm ().

If furthermore, N(ri dom f;) # 0, then;

Ofr, fat -+ fm) (@) = 0f1(x) + Of2(x) + -+ + O fm(2),V @
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Theorem 5.7. Let h € L(S) and f € T'o(RP) such as ri(dom f)NS # 0. Let x € S and X > 0 such as ri(dom f*)N
int(A\"Y(Vh(x) — dom h*)) # 0. Then hi(z) € S.

Proof.  From the Proposition 5.1. h{(x) € 5. Let’s suppose that h{(z) ¢ S.

h{(z) = arg min{/f(y) + A Di(y, @)},
which leads to
0 € O(f + A" Duls2)) (] (x)).

ri(dom f) N ri(dom Dy(.,z)) = ri(dom f)Nri(S) = ri(dom f)N S # 0, and from the Theorem 5.6;
0 € df (h](x)) + A~ O(Da(.,x)) (W ().
It follows that: 3 u: u € df(h{(z)). Such as:
—Xu € A(Dp(.,z)(hi(x)).

Is in contradiction with the Lemma 5.5. O
Corollary 5.8. Let h € A(S) and f € T'o(RP) such as:

(1). ri(dom f)NS # ¢,

(2). ImVh = RP.

Thenh{(x)es, VzesS VA>0.

Proof. We get, ImVh C dom h*, since ImVh = RP, we deduce from this, that dom h* = RP. Consequently;
ri(dom f*) Nint(\~"(Vh(z) — dom h*)) #0,Y z € S,¥ A > 0.

By application of Theorem 5.7 and of the Proposition 3.10, we obtain the result. O

Remark 5.9. The Theorem 5.4, 2. appears then as a consequence of Corollary 5.8 it brings a prove at the affirmation below
of Chen and Teboulle on [11]:

If ridom f C S and ImVh = RP, then h{ (z) € S, for allz € S. We give the properties of the prozimal entropic function
h{ such as propositions.

Proposition 5.10. Let A := {z € S,h{(x) € S}. If ri(dom f)N S # 0, then

(1). THESHRED € of(n{ (@), ¥ @ € A;

(2). hi = (Vh 4 28f)"'oVh, on A.

Proof.

(1). hi(x) = arg, min{f(u) + \"'Dp(u,z)} & 0 € d [f()+A"'Dy(.,2)] (h{(x)). As ri(dom f)NS # 0, from the Theorem
5.6,

0 € 0f(h{(z)) + A" V(D (., 2))(h{(2)),

thanks to Lemma 5.5, we deduct (1).
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(2). (1) & Vh(z) € Vh(hi(z))+ 0f(h](z)) & h{(x) € (VA+Xf) ' Vh(x). fis convex and h is strictly convex, Vh+ A3 f
is then a strictly monotone operator. (Vh+A3f)~" is then a univocale operator and; hf(z) = (VA+3f) " (Vh(z)). O

Remark 5.11. Replacing h by ho at the Proposition 5.10, we obtain the result of the Proposition 2.2.
Proposition 5.12. We suppose that h and f verify the conditions of Corollary 5.8.

(1). If Argmin f # 0 then, for all x* € Argmin f, for all x € S, we get:

Dy (", h{(x)) + Di(h{(z).z) < Di(a", ) (4)

(2). If inf f > —oo then, for alle > 0, for all x* such as 0 € O f(z™), for all x € S, we get:

Dy(a", h{(2)) + Du(h}(),z) < Di(z", ) +e. (5)

Proof.

(1). From (1) of the Proposition 5.10,

Vh(z) — Vh(hi(z))
A

€ df(hi(z)) and 0 € df(z")

Jf is the monotone operator, so;

(Vh(z) = Vh(h{(2)),&" = h](z)) <0, (6)

and by vertue of Lemma 3.10, we get:

Da(a" W (@) + Du(h (), 2) < Du(a", ).

(2). From a similar way to (1),

(Vh(z) = Vh(h{(2)),z" — h{(2)) <e,
whence the inequality (5). O

Corollary 5.13. We suppose that h anf f verify the conditions of Corollary 5.8. If inf(f) > —oo and h verifies Hs, then

h{ : S — S is a continued application.

Proof. Letx € Sand z" € S such as 2™ — x, let’s show that hf(z") — h{(z). Let 2* such as 0 € 8. f(z*), by replacing
x by z" on (5), we obtain:

Du( b (a")) + Du(h(a"),2") < Da(a",a") + <.

