ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Inexact Version of the Entropic Proximal Point Algorithm

S. Kabbadj^{1,*}

1 Department of Mathematic, Faculty of Sciences of Meknès, B.P. 11201, Morocco.

Abstract: In this paper, we study an inexact version of the entropic proximal point algorithm defined by

$$x^k \in \varepsilon_k - Argmin\{f(.) + \lambda_k^{-1} D_h(., x^{k-1})\}.$$

This study recovers the most of the algorithms of the proximal point.

Keywords: Convex optimization, Bregman's function, Entropic approximation.

© JS Publication.

1. Introduction

Let's consider the problem of a convex optimization

$$(P): \min \{f(x), x \in \mathbb{R}^n\},\$$

where $f \in \Gamma_0(\mathbb{R}^n)$ set of lower semicontinuous, proper and convex functions on \mathbb{R}^n . By using the approximation of Moreau-Yosida, Auslender [1], Martine [8], Rockafellar [9], Behraoui [2], and Lemaire [6, 7] have given the methods of resolution of (P) named proximal methods defined by:

$$x^k \in \varepsilon_k - Argmin\left\{f(.) + \frac{1}{2\lambda_k} \|. - x^{k-1}\|^2\right\}.$$

By using the entropic approximation [5], Eckstein [3], thus Chen and Teboulle [10] have given a classe of methods named entropics proximals defined by:

$$x^{k} := argmin\{f(.) + \lambda_{k}^{-1}D_{h}(., x^{k-1})\}\$$

where $D_h(.,.)$ is the entropic distance defined by:

$$D_h(x,y) := h(x) - h(y) - \langle x - y, \nabla h(y) \rangle.$$

In this labor, we propose an inexact version defined by:

$$x^k \in \varepsilon_k - Argmin\{f(.) + \lambda_k^{-1} D_h(., x^{k-1})\},$$

 $^{* \ \}textit{E-mail: kabbajsaid} 63@yahoo.com$

where $h \in C(S)$ [5], we show that x^k converges to x^* solution of the problem (P). Our result of convergence obtained in section 4, recovers what has been given by Auslender (it's enough to take $h(.) = \frac{1}{2} ||.||^2$), thus the result of convergence obtained by Eckstein (it's enough to take $\varepsilon_k = 0$).

Our notation is fairly standard; $\langle .,. \rangle$ is the scalar product on \mathbb{R}^n ; and the associated norm $\|.\|$. The closure of the set C (relative interior) is denoted by \overline{C} (riC, respectively), Adh $\{x^k\}$ is the set of adherence values of a sequence $\{x^k\}$. For any convex function f, we denote by:

- (1). $dom f = \{x \in \mathbb{R}^n; f(x) < +\infty\}$ its effective domain,
- (2). $\partial_{\epsilon} f(.) = \{v, f(y) \geq f(.) + \langle v, y . \rangle \epsilon, \forall y\}$ its ϵ -sub differential,
- (3). $Arg \min f = \{x \in \mathbb{R}^n; f(x) = \inf f\}$ its Argmin f,
- (4). $\varepsilon Arg \min f = \{x \in \mathbb{R}^n; f(x) \le \inf f + \varepsilon\} \text{ its } \varepsilon Arg \min f.$

2. Preliminaries

Let S be an convex open subset of R^n and $h: \overline{S} \longrightarrow R$. We define $D_h(.,.)$ by: $\forall x \in \overline{S}, \forall y \in S$:

$$D_h(x,y) := h(x) - h(y) - \langle x - y, \nabla h(y) \rangle.$$

Let us consider the following hypotheses:

 H_1 : h is continuously differentiable on S.

 H_2 : h is continuous and strictly convex on \overline{S} .

 H_3 : $\forall r \geq 0, \forall x \in \overline{S}, \forall y \in S$, the sets $L_1(x,r)$ and $L_2(y,r)$ are bounded where:

$$L_1(x,r) = \{ y \in S/D_h(x,y) \le r \}$$

$$L_2(y,r) = \{x \in \overline{S}/D_h(x,y) \le r\}.$$

 H_4 : If $\{y^k\}_k \subset S$ is such as $y^k \longrightarrow y^* \in \overline{S}$, so $D_h(y^*, y^k) \longrightarrow 0$.

