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1. Introduction

Arguably, the gamma function is one of the most important functions in mathematical analysis. It was descovered by

Leonhard Euler in his pursuit to extend the factorial notation to non-integer values. It is usually defined as

Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0. (1)

Its logarithmic derivative, which is termed the digamma function is given as

ψ (x) =
d

dx
ln Γ (x)

= −γ +

∫ ∞
0

(
e−t − e−xt

1− e−t

)
dt, (2)

where γ is the Euler-Mascheroni constant. Due to its importance, the gamma function has been generalized and extended

in different ways. See for instance [1–6, 8, 9, 11, 16]. In the midst of these generalizations, our focus will be on the one

due Mathai and Haubold [11], which is the real matrix-variate gamma function. The real matrix-variate gamma function

introduced by Mathai and Haubold [11] is defined as

Γn(x) =

∫
A=A′>0

|A|x−
n+1
2 e−tr(A)dA, x >

n− 1

2
, (3)
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where the integration is carried out over n× n symmetric positive definite matrices, and A is n× n real symmetric positive

definite matrix. It is clear that Γn(x) reduces to Γ(x) when n = 1. For further information on this function, one can refer

to [7, 12] and the references therein.

When the integral (3) is evaluated, the function is seen in the form

Γn(x) = π
n(n−1)

4 Γ(x)Γ

(
x− 1

2

)
. . .Γ

(
x− n− 1

2

)
, x >

n− 1

2
. (4)

In [10], explicit evaluation of matrix-variate gamma and beta integrals in the complex domain for the order of the matrix

n = 1, 2 were given. A formal definition of fractional integrals in the complex matrix-variate cases was also given.

In [15], the real matrix-variate gamma function was extended as

Γb,n(x) =

∫
A=A′>0

|A|x−
n+1
2 e−tr(A+bA−1)dA. (5)

The particular case where b = 0, is reduced to equation (3). When (n, b) = (1, 0), equation (5) is reduced to equation (1)

and when n = 1, equation (5) is reduced to the form

Γb,n(x) =

∫ ∞
0

e−t−
b
t tx−1 dt, x > 0. (6)

Nagar and other researchers further studied a number of properties of this function and some of its applications to statistical

distribution theory [14]. In [17], the real matrix-variate extended gamma and beta functions and their density functions were

defined. The extended real matrix-variate beta function was also applied to extend the real matrix-variate hypergeometric

and confluent hypergeometric functions via zonal polynomials.

In the paper [13], a generalized extended matrix-variate gamma function denoted by Γ
(α,β)
n (x, b) was defined as

Γ(α,β)
n (x, b) =

∫
A=A′>0

|A|x−
n+1
2 φ

(
α;β;−A−A

−1
2 bA

−1
2 dA

)
. (7)

From this definition, it is clear that for α=β, the generalized extended matrix-variate gamma function reduces to an extended

matrix-variate gamma function as in equation (5). That is Γ
(α,α)
n (x, b) = Γn (x, b). Further, if α = β and b = 0, then for

<(x) > n−1
2

, the generalized extended matrix-variate gamma function reduces to the real matrix-variate gamma function as

in (3).

In this paper, we prove that the real matrix-variate gamma function is logarithmically convex. Subsequently, we derive some

new inequalities involving the function. Also, we introduce the real matrix-variate digamma function and as applications,

we derive some inequalities for certain ratios of the real matrix-variate gamma function. We present our findings in the

following section.

2. Main Results

Theorem 2.1. The real matrix-variate gamma function, Γn(x) is logarithmically convex. In other words, for x, y > n−1
2

,

a > 1 and 1
a

+ 1
b

= 1, the inequality

Γn
(x
a

+
y

b

)
≤ [Γn (x)]

1
a [Γn (y)]

1
b , (8)

is satisfied.

98



T. A. Akugre and K. Nantomah

Proof. Let x, y > n−1
2

, a > 1 and 1
a

+ 1
b

= 1. Then by (3), we have

Γn
(x
a

+
y

b

)
=

∫
A=A′>0

|A|(
x
a
+ y

b )−n+1
2 e−tr(A)dA.

Since 1
a

+ 1
b

= 1, then we have

Γn
(x
a

+
y

b

)
=

∫
A=A′>0

|A|
x
a
+ y

b
−n+1

2 ( 1
a
+ 1

b )e−tr(A)( 1
a
+ 1

b )dA

=

∫
A=A′>0

|A|
x
a
−n+1

2a e−
tr(A)

a |A|
y
b
−n+1

2b e−
tr(A)

b dA

=

∫
A=A′>0

|A|(x−
n+1
2 ) 1

a e−
tr(A)

a |A|(y−
n+1
2 ) 1

b e−
tr(A)

b dA.