We get then

Dy (z*, bl (z")) < Dp(z”, ") + &.

As 2" — x € S, Dy (2", 2™) — Dy (", z), so the previous inequality leads that the sequence { Dy, (z*, h{(z™))} is bounded.
From Hs, we deduce that {h’; (z™)} is bounded too. Let {hf\(x"l)}n a subsequence of {h{ (z™)}n such as hf\c (z™) — u, we
get,

FR")) + A7 Du(h ("), ™) < f(v) + A7 Di(v,2™)
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Passing by at the limit, f(u) + A" Dy (u,z) < f(v) + A" Dy (v, z), which means
u= h{ (z).

h{ (z) is unique, whence h/f\ (z") — hf\(m) with an enhancement of conditions on h or f, we can establish the contradiction

of the operator h’; for X large enough. O

Proposition 5.14. We suppose that h and f verify the conditions of the Corollary 5.8. If furthermore h or f is strongly

conver with parameter o, we have then,
_ _ 1
Ih4o(VR) " (z) = B o (VA) " (y)l| < Sz =yl

Proof.  h{ = (Vh+X3f) "' oVh= hio(Vh)™' = (Vh+Xf)~'. Vh+ \3f is a strongly convex operator, from [10] we

have the inequality. O
Proposition 5.15. We suppose that h and f verify the conditions of the Corollary 5.8. furthermore, h verifies:
B>,V z,y €5, ||Vh(z) = Vhy)ll < Bllz -yl

(a). If [ is strongly convex with parameter a(a > 0), then,

v,y € 8, I - Kl < e -yl

Ifg <\, then h{ is a contraction.

(b). If h is strongly convex on S with parameter a(a > 0), then:

v,y €S, (@) ~ )l < 2z~

If B = «, then hﬁ is a contraction.

Proof.
(a). We put h(z) = z* and h{(y) = y*. From the Proposition 5.10,

Vh(z) — Vh(z™)
A

Vh(y) — Vh(y")
A

€ of(x"),

€of(y").
f is strongly convex with parameter «, then

(Vh(z) = Vh(z") = Vh(y) + Vh(y"),a" —y") > aX||z” —y"||*
Which equals at;

(Vh(z) — Vh(y).a" —y") = adla” —y'[|* + (Vh(z") — Vh(y"),e" —y")

=(Vh(z) = Vh(y),z" —y") > aA||z” —y"||*

= aAla* —y* I < [Vh(e) ~ V()2 ~ ]
= L P [T
* * 5
= —f < Zjle —
s g R

If g < X then % < 1 and then ||h{(x) - h{(y)” < |lz =yl
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(b). 9f is a monoyone operator, then;
(Vh(z) = Vh(z") = Vh(y) + Vh(y"),2" —y") 20
(Vh(z) = Vh(y), 2" —y") > (Vh(z") = VA(y"),2" —y")
= (Vh(z) = Vh(y),z" —y") > allz” -
As the same as previous, we conclude that : ||z* — y*|| < £z — y||. O
Theorem 5.16.

(a). Let h € A(S) and f € T'o(RP) such as ri(dom f)NS #0. Then: ¥ x € S,V X\ >0, we get :
Fax(@) + (f o AT h) (AT VA(@)) = A (2, VA(z)) — h(@)). (M

Where ¢ is inf concvolution.
(b). Let h € L(S), f € To(RP),z € S and X > 0 verifying the theorem conditions 5.7, we get :
(i). inf{f(u) + X" Dp(u, )} + inf{f*(v) + A"'R*(Vh(z) — M)} = X"'h*(Vh(z)). Those two infima are finite and
achieved respectively in u* and v* such as :

Vh(z) = Vh(u") + Mv™. (8)

(ii). If dom h* = ImVh, then the second infimum is achieved in a unique point v* verifying (8).
Proof.
(a). frx(w) = nf{f(u) + X~ D (u, 2)}
= —sup{(A"'VA(x),u) = (f(u) + A7 h(w))} + A7 ((z, Vh(z)) — h())
= fax(@) + (f + A7 h)"(AT'Vh(2)) = A7 (2, Vh(2)) — h(z)).

