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Abstract: In this paper, we study an inexact version of the entropic proximal point algorithm defined by
zF € e, — Argmin{f(.) + A;th(., 1)1,

This study recovers the most of the algotithms of the proximal point.
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1. Introduction

Let’s consider the problem of a convex optimization
(P) : min {f(x),z € R"},

where f € T'o(R™) set of lower semicontinuous, proper and convex functions on R". By using the approximation of Moreau-
Yosida, Auslender [1], Martine [8], Rockafellar [9], Behraoui [2], and Lemaire [6, 7] have given the methods of resolution of

(P) named proximal methods defined by:
& . 1 k—1)2
¢ €ep— Argmin o f()+ ——|l. — =" ||" ¢
2k

By using the entropic approximation [5], Eckstein [3], thus Chen and Teboulle [10] have given a classe of methods named

entropics proximals defined by:

¥ = argmin{f() + A\, 'Dn(, 2" 1)}

where Dy (.,.) is the entropic distance defined by:
Di(x,y) := h(z) — h(y) — (x —y, Vh(y)).
In this labor, we propose an inexact version defined by:

z® e — Argmin{f(.) + /\Ileh(.,xkﬂ)},
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where h € C(S) [5], we show that z* converges to x* solution of the problem (P). Our result of convergence obtained in
section 4, recovers what has been given by Auslender (it’s enough to take h(.) = 1|.||*), thus the result of convergence
obtained by Eckstein (it’s enough to take e = 0).

Our notation is fairly standard; (.,.) is the scalar product on R"; and the associated norm ||.||. The closure of the set C
(relative interior) is denoted by C (riC, respectivly), Adh {z*} is the set of adherence values of a sequence {z*}. For any

convex function f, we denote by:

(1). domf = {z € R"™; f(x) < +oo} its effective domain,

(2). Ocf() =Av, fly) = f()+ (v,y —.) — €, V y} its e-sub differential,
(3). Argmin f = {x € R™; f(z) = inf f} its Argmin f,

(4). e— Argmin f = {x € R™; f(z) < inf f + ¢} its e — Argminf.

2. Preliminaries

Let S be an convex open subset of R™ and h : S — R. We define Dy(.,.) by: Vo € S, Vy € S :

Di(z,y) == h(z) = h(y) — (z =y, Vh(y)).

Let us consider the following hypotheses:
Hi: h is continuously differentiable on S.
H>: h is continuous and strictly convex on S.

Hy:Vr>0,Vx €S VycS,thesets Li(x,7) and La(y,r) are bounded where:

Li(z,r) = {y € S/Dn(z,y) <7}

La(y,r) = {z € §/Da(a,y) < r}.

Hy: If {y*}x € Sis such as y* — y* € S, so Di(y*,y") — 0.

Hs: If {z*}), € S is such as {y*}, C S are such as:
y* — y* €5, {zF}4 is bounded, and Dy (z",y*) — 0, then =¥ — y~.
He: If {2*}1, and {y*} are two sequences of S such as:
Dp(z*, y¥) — 0 and ¥ — z* € S, then y* — z*.

Definition 2.1.
(1). h: S — R is a Bregman function on S or ”D-function” if h verify Hy, Ha, Hs, Hy and Hs.

(2). Dy(.,.), is called entropic distance if h is a Bregman function.
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We put:

AS)={h:S — R wverifying Hi and Hz}
B(S)={h:S — R wverifying Hi, Hz, H3, Hy and Hs}

C(S)={h:S — R werifying Hi,Hs, Hs, Hy and Hg}.

Lemma 2.2. Yh € A(S),Vac S,VbccS:

Dy(a,b) + Di(b,c) — Dp(a,c) = {(a — b, Vh(c) — Vh(b)).

Proposition 2.3. Let h € A(S). Let {z*} and {y*} two sequences of S such that:
(1). 2% — 2* € S and {y*} bounded such as Adh{y"} C S

(2). Dn(z*,y*) — 0.

Then y* — x*.