 H_5 : If $\{x^k\}_k \subset \overline{S}$ is such as $\{y^k\}_k \subset S$ are such as:

$$y^k \longrightarrow y^* \in \overline{S}$$
, $\{x^k\}_k$ is bounded, and $D_h(x^k, y^k) \longrightarrow 0$, then $x^k \longrightarrow y^*$.

 H_6 : If $\{x^k\}_k$ and $\{y^k\}_k$ are two sequences of S such as:

$$D_h(x^k, y^k) \longrightarrow 0$$
 and $x^k \longrightarrow x^* \in S$, then $y^k \longrightarrow x^*$.

Definition 2.1.

- (1). $h: \overline{S} \longrightarrow R$ is a Bregman function on S or "D-function" if h verify H_1, H_2, H_3, H_4 and H_5 .
- (2). $D_h(.,.)$, is called entropic distance if h is a Bregman function.

We put:

$$A(S) = \{h : \overline{S} \longrightarrow R \text{ verifying } H_1 \text{ and } H_2\}$$

$$B(S) = \{h : \overline{S} \longrightarrow R \text{ verifying } H_1, H_2, H_3, H_4 \text{ and } H_5\}$$

$$C(S) = \{h : \overline{S} \longrightarrow R \text{ verifying } H_1, H_2, H_3, H_4 \text{ and } H_6\}.$$

Lemma 2.2. $\forall h \in A(S), \forall a \in \overline{S}, \forall b, c \in S$:

$$D_h(a,b) + D_h(b,c) - D_h(a,c) = \langle a-b, \nabla h(c) - \nabla h(b) \rangle.$$

Proposition 2.3. Let $h \in A(S)$. Let $\{x^k\}$ and $\{y^k\}$ two sequences of S such that:

(1).
$$x^k \to x^* \in S$$
 and $\{y^k\}$ bounded such as $Adh\{y^k\} \subset S$

(2).
$$D_h(x^k, y^k) \to 0$$
.

Then $y^k \to x^*$.

Proof. $\{y^k\}$ is bounded, then we can extract a sub-sequence $\{y^{k_i}\}$ of $\{y^k\}$ such that $y^{k_i} \to y \in S$. We have, $D_h(x^{k_i}, y^{k_i}) := h(x^{k_i}) - h(y^{k_i}) - \langle x^{k_i} - y^{k_i}, \nabla h(y^{k_i}) \rangle$. So, when $k_i \to +\infty$, we obtain: $0 = h(x^*) - h(y) - \langle x^* - y, \nabla h(y) \rangle \Rightarrow D_h(x^*, y) = 0 \Rightarrow x^* = y \Rightarrow Adh\{y^k\} = \{x^*\} \Rightarrow y^k \to x^*$.

Proposition 2.4. We assume:

- (1). $h \in A(S)$.
- (2). $\{x^k\} \subset S$ is bounded.
- (3). $Adh\{x^k\} \subset S$.

Then $\{D_h(u, x^k)\}_k$ is bounded for all $u \in \overline{S}$.

Proof. If the sequence $\{D_h(u, x^k)\}_k$ is not bounded for $u \in \overline{S}$, then exists a sub-sequence $\{D_h(u, x^{k_i})\}_{k_i}$ such that: $D_h(u, x^{k_i}) \to +\infty$. $\{x^{k_i}\}$ is bounded, then it exists a sub-sequence $\{x^{k_j}\}$ of $\{x^{k_i}\}$ such as $x^{k_j} \to x^*$. From (3), $x^* \in S$, so $\nabla h(x^{k_j}) \to \nabla h(x^*)$.

$$D_h(u, x^{k_j}) := h(u) - h(x^{k_j}) - \langle u - x^{k_j}, \nabla h(x^{k_j}) \rangle.$$

when, $k_j \to +\infty$, we obtain: $+\infty = D_h(u, x^*)$, which is contradictory with $h: \overline{S} \to R$.

Proposition 2.5. Let $h \in A(S)$ and $f \in \Gamma_0(\mathbb{R}^n)$ such as :

- (1). $ri\ (dom\ f)\ \cap S \neq \phi$,
- (2). $Im\nabla h = R^n$.