As ri(dom f)(S # 0, from the Theorem 16, 4 [9], we have

(f + A7) (A TIVR(R) = (F o (AT TR)") (AT Vh(e)),

which leads the equality (7)

(b).  (i). By application of the Proposition 5.10, we get :

Vh(z) — Vh(u")
A

sut e df” (

u* = hi(z) € df(u")

Vh(z) — Vh(u*)>
A
Vh(z) — Vh(u™)

@Oeaf*( 3

) — VR (Vh(u™))
(Vh* = (Vh)~! because h € L(S)). Let v* such as : Vh(z) = Vh(u*) + \v*,

u* = hi(z) =0 € df*(v*) — VA" (Vh(z) — )

=v* € Argmin{f*(v) + A"'h"(Vh(z) — \v)}

which establishes (8).
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(ii). Let v* such as :

v" € Arg Ir&jln{f*(v) + AT R (Vh(z) — M)}

We deduct that

0€df (v") — VA" (Vh(z) — \v").

Since Vh(xz) — Av™ € dom h* = ImVh, it exists u* € S such as
Vh(z) — A" = Vh(u")

We have then :

0eaf” (w) — VR*(Vh(u"))

(M

Which result the uniqueness of v*.

Until now, we study the properties of the entropic approximation fy.
Proposition 5.17.

(1). If h € A(S), then; YV A > u >0,V x €S, frr(x) < fru(z) < f(x).

(2). If h and f verify the hypotheses of Corollary 5.8, then: igf foa = igf f.
Proof.

(). Vye S,VxeS, Dyly,x) > 0. Therefore

p<A=A""'Du(y,z) < p ' Du(y,z),YyeS,VaeS

= Jua(®) < frp(z).

Moreover:

fru(@) < f(y) +p 'Dily,z),¥Vy€S.

Replacing y by x, we obtain
fru(z) < f(z),Y2zeSs.
(2). inf fur(x) = inf {inf (F(u) + A~ Dy (u,2))}
zeS z€S yes

= inf {inf (f(u) + A 'Dy(u, 7))}

= inf inf{(f(u) + A" Dy (u, )}

= inf {(f(u) + inf A" Dy (u, )}

inf A™' Dy, (u, ) = 0 for u € S, whence inf fry = inf f.
z€S s s
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Proposition 5.18. We suppose that h and f verify the hypotheses of Corollary 5.13. If h is twice Continuously Differentiable

on S and Dy(.,.) and jointly convez; then fnx is continually differentiable, conver and such as:
V€S, Vin(r) = A" H(z)(z — h{(z)) where H = V?h

Proof. Dy(.,.) is jointly convex and f is convex , f is then convex. Lets show that:
Yz €S, dfu(z) C AN Dy(z",.))(x) when z* = hl(x). (9)
Vaes, fax(z) = f(z*) + X"'Dp(z*,z). Let y € S, we get:
Firn(y) = f@" + 27" Da(a", y)-

Let u € Ofna(z), we have:
Jnx(y) = fax(z) + (u,y — z)
a* = hi(x) €dom f= \"'Dy(z*,y) > X\ Dy(z*, ) + (u,y — ) which means: \u € 8(Dy(z*,.))(z), which shows (9). h

is two times conditionally differentiable, therefore:

A= V(Dp(z",.))(x)
M= —V2h(z)(z" — )
u=A\"H(z)(x —z").

Consequently, V fix(z) = A\ H (x)(z — b (2)). O
Proposition 5.19. We suppose that h and f verify the hypotheses of the Corollary 5.8. If furthermore,
(1). his twice Continuously Differentiable on S and Dy(.,.) is convex jointly,
(2). H is defined positive.
Then Arg mSinf = Arg Ingn Jna

Proof. Letu* € Arg msin fra-

far(u”) = inf fax & 0 € dfpr(u)
= 0= thx(u*)

A T H W) (u" = hl(u) = 0.
Since H is defined positive, we from then deduct that u* = h\]; (u*). From the Proposition 5.10, we have:
w=hi(u)=0edf(u’) = u" e argmsinf.
We get then: Arg m&in fax C Arg msinf reciprocally, let * such that f(z*) = irslf f.
f@) =inf fax < far(e”) < f(@7).

Thus we have f(z*) = igf fax = far(z®), which complete the demonstration. O
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Proposition 5.20. Let f € I'o(R?) and h € A(S) verifying Hs and Hr.
(a). ¥V x € SNdomf, lim prozh;(z) ==z
A—0
(b).Vzeb lim fur(z)= f(z).
A—0
Proof.