Now by applying Holder’s inequality, we obtain

∫
A=A′>0

|A|(x−
n+1
2 ) 1

a e−
tr(A)

a |A|(y−
n+1
2 ) 1

b e−
tr(A)

b dA

≤
(∫

A=A′>0

[
|A|(x−

n+1
2 ) 1

a e−
tr(A)

a

]a
dA

) 1
a

(∫
A=A′>0

[
|A|(y−

n+1
2 ) 1

b e−
tr(A)

b

]b
dA

) 1
b

=

(∫
A=A′>0

|A|x−
n+1
2 e−tr(A)dA

) 1
a
(∫

A=A′>0

|A|y−
n+1
2 e−tr(A)dA

) 1
b

= [Γn (x)]
1
a [Γn (y)]

1
b ,

which gives (8). This concludes the proof.

Corollary 2.2. For x > n−1
2

, the inequality

Γn (x) Γ′′n (x) ≥
[
Γ′n (x)

]2
, (9)

is satisfied.

Proof. Since Γn(x) is log-convex, then [ln Γn (x)]′′ ≥ 0 for all x > n−1
2

. This implies that,

[ln Γn (x)]′′ =

[
Γ′n (x)

Γn (x)

]′
=

Γ′′n (x) Γn (x)− Γ′n (x) Γ′n (x)

[Γn (x)]2

=
Γ′′n (x) Γn (x)− [Γ′n (x)]

2

[Γn (x)]2
≥ 0.

Hence, Γ′′n (x) Γn (x)− [Γ′n (x)]
2 ≥ 0 which completes the proof.

Theorem 2.3. For x, y > n−1
2

, a > 1 and 1
a

+ 1
b

= 1, the inequality

Γn (x+ y) ≤ [Γn (ax)]
1
a [Γn (by)]

1
b , (10)

is satisfied.

Proof. Let x, y > n−1
2

, a > 1 and 1
a

+ 1
b

= 1. Then by (3), we have

Γn (x+ y) =

∫
A=A′>0

|A|(x+y)−
n+1
2 e−tr(A)dA
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=

∫
A=A′>0

|A|x−
n+1
2a e−

tr(A)
a |A|y−

n+1
2b e−

tr(A)
b dA,

and by applying Holder’s inequality, we obtain

∫
A=A′>0

|A|x−
n+1
2a e−

tr(A)
a |A|y−

n+1
2b e−

tr(A)
b dA

≤
(∫

A=A′>0

[
|A|x−

n+1
2a e−

tr(A)
a

]a
dA

) 1
a

(∫
A=A′>0

[
|A|y−

n+1
2b e−

tr(A)
b

]b
dA

) 1
b

=

(∫
A=A′>0

|A|ax−
n+1
2 e−tr(A)dA

) 1
a
(∫

A=A′>0

|A|by−
n+1
2 e−tr(A)dA

) 1
b

= [Γn (ax)]
1
a [Γn (by)]

1
b

which gives (10) and this completes the proof.

The following lemma which is well known in the literature is called Young’s inequality for scalars.

Lemma 2.4. Let x, y ≥ 0, a > 1 and 1
a

+ 1
b

= 1. Then,

xy ≤ xa

a
+
yb

b
, (11)

or equivalently,

x
1
a y

1
b ≤ x

a
+
y

b
. (12)

Corollary 2.5. For x, y ≥ n−1
2

, a > 1 and 1
a

+ 1
b

= 1, the inequality

Γn (x+ y) ≤ Γn (ax)

a
+

Γn (by)

b
(13)

is satisfied.

Proof. Let x, y ≥ 0, a > 1 and 1
a

+ 1
b

= 1. Then from Theorem 2.3, it is obtained that,

Γn (x+ y) ≤ [Γn (ax)]
1
a [Γn (by)]

1
b . (14)

Also, by (12), we have,

[Γn (ax)]
1
a [Γn (by)]

1
b ≤ Γn (ax)

a
+

Γn (by)

b
. (15)

Now combining (14) and (15) gives the resule (13).

In what follows, we introduce the real matrix-variate digamma function and then apply it to establish some inequaties for

certain ratios of the real matrix-variate gamma function.

Proposition 2.6. Let the real matrix-variate digamma function be defined as the logarithmic derivative of the real matrix-

variate gamma function. That is,

Ψn (x) =
d

dx
ln Γn (x) =

Γ′n(x)

Γn(x)
, x >

n− 1

2
.