Proof.  {y*} is bounded, then we can extract a sub-sequence {y*¢} of {*} such that y* — y € S. We have, Dy (2", y*) :=
h(z*1) — h(y®) — (" — ¥ Vh(y*)). So, when k; — 400, we obtain: 0 = h(z*) — h(y) — (z* —y, Vh(y)) = Dpn(z*,y)

0= 2" =y = Adh{y*} = {2} = o — 2~ O
Proposition 2.4. We assume:

(1). h € A(S).

(2). {z*} C S is bounded.

(3). Adh{z*} C S.

Then {Dy(u, z*)}1, is bounded for allu € S.

Proof.  If the sequence {Dp(u,z")}x is not bounded for u € S, then exists a sub-sequence {Dp(u,x")}, such that:

k

Dy, (u,z") — 400. {z¥?} is bounded, then it exists a sub-sequence {z"} of {*} such as 2" — 2*. From (3), z* € S, so

Vh(mkj) — Vh(z*).
Di(u, ™) := h(u) — h(z*7) — (u — 2*7, Vh(*)).

when, k; — +00, we obtain: +oco = Dy, (u, z*), which is contradictory with h: S — R. O
Proposition 2.5. Let h € A(S) and f € T'o(R™) such as :

(1). 7i (dom f) NS # ¢,

(2). ImVh=R".

ThenVe>0,YA>0,YzcS,IycS:yce— Argmin{f(.) +1"'Dyn(,,2)}.

Proof.  From the Corollary 5.8. [5, Ve > 0,Y XA >0,V z € S, y := h{(z) = argmin{f(.) + \"'Du(,,z)} € S. So,
h(x) € e — Argmin{f(.) + A\"'Dpn(.,x)}. O
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3. Proximal Point Algorithm
Let f € I'o(R™), Auslender [1] condered the proximal following method:

2% € R, e, > 0and A\, > 0.
P(1):

€ ey — Argmin{f(.) + ﬁ” — :Bk_IHQ}.

The sequence {z*} generated by P(1) verify the following properties:

k—1_k

€ 9, f(z¥) and ||z* — TF|| < V2 rex.

Proposition 3.1. It exists a sequence {Z"} such as : £

Theorem 3.2. We assume:

(1). A 2 A >0,

(2). fis inf-compact, i.e., Vr € R, {x € R", f(x) < r} is compact, if it is not empty.
(3). Yo er < 400 or (f(0) is finite and e, — 0).

Then {z*} defined by P(1) is bounded and f(z*) — inff.

Teboule and chen [10] have considered the algorithm defined by:

20 e S, A >0.

o = argmin{f(.) + A\, Dn(.,, 2" 1)}

P(2)(h)

Theorem 3.3. If f € T'o(R") and h € B(S) such that
(1). ImVh = R",

(2). 3 A = +o0,

(8). ri(dom f) C S.

Then:

(a). fa*) = inff.

(b). If Argminf # 0, then ¥ — z* € Argminf.

4. Inexact Entropic Proximal Point Algorithm

In this paragraph, we assume:

(A): heC(S): ImVh=R"

(B): feTlo(R") :domf CS
From the Proposition 2.5, we can thus construct the sequence {xk} defined by:

es
zF € e, — Argmin{f(.) + A\, 'Dn(., 2" 1)}
f(z") is decreasing

e — 0and \p > A > 0.
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To choose {z*} such that {f(z*)} is decreasing is possible. Indeed:

Let 7% € ex — Argmin{f(.) + A\ 'Dn(., 2"~ 1)}, for all k > 1. We take

; ztif f(@*) < fla*)
xT

¥ if not

If f(@") > f(z*1) then 27 € e, — Argmin{f(.) + A\, 'Dn(., 2" 1)}, because:
AL )+ FER) < S@) < SE) AT DU Y < @)+ DG, et e
Let’s consider now the function h, x defined by: hyx = R VYA>0,VuesS.
hux(z) = A"'Dy(z,u),V z € S.

Proposition 4.1. Ve >0,V A>0,V2* €S, VucS:

Ochur(z") = {z/z = w with T € S and Dy(z",T) < )\6}.

Proof.