Then $\forall \varepsilon > 0, \forall \lambda > 0, \forall x \in S, \exists y \in S : y \in \varepsilon - Argmin\{f(.) + \lambda^{-1}D_h(.,x)\}.$

Proof. From the Corollary 5.8. [5], $\forall \varepsilon > 0$, $\forall \lambda > 0$, $\forall x \in S$, $y := h_{\lambda}^{f}(x) = argmin\{f(.) + \lambda^{-1}D_{h}(.,x)\} \in S$. So, $h_{\lambda}^{f}(x) \in \varepsilon - Argmin\{f(.) + \lambda^{-1}D_{h}(.,x)\}$.

3. Proximal Point Algorithm

Let $f \in \Gamma_0(\mathbb{R}^n)$, Auslender [1] condered the proximal following method:

$$P(1): \begin{cases} x^{0} \in \mathbb{R}^{n}, \varepsilon_{k} > 0 \text{ and } \lambda_{k} > 0. \\ x^{k} \in \varepsilon_{k} - Argmin\{f(.) + \frac{1}{2\lambda_{k}} ||. - x^{k-1}||^{2}\}. \end{cases}$$

The sequence $\{x^k\}$ generated by P(1) verify the following properties:

Proposition 3.1. It exists a sequence $\{\overline{x}^k\}$ such as: $\frac{x^{k-1}-\overline{x}^k}{\lambda_k} \in \partial_{\varepsilon_k} f(x^k)$ and $\|x^k-\overline{x}^k\| \leq \sqrt{2\lambda_k \varepsilon_k}$.

Theorem 3.2. We assume:

- (1). $\lambda_k \geq \underline{\lambda} > 0$,
- (2). f is inf-compact, i.e., $\forall r \in R$, $\{x \in R^n, f(x) \le r\}$ is compact, if it is not empty.
- (3). $\sum \varepsilon_k < +\infty$ or $(f(0) \text{ is finite and } \varepsilon_k \to 0)$.

Then $\{x^k\}$ defined by P(1) is bounded and $f(x^k) \to inff$.

Teboule and chen [10] have considered the algorithm defined by:

$$P(2)(h): \begin{cases} x^0 \in S, & \lambda_k > 0. \\ x^k = argmin\{f(.) + \lambda_k^{-1} D_h(., x^{k-1})\}. \end{cases}$$

Theorem 3.3. If $f \in \Gamma_0(\mathbb{R}^n)$ and $h \in B(S)$ such that

- (1). $Im\nabla h = R^n$,
- (2). $\sum \lambda_k = +\infty$,
- (3). $ri(dom\ f) \subset S$.

Then:

- (a). $f(x^k) \to inff$.
- (b). If $Argmin f \neq \emptyset$, then $x^k \to x^* \in Argmin f$.

4. Inexact Entropic Proximal Point Algorithm

In this paragraph, we assume:

$$(A): h \in C(S): Im\nabla h = R^n$$

$$(B): f \in \Gamma_0(\mathbb{R}^n): \overline{domf} \subset S$$

From the Proposition 2.5, we can thus construct the sequence $\{x^k\}$ defined by:

$$P(3)(h): \begin{cases} x^{0} \in S \\ x^{k} \in \varepsilon_{k} - Argmin\{f(.) + \lambda_{k}^{-1}D_{h}(., x^{k-1})\} \\ f(x^{k}) \text{ is decreasing} \\ \varepsilon_{k} \to 0 \text{ and } \lambda_{k} \geq \underline{\lambda} > 0. \end{cases}$$

To choose $\{x^k\}$ such that $\{f(x^k)\}$ is decreasing is possible. Indeed:

Let $\overline{x}^k \in \varepsilon_k - Argmin\{f(.) + \lambda_k^{-1}D_h(.,x^{k-1})\}$, for all $k \ge 1$. We take

$$x^{k} = \begin{cases} \overline{x}^{k} & \text{if } f(\overline{x}^{k}) \leq f(x^{k-1}) \\ x^{k-1} & \text{if } not \end{cases}$$

If $f(\overline{x}^k) > f(x^{k-1})$ then $x^{k-1} \in \varepsilon_k - Argmin\{f(.) + \lambda_k^{-1}D_h(., x^{k-1})\}$, because:

$$\lambda_k^{-1} D_h(x^{k-1}, x^{k-1}) + f(x^{k-1}) < f(\overline{x}^k) \le f(\overline{x}^k) + \lambda_k^{-1} D_h(\overline{x}^k, x^{k-1}) \le f(x) + \lambda_k^{-1} D_h(x, x^{k-1}) + \varepsilon_k.$$