Then the series representation

Ψn (x) =

n∑
i=1

ψ

(
x− i− 1

2

)
, x >

n− 1

2
, (16)

is valid, where ψ(x) is the ordinary digamma function.
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Proof. Recall from (4) that

Γn (x) = π
n(n−1)

4 Γ (x) Γ

(
x− 1

2

)
Γ (x− 1) Γ

(
x− 3

2

)
. . .Γ

(
x− n− 1

2

)
,

for x > n−1
2

. Then,

ln Γn (x) =
n (n− 1)

4
lnπ + ln Γ (x) + ln Γ

(
x− 1

2

)
+ · · ·+ ln Γ

(
x− n− 1

2

)
,

which implies that

Ψn (x) =
d

dx
ln Γn (x) =

Γ′ (x)

Γ (x)
+

Γ′
(
x− 1

2

)
Γ
(
x− 1

2

) +
Γ′ (x− 1)

Γ (x− 1)
+ · · ·+

Γ′
(
x− n−1

2

)
Γ
(
x− n−1

2

)
= ψ (x) + ψ

(
x− 1

2

)
+ ψ (x− 1) + ψ

(
x− 3

2

)
+ · · ·+ ψ

(
x− n− 1

2

)
=

n∑
i=1

ψ

(
x− i− 1

2

)
.

This concludes the proof.

Proposition 2.7. The real matrix-variate digamma function, Ψn(x) has the representation

Ψn (x) = −nγ +

n∑
i=1

∫ ∞
0

e−t − e−(x− i−1
2 )t

1− e−t dt. (17)

Proof. This is obtained from (16) by using (2).

Proposition 2.8. The function Ψn (x) is increasing for all x > n−1
2

.

Proof. Method 1: Since ψ(x) is increasing for all x > 0, it follows easily from (16) that

Ψ′n (x) =

n∑
i=1

ψ′
(
x− i− 1

2

)
> 0,

which concludes the proof.

Method 2: Let n−1
2

< x < y. Then, since ψ(x) is increasing for all x > 0, we have

Ψn (x)−Ψn (y) =

n∑
i=1

ψ

(
x− i− 1

2

)
−

n∑
i=1

ψ

(
y − i− 1

2

)

=

n∑
i=1

[
ψ

(
x− i− 1

2

)
− ψ

(
y − i− 1

2

)]
< 0,

which gives the desired result. Method 3: By direct differentiation and by using (9), we obtain

Ψ′n(x) =
Γ′′n (x) Γn (x)− [Γ′n (x)]

2

[Γn (x)]2
≥ 0,

which also gives the desired result. These conclude the proof.

Theorem 2.9. The function

f (x) =
Γn (kx)

[Γn (x)]k
, k ≥ 1, (18)

is incresing on
(
n−1
2
,∞
)

and consequently, the inequality

[
Γn (y)

Γn (x)

]k
≤ Γn (ky)

Γn (kx)
, (19)

holds for n−1
2

< x < y .
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Proof. For n−1
2

< x < y and k ≥ 1, let g (x) = ln f (x). Then g (x)′ = k [Ψn (kx)−Ψn (x)] ≥ 0, which follows from the

increasing property of Ψn(x). Thus g (x) is increasing. In view of this, f (x) is also increasing. Hence for n−1
2

< x < y, we

have

Γn (kx)

[Γn (x)]k
≤ Γn (ky)

[Γn (y)]k
,

which when rearranged gives (19). This completes the proof.

Theorem 2.10. Let λ ≥ 1. Then the function

f (x) =
Γn (1 + x)λ

Γn (1 + λx)
, (20)

is decreasing. Hence the inequalities

[Γn (2)]λ

Γn (1 + λ)
≤ Γn (1 + x)λ

Γn (1 + λx)
≤ Γn (1)λ

Γn (1)
, x ∈ [0, 1] , (21)

and

Γn (1 + x)λ

Γn (1 + λx)
≤ [Γn (2)]λ

Γn (1 + λ)
, x ∈ (1,∞) , (22)

are valid.

Proof. Let h (x) = ln f (x) = λ ln Γn (1 + x)− ln Γn (1 + λx). Then

h′ (x) =
λΓ′n (1 + x)

Γn (1 + x)
− λΓ′n (1 + λx)

Γn (1 + λx)

= λ [Ψn (1 + x)−Ψn (1 + λx)] ≤ 0,

which implies that h (x) is decreasing. In view of this, f (x) is also decreasing. Then for x ∈ [0, 1], we have f (1) ≤ f (x) ≤

f (0), which gives inequality (21). Also, for x ∈ (1,∞), we have f (x) ≤ f (1), which gives inequality (22).

3. Conclusion

In this work, we have proved that the real matrix-variate gamma function is logarithmically convex and consequently, we

derived some inequalities involving the function. We also introduced the real matrix-variate digamma function and as

applications, we derived some inequalities for certain ratios of the real matrix-variate gamma function.
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