(a). From the Theorem 5.2, prozh,(z) := zx € S Ndom f, we have: frx(z) = f(zx) + A 'Du(zr, z), and fri(z) < flu) +

Dy (u, ). Replacing u by x» on the previous inequality, we deduce that: fu1(z) — Dp(zx,x) + A" Dp(zy, z) < far(z)

Dp(ax,2)(A = 1) < far(@) — fur(2)
Dp(zx,2)(1 = A) < A[fur(x) — fra ()]
For0< A <1,
0. Difen,2) < 725 (&) = fur(a)

When A — 0, Dp(zx,z) — 0. From Hg, the generalized sequence {zx}rer is bounded. Let 2* an adherence value of

{zr}rer, it exists then a sub-sequence {xo(x)} such as o) — ™. We get:
Dh(mao\),x) = h(:vao\)) — h(:L') — <l‘ — aza(k), Vh(ac)),

Whence, by passage to the limit, Dy (z*,z) = 0. That means that * = x and therefore, xx — z as A — 0.

(b). We get: f(22) < fur(x) < f(2).
xzy — x and fs.ci. = f(z) < limf(xy) < limfux(z) < limfar(z) < f(z) = /\limofh)\(x) = f(x).
—

If h is strongly convex on the module 1, then the approximation of f by fix is better than by fx, as the following

proposition shows. O
Proposition 5.21. Let h,h' € A(S)
(1). If h — K’ is a convez function, then: ¥ x € S,¥ A > 0, fua(z) < faa(z) < f(=).
(2). If h is strongly convex of module 1, then: ¥ x € S,¥ XA >0, fa(z) < far(z) < f(z).
Proof.

(1). Let z € S and A > 0. By value of the Proposition 3.8,V y € S, Dj_p/(y,%) = Dy(x,y) — D/ (y,x). Since h — b’ is a
convex function, we get: Vy € S, Dy_p(y,2) > 0. We deduct that V y € S, Dy (y, ) < Di(y, ). From this inequality,
we obtain ¥V y € S, f(y) + A Dy (y,2) < f(y) + A 'Di(y,z). We have then fix(z) < frr(x). According to the

Proposition 5.17 (1), we deduct the wanted inequality.

(2). h is strongly convex on the module 1, means that h - hg is convex . Consequently, from (1), we have Thgx () < fra(x) <

f(x). frox = fr, whence the result. O
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6. Conclusion

Replacing h by ho in all the result developed previously, we find all the properties of regularity and approximation given
by Moreau and Yosida in spite of the non-symmetry of Dp(.,.) and the absence of the triangular inequality. These results
make it easy to establish the convergence of the algorithmic type :

1

3 Dh(z7x"71)} s An > 0.

z" ;= arg min {f(z) +

This sequence converges towards a minimum of f.

References

[1] H. Attouch, Variational convergence for functions and operator, Pitman Advanced Publishing Program, (1984).
[2] H. Attouch and R. J. B. Wets, Isometrie for the Legendre-Fencheltransform, Trans .A.M.S., 296(1986), 33-60.
[3] M. A. Bahraoui, Diagonal Bundle Methods for Convexr Minimization, Theoritical Aspect, Int. J. Math. And Appl.,
6(4)(2018), 5157.
[4] H. Brezis, Oprateurs mazimauz monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies,
5(1973).
[6] Y. Censor and A. Lent, An iterative row action method for interval convexr programming, Journal of Optimization
Theory and Applications, 34(3)(1981), 321-353.
[6] A. R. De Pierro and A. N. Iusem, A relazed version of Bregman’s method for conver programming, Journal of Opti-
mization theory and Application, 5(3)(1986), 421-440.
[7] J. Eckstein, Nonlinear prozimal point algorithms using Bregman functions, with applications to convex programming,
Mathematics of Operations Research, 18(1(1993), 202-226.
[8] J. J. Moreau, Prozimit et dualit dans un espace Hilbertien, Bull.Soc. Math. France, 93(1965), 273-299.
[9] R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, Princeton University Press, (1970).
[10] R. T. Rockafellar, Monotone operators and the prozimal point algorithm, SIAM J. Control and Optimization,
14(5)(1975), 877-898.
[11] M. Teboulle and Gong Chen, Convergence analysis of a prozimal-like minimization algorithm using Bregman function,
SIAM Journal on Optimization, 3(3)(1993), 538-543.
[12] M. Teboulle, Entropic prozimal mappings with applications to nonlinear programming, Mathematics of Operations

Research, 17(3)(1992), 670-690.



	Introduction
	Approximation of Moreau-Yosida
	Entropic Distances
	Examples of Bregman Functions 
	Entropic Approximations
	Conclusion
	References