Let's consider now the function $h_{u,\lambda}$ defined by: $h_{u,\lambda}: \overline{S} \to R, \, \forall \, \lambda > 0, \, \forall \, u \in S.$

$$h_{u,\lambda}(x) = \lambda^{-1} D_h(x,u), \forall x \in \overline{S}.$$

Proposition 4.1. $\forall \ \varepsilon > 0, \ \forall \ \lambda > 0, \ \forall \ x^* \in \overline{S}, \ \forall \ u \in S$:

$$\partial_{\varepsilon} h_{u,\lambda}(x^*) = \left\{ z/z = \frac{\nabla h(\overline{x}) - \nabla h(u)}{\lambda} \text{ with } \overline{x} \in S \text{ and } D_h(x^*, \overline{x}) \leq \lambda \varepsilon \right\}.$$

Proof.

$$z \in \partial_{\varepsilon} h_{u,\lambda}(x^{*}) \Leftrightarrow \forall \ x \in \overline{S}, h_{u,\lambda}(x) - h_{u,\lambda}(x^{*}) \geq \langle z, x - x^{*} \rangle - \varepsilon$$

$$\Leftrightarrow \forall \ x \in \overline{S}, \lambda^{-1} [h(x) - h(u) - \langle x - u, \nabla h(u) \rangle - h(x^{*}) + h(u) + \langle x^{*} - u, \nabla h(u) \rangle] \geq \langle z, x - x^{*} \rangle - \varepsilon$$

$$\Leftrightarrow \forall \ x \in \overline{S}, h(x^{*}) - h(x) - \langle x^{*} - x, \nabla h(u) \rangle \leq \langle \lambda z, x^{*} - x \rangle + \lambda \varepsilon$$

$$\Leftrightarrow \forall \ x \in \overline{S}, h(x^{*}) - h(x) - \langle x^{*} - x, \nabla h(u) + \lambda z \rangle \leq \lambda \varepsilon. \tag{1}$$

According to (A), it exists $\overline{x} \in S$ such that $\nabla h(u) + \lambda z = \nabla h(\overline{x})$, which means:

$$\exists \ \overline{x} \in S, \ z = \frac{\nabla h(\overline{x}) - \nabla h(u)}{\lambda}.$$

Replacing in (1), \times by \overline{x} , we get

$$h(x^*) - h(\overline{x}) - \langle x^* - \overline{x}, \nabla h(\overline{x}) \rangle < \lambda \varepsilon \Leftrightarrow D_h(x^*, \overline{x}) < \lambda \varepsilon.$$

Finally

$$\partial_{\varepsilon} h_{u,\lambda}(x^*) \subset \left\{ z/z = \frac{\nabla h(\overline{x}) - \nabla h(u)}{\lambda} \text{ with } \overline{x} \in S \text{ and } D_h(x^*, \overline{x}) \leq \lambda \varepsilon \right\}.$$

Conversely, let z such that $z = \frac{\nabla h(\overline{x}) - \nabla h(u)}{\lambda}$ and $D_h(x^*, \overline{x}) \leq \lambda \varepsilon$.

$$D_{h}(x^{*}, \overline{x}) \leq \lambda \varepsilon \Rightarrow h(x^{*}) - h(\overline{x}) - \langle x^{*} - \overline{x}, \nabla h(\overline{x}) \rangle \leq \lambda \varepsilon \leq \lambda \varepsilon + D_{h}(x, \overline{x})$$

$$\Rightarrow h(x^{*}) - h(\overline{x}) - \langle x^{*} - \overline{x}, \nabla h(\overline{x}) \rangle - h(x) + h(\overline{x}) + \langle x - \overline{x}, \nabla h(\overline{x}) \rangle \leq \lambda \varepsilon$$

$$\Rightarrow h(x^{*}) - h(x) - \langle x^{*} - x, \nabla h(\overline{x}) \rangle \leq \lambda \varepsilon.$$

Replacing $\nabla h(\overline{x})$ by $\nabla h(u) + \lambda z$, we get (1). According to what precedes (1) $\Leftrightarrow z \in \partial_{\varepsilon} h_{u,\lambda}(x^*)$, which establishes the desired equality.