2 € Ochun(z™) &V x € S, hyr(®) — hur(z™) > (z,z —2") —¢
aVaeeS ) - h(u) — (& —u, Vh(u)) — h(z™) + h(u) + (z* —u, Vh(u))] > (z,2 — ") — &
& VaxeS h")—h)— (" -2, Vh(w) < Az,z" —z) + Ae

&VareS h()—h()— (" -z, Vh(u) + Az) < e (1)

According to (A), it exists T € S such that VhA(u) + Az = VA(T), which means:

Vh(z) - Vh(u)

dzes, z=
TES, 2 \

Replacing in (1), X by T, we get

h(z") — h(Z) — (" — T, Vh(T)) < Ae & Dp(z",T) < Ae.

Finally

Ochun(z") C {z/z = w with T € S and Dy(z",T) < /\6}.

Conversely, let z such that z = w and Dp(z*,T) < Je.
Dy (z",T) < Xe = h(z") — h(T) — (z*" — T, Vh(T)) < Xe < Ae + Di(z,T)

= h(z") — h(Z) — (2" — T, Vh(T)) — h(z) + h(T) + (x — Z,Vh(T)) < Xe

= h(z") — h(z) — (z" — 2, Vh(T)) < de.

Replacing Vh(Z) by Vh(u)+ Az, we get (1). According to what precedes (1) < z € d-hy,x(z"), which establishes the desired
(I

equality.
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Lemma 4.2 ([4]). Let f1, f2 two functions of To(R"™) if it exits T € dom f1 in which fs is finite and continuous, then for

e >0, for all y € domfi N domfa,

9:(fr+ f2)(y) = U ey f1(y) + Oz, f2(y)-

e1tez=e, €120, €220

Definition 4.3. The sequence {(Ax; ak; bi; ck; di) bk € RT* X 8% verifies the K-property if only if the following properties are
verified:

Ki:3A>0VEk, A > A
K> : {ar} is bounded and Adh{ar} C S.
K3 : Dh(ak,bk) — 0.

K4 : Di(ak,cx) — 0.
Ky dy = Ye)—Vhicy)

Ak

Lemma 4.4. If the sequence {(Ai; ar; bi; ck; di) i verifies the K-property then di — 0.

Proof.  If the sequence {d} does not tend to zero, then it exists M > 0 and the sub-sequence {dy, } of {di} such that:
Vi, lde > M. (2)

The sequence {ax,} is bounded and Adh{ay;} C S, it exists then the sub-sequence {ax;} of {ax;} and " € S such as:

ag; — u”. Dh(akj,bkj) — 0 and Dh(akj,ckj) — 0 allow to write, from He, bx; — u* and cx; — u”. On the other hand,

(bk]) — Vh(ckj )
Ak

Vh _
0< [ldey | = I | < A VA(br,) — Vher,)I-

i
Vh is continuous on S, then Vh(by;) — Vh(ck,;) — 0. It follows that ||d, || — 0. {dk,} being a sub-sequence of {dk, }, from

(2) we have: 0 > M > 0, so d — 0. O
Theorem 4.5. If the sequence {z"} generated by P(3)(h) is bounded, then:
(2). Adh{z*} C Argminf.

Proof. 2% € ex — Argmin{f(.) + X\, 'Din(,, 2" )} & 0 € 9., [f(.) + A\, " Dn(., 2" 1)](2¥). From the Lemma 4.2, it exists
€k1,Eky > 0 such as : ex, +€x, =€ and 0 € asklf(mk) + 0z, Ay 'Dr(., 2" 1)) (2"). Since 0. f increases with e, we have:
0 € 0= f(2®) + 0=, A "D (., 27 1)) (). Therefore, it exists 21, € 0:, f(z*) such as —zx € 9=, (A, "Dn(.,2*71))(2*). From

the Proposition 4.1, it exists Z¥ € S such as

Vh(z*) — Vh(z*™1)

and Dh(mk,fk) < g€k

= "
Finally, it exists {Z"} such that:

2 = %};Vﬁ(#) € 0., f(a*)

Dh(wk,ik) < Ak€k-
f(z*) is decreasing, so, f(z¥) = | € [—oo,+o0[. If | = —oco, then lim f(z*) = inf f = —co. In what follows, we assume

f(z®) = 1 > —oco. The sequence is such that

VueSVEk>1, f(a®) 4+ 2 "Du(a®, ") < f(u) + A " Di(u, 271 + e
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Replacing u with 2! we get:

FE@*) + 2 D(a®, 257 < f(a" ) +en
When k — 400,

Ao D (zF, 251 = 0. (3)

At this level, we distinguish two cases:
Case 1: 0 < A < A\ < X < 4o0.