Lemma 4.2 ([4]). Let f_1, f_2 two functions of $\Gamma_0(\mathbb{R}^n)$ if it exits $\overline{x} \in dom f_1$ in which f_2 is finite and continuous, then for $\varepsilon > 0$, for all $y \in dom f_1 \cap dom f_2$,

$$\partial_{\varepsilon}(f_1 + f_2)(y) = \bigcup_{\varepsilon_1 + \varepsilon_2 = \varepsilon, \ \varepsilon_1 \ge 0, \ \varepsilon_2 \ge 0} \partial_{\varepsilon_1} f_1(y) + \partial_{\varepsilon_2} f_2(y).$$

Definition 4.3. The sequence $\{(\lambda_k; a_k; b_k; c_k; d_k)\}_k \in R^{+*}XS^4$ verifies the K-property if only if the following properties are verified:

$$K_1: \exists \underline{\lambda} > 0, \forall k, \lambda_k \geq \underline{\lambda}.$$
 $K_2: \{a_k\} \text{ is bounded and } Adh\{a_k\} \subset S.$
 $K_3: D_h(a_k, b_k) \to 0.$
 $K_4: D_h(a_k, c_k) \to 0.$
 $K_5: d_k = \frac{\nabla h(b_k) - \nabla h(c_k)}{\lambda}.$

Lemma 4.4. If the sequence $\{(\lambda_k; a_k; b_k; c_k; d_k)\}_k$ verifies the K-property then $d_k \to 0$.

Proof. If the sequence $\{d_k\}$ does not tend to zero, then it exists M>0 and the sub-sequence $\{d_{k_i}\}$ of $\{d_k\}$ such that:

$$\forall k_i, ||d_{k_i}|| > M. \tag{2}$$

The sequence $\{a_{k_i}\}$ is bounded and $Adh\{a_{k_i}\}\subset S$, it exists then the sub-sequence $\{a_{k_j}\}$ of $\{a_{k_i}\}$ and $u^*\in S$ such as: $a_{k_j}\to u^*$. $D_h(a_{k_j},b_{k_j})\to 0$ and $D_h(a_{k_j},c_{k_j})\to 0$ allow to write, from $H_6,b_{k_j}\to u^*$ and $c_{k_j}\to u^*$. On the other hand,

$$0 \le \|d_{k_j}\| = \|\frac{\nabla h(b_{k_j}) - \nabla h(c_{k_j})}{\lambda_{k_j}}\| \le \underline{\lambda}^{-1} \|\nabla h(b_{k_j}) - \nabla h(c_{k_j})\|.$$

 ∇h is continuous on S, then $\nabla h(b_{k_j}) - \nabla h(c_{k_j}) \to 0$. It follows that $||d_{k_j}|| \to 0$. $\{d_{k_j}\}$ being a sub-sequence of $\{d_{k_i}\}$, from (2) we have: $0 \ge M > 0$, so $d_k \to 0$.

Theorem 4.5. If the sequence $\{x^k\}$ generated by P(3)(h) is bounded, then:

- (1). $f(x^k) \to inff$.
- (2). $Adh\{x^k\} \subset Argminf$.

Proof. $x^k \in \varepsilon_k - Argmin\{f(.) + \lambda_k^{-1}D_h(.,x^{k-1})\} \Leftrightarrow 0 \in \partial_{\varepsilon_k}[f(.) + \lambda_k^{-1}D_h(.,x^{k-1})](x^k)$. From the Lemma 4.2, it exists $\varepsilon_{k_1}, \varepsilon_{k_2} \geq 0$ such as : $\varepsilon_{k_1} + \varepsilon_{k_2} = \varepsilon_k$ and $0 \in \partial_{\varepsilon_{k_1}}f(x^k) + \partial_{\varepsilon_{k_2}}(\lambda_k^{-1}D_h(.,x^{k-1}))(x^k)$. Since $\partial_{\varepsilon}f$ increases with ε , we have: $0 \in \partial_{\varepsilon_k}f(x^k) + \partial_{\varepsilon_k}(\lambda_k^{-1}D_h(.,x^{k-1}))(x^k)$. Therefore, it exists $z_k \in \partial_{\varepsilon_k}f(x^k)$ such as $-z_k \in \partial_{\varepsilon_k}(\lambda_k^{-1}D_h(.,x^{k-1}))(x^k)$. From the Proposition 4.1, it exists $\overline{x}^k \in S$ such as

$$-z_k = \frac{\nabla h(\overline{x}^k) - \nabla h(x^{k-1})}{\lambda_k} \ and \ D_h(x^k, \overline{x}^k) \le \lambda_k \varepsilon_k.$$

Finally, it exists $\{\overline{x}^k\}$ such that:

$$\begin{cases} z_k = \frac{\nabla h(x^{k-1}) - \nabla h(\overline{x}^k)}{\lambda_k} \in \partial_{\varepsilon_k} f(x^k) \\ D_h(x^k, \overline{x}^k) \le \lambda_k \varepsilon_k. \end{cases}$$

 $f(x^k)$ is decreasing, so, $f(x^k) \to l \in [-\infty, +\infty[$. If $l = -\infty$, then $\lim_{k \to \infty} f(x^k) = \inf_{k \to \infty} f(x^k)$

$$\forall u \in \overline{S}, \forall k \ge 1, f(x^k) + \lambda_k^{-1} D_h(x^k, x^{k-1}) \le f(u) + \lambda_k^{-1} D_h(u, x^{k-1}) + \varepsilon_k.$$

Replacing u with x^{k-1} we get:

$$f(x^k) + \lambda_k^{-1} D_h(x^k, x^{k-1}) \le f(x^{k-1}) + \varepsilon_k.$$

When $k \to +\infty$,

$$\lambda_k^{-1} D_h(x^k, x^{k-1}) \to 0.$$
 (3)

At this level, we distinguish two cases:

Case 1: $0 < \underline{\lambda} \le \lambda_k \le \overline{\lambda} < +\infty$.

$$(3) \Rightarrow D_h(x^k, x^{k-1}) \to 0.$$

on the other hand, $D_h(x^k, \overline{x}^k) \leq \lambda_k \varepsilon_k \leq \overline{\lambda} \varepsilon_k$. So the sequence $\{x^k\}$ verifies then:

$$\begin{cases} z_k = \frac{\nabla h(x^{k-1}) - \nabla h(\overline{x}^k)}{\lambda_k} \in \partial_{\varepsilon_k} f(x^k) \\ D_h(x^k, \overline{x}^k) \to 0 \\ D_h(x^k, x^{k-1}) \to 0. \end{cases}$$

Since Adh $\{x^k\} \subset \overline{domf} \subset S$, the sequence $\{(\lambda_k; x^k; \overline{x}^k; x^{k-1}; z_k)\}_k$ verifies then the K-property. From the Lemma 4.4, $z_k \to 0$. On the other hand, $f(x) \geq f(x^k) + \langle z_k, x - x^k \rangle - \varepsilon_k$, which leads to $f(x) \geq \lim_{k \to \infty} f(x^k)$, i.e., $\lim_{k \to \infty} f(x^k) = \inf_{k \to \infty} f(x^k)$.

Case 2: $\{\lambda_k\}$ is not bounded. If $\{\lambda_k\}$ is not bounded, then it exists a sub-sequence $\{\lambda_{k_i}\}$ of $\{\lambda_k\}$ such that $\lambda_{k_i} \to +\infty$. We have

$$f(x^{k_i}) + \lambda_{k_i}^{-1} D_h(x^{k_i}, x^{k_i-1}) \le f(u) + \lambda_{k_i}^{-1} D_h(u, x^{k_i-1}) + \varepsilon_{k_i}.$$

 $\{x^k\}$ is bounded, so from the Proposition 2.4, $\{D_h(u, x^{k_i-1})\}$ is bounded, which leads to:

$$l < f(u), \forall u \in \overline{S}.$$

Then:

$$\inf f = l = \lim f(x^k).$$

(b) Let $x^* \in Adh\{x^k\}$, it exists then the sub-sequence $\{x^{k_i}\}$ of $\{x^k\}$ such that $x^{k_i} \to x^*$. In any case, we have shown that: $\lim f(x^{k_i}) \le \inf f$.

$$x^{k_i} \to x^* \Rightarrow f(x^*) \le \lim f(x^{k_i}) \Rightarrow \inf f \le f(x^*) \le \lim f(x^{k_i}) \le \inf f$$
.

Finally we have:

$$f(x^*) = \lim f(x^k) = \inf f.$$

By additionating the hypothesis on h, we can establish the convergence of $\{x^k\}$ towards $x^* \in Argminf$. We put

$$y^k := prox_{\lambda_{h,f}}^h(x^{k-1}) = argmin\{f(.) + \lambda_k^{-1}D_h(., x^{k-1})\}.$$

Proposition 4.6. $D_h(x^k, y^k) \leq \lambda_k \varepsilon_k$.

Proof.

$$y^{k} = prox_{\lambda_{k}f}^{h}(x^{k-1}) \Rightarrow \frac{\nabla h(x^{k-1}) - \nabla h(y^{k})}{\lambda_{k}} \in \partial f(y^{k}) \Rightarrow \forall u, \lambda_{k}(f(u) - f(y^{k})) \ge \langle u - y^{k}, \nabla h(x^{k-1}) - \nabla h(y^{k}) \rangle.$$

Thanks to the Lemma 2.2,

$$\langle u - y^k, \nabla h(x^{k-1}) - \nabla h(y^k) \rangle = D_h(u, y^k) + D_h(y^k, x^{k-1}) - D_h(u, x^{k-1}).$$

So:

$$\lambda_k(f(y^k) - f(u)) \le D_h(u, x^{k-1}) - D_h(u, y^k) - D_h(y^k, x^{k-1}). \tag{4}$$

On the other hand,

$$\forall u \in \overline{S}, f(x^k) + \lambda_k^{-1} D_h(x^k, x^{k-1}) \le f(u) + \lambda_k^{-1} D_h(u, x^{k-1}) + \varepsilon_k. \tag{5}$$

Replacing u with y^k in (5) we obtain:

$$\lambda_k(f(x^k) - f(y^k)) \le D_h(y^k, x^{k-1}) - D_h(x^k, x^{k-1}) + \lambda_k \varepsilon_k.$$
(6)

Replacing u with x^k in (4) we have:

$$\lambda_k(f(y^k) - f(x^k)) \le D_h(x^k, x^{k-1}) - D_h(x^k, y^k) - D_h(y^k, x^{k-1}). \tag{7}$$

(6) and (7)
$$\Rightarrow 0 \leq -D_h(x^k, y^k) + \lambda_k \varepsilon_k \Rightarrow D_h(x^k, y^k) \leq \lambda_k \varepsilon_k$$
.

Corollary 4.7. If ∇h is a strongly convex operator, then it exists $\alpha > 0$ such that

$$||x^k - y^k|| \le \sqrt{\frac{2}{\alpha} \lambda_k \varepsilon_k}.$$

Proof.

(b) From the Proposition 4.6, $D_h(x^k, y^k) \leq \lambda_k \varepsilon_k$. ∇h is a strongly convex operator, from the Proposition 3.9. [5], it exists $\alpha > 0$ such that:

$$\frac{\alpha}{2} ||x^k - y^k||^2 \le D_h(x^k, y^k).$$

Then
$$||x^k - y^k|| \le \sqrt{\frac{2}{\alpha} \lambda_k \varepsilon_k}$$
.

Proposition 4.8. We assume:

- (a). $\{x^k\}$ generated by $P_3(h)$ is bounded.
- (b). h is twice Continuously Differentiable on S and $D_h(.,.)$ is convex jointly.
- (c). ∇h is a strongly convex operator

Then

$$D_h(x^*, x^k) \to l > 0, \forall x^* \in Argmin f.$$

Proof. From Theorem 4.5, let Argminf. Let $x^* \in Argminf$, from (4) we have:

$$D_h(x^*, y^k) + D_h(y^k, x^{k-1}) - D_h(x^*, x^{k-1}) \le 0.$$

whence

$$D_h(y^k, x^{k-1}) \le D_h(x^*, x^{k-1}) - D_h(x^*, x^k) + D_h(x^*, x^k) - D_h(x^*, y^k).$$

 $(2) \Rightarrow \partial(D_h(x^*, .))(y) = H(y)(y - x^*), \text{ where } H(y) = \nabla^2 h(y).$ So

$$D_h(x^*, y^k) - D_h(x^*, x^k) \ge \langle y^k - x^k, H(x^k)(x^k - x^*) \rangle.$$

It follows that

$$D_h(y^k, x^{k-1}) \le D_h(x^*, x^{k-1}) - D_h(x^*, x^k) + ||y^k - x^k|| . ||x^* - x^k|| . ||H(x^k)||$$

h is twice Continuously Differentiable on S and $\{x^k\}$ is bounded, so $\{H(x^k)\}$ is bounded, therefore

$$\exists K > 0, \forall k, \sqrt{\frac{2}{\alpha}} ||x^* - x^k|| . ||H(x^k)|| \le K.$$

Whence

$$D_h(y^k, x^{k-1}) \le D_h(x^*, x^{k-1}) - D_h(x^*, x^k) + K\sqrt{\lambda_k \varepsilon_k}.$$
 (8)

Since $D_h(y^k, x^{k-1}) \ge 0$, we have:

$$D_h(x^*, x^k) \le D_h(x^*, x^{k-1}) + K\sqrt{\lambda_k \varepsilon_k},$$

$$\sum_{k} \sqrt{\lambda_k \varepsilon_k} < +\infty \Rightarrow D_h(x^*, x^k) \to l \ge 0.$$

Theorem 4.9. We assume:

- (1). $0 < \underline{\lambda} \le \lambda_k$,
- (2). $\sum \sqrt{\lambda_k \varepsilon_k} < +\infty$,
- (3). $\{x^k\}$ generated by $P_3(h)$ is bounded,
- (4). h is twice Continuously Differentiable on S and $D_h(.,.)$ is convex jointly,
- (5). ∇h is a strongly convex operator.

Then

- (a). $f(x^k) \to \inf f$.
- (b). $x^k \to x^* \in Argmin f$.

Proof.

- (a). is verified from the Theorem 4.5.
- (b). Let $x^* \in Adh\{x^k\}$, it exists then the sub-sequence $\{x^{k_i}\}$ of $\{x^k\}$ such that $x^{k_i} \to x^*$. From H_4 , $D_h(x^*, x^{k_i}) \to 0$. From the Proposition 4.8. and (B), we have: $D_h(x^*, x^{k_i}) \to l$. So

$$D_h(x^*, x^k) \to 0$$

According to the Proposition 2.3, $x^k \to x^*$.

5. Conclusion

The entropic proximal algorithm proposed in this labor constitute a unified framework for the existing algorithms and provide others, thus:

- If $h(.) = \frac{1}{2} ||.||^2$, then $P(1) \Leftrightarrow P_3(h)$.
- If $\varepsilon_k = 0, \forall k \text{ then } P_2(h) \Leftrightarrow P_3(h)$.

References

- [1] Auslender, Numerical methods for non-differentiable convex optimization, Mathematical Programming Studies, 30(1987), 102-126.
- [2] M. A. Bahraoui, Diagonal Bundle Methods for Convex Minimization, Theoritical Aspect, Int. J. Math. And Appl., 6(4)(2018), 5157.
- [3] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Mathematics of Operations Research, 18(1)(1993), 202-226.
- [4] J. B. Hiriart-Urruty, ε-subdifferential calculs: Convex Analysis and Optimization, Research Notes in Mathematics, Series 57, Pitman Publishers, (1982).
- [5] S. Kabbadj, Entropic Approximation, Int. J. Math. And Appl., 7(2)(2019), 2338.
- [6] B. Lemaire, About the convergence of the proximal method, proceedings 6th French German conference on optimisation 1991, Advances in Optimization Lecture Notes, Springer-Verlag, 39-51, (1992).
- [7] B. Lemaire, The proximal algorithm, International Series Of Numerical Mathematics, 87(1989), 73-87,
- [8] B. Martinet, Perturbation des mthodes d'optimisation Application, R.A.I.R.O. Analyse Numrique, 12(2)(1976), 153-171.
- [9] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization, 14(5)(1975), 877-898.
- [10] M. Teboulle and Gong Chen, Convergence analysis of a proximal-like minimization algorithm using Bregman function, SIAM Journal on Optimization, 3(3)(1993), 538-543.