(3) = Dy(zF, 2" 1) =0,
on the other hand, Dy (mk,f’“) < Mgk < Aek. So the sequence {xk} verifies then:
R Ty
o = TS € 0 f ()

Dh(l‘k75k) —0

Dh(ack, mk_l) — 0.

Since Adh {z*} C domf C S, the sequence {(\r;x";Z";2"""; 2;)}s verifies then the K-property. From the Lemma, 4.4,
2, — 0. On the other hand, f(z) > f(2*) 4+ (21, — ) — &5, which leads to f(z) > lim f(2*), i.e., lim f(z*) = inf f.
Case 2: {)\;} is not bounded. If {\x} is not bounded, then it exists a sub-sequence {Ag,} of {A\x} such that \x, — +o0.
We have

fz™) + A,;th(Jzki, 2FY) < f(u) + )\,Zith(u, A IR

{z"} is bounded, so from the Proposition 2.4, { Dy (u, ")} is bounded, which leads to:
1< f(u),Yues.
Then:
inf f = = lim f(z").

(b) Let z* € Adh{z"*} , it exists then the sub-sequence {z"¢} of {z*} such that "' — z*. In any case, we have shown that:
lim f(2*) < inf f.

" ot = f(2") <lim f(2™) = inf f < f(z") < lim f(z™) < inf f.

Finally we have:

f(z*) = lim f(z*) = inf f.
By additionating the hypothesis on h, we can establish the convergence of {z*} towards z* € Argminf. We put

yk = proxﬁkf(:ck_l) =argmin{f(.) + )\ngh(.,xk_l)}.

Proposition 4.6. Dh(mk,yk) < A\k€k.
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Proof.

Vh(xkil) - Vh(yk)
Ak

y* = proz}, (=" = €0f(W") = Vu, e (f(w) — fF(y") > (u—y*, Vh(z""") = VR(y")).

Thanks to the Lemma 2.2,
(u—y*, VA" ") = Vh(y")) = Da(u,y*) + Du(y*,«" ") = Da(u, 2" 7).
So:

Me(f(y") = f(w)) < Di(u, 2" ") = Du(u,y") = Di(y*, 2" 7). (4)

On the other hand,

Vu e S, f(@®) + A\ Da(a®, 2" < flu) + A ' Di(u, 271 + &5 (5)

Replacing u with y* in (5) we obtain:
Me(f(2") = F(")) < Daly",2" ") = Di(a®,2"7") + Aien. (6)
Replacing u with 2* in (4) we have:
Me(f(y") = f@*)) < Da(a®,a*7") = Du(a®,y") = Du(y",2"7). (M

(6) and (7) = 0 < —Dh(l‘k,yk) + Aker = Dh(wk,yk) < Akég. O

Corollary 4.7. If Vh is a strongly convex operator, then it exists a > 0 such that

2
2" — ¥ < 4/ ~Aker.

Proof.
(b) From the Proposition 4.6, Dy, (z*,y*) < Arex. Vh is a strongly convex operator, from the Proposition 3.9. [5], it exists
a > 0 such that:

Slla* =4I < Duta®, o).
Then ||z* — ¥ < \/ 2 Akek. O
Proposition 4.8. We assume:
(a). {z*} generated by Ps3(h) is bounded.
(b). h is twice Continuously Differentiable on S and Dy (.,.) is convez jointly.
(c). Vh is a strongly convex operator
Then

Dp(z*,2%) = 1>0,V z* € Argminf.
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Proof.  From Theorem 4.5, let Argminf. Let * € Argminf, from (4) we have:
Di(z",y") + Da(y", 2" ") = Dp(a",2" ") <0.

whence

Du(y", 2" < Du(a*, 2" ") — Du(a™, 2%) + Di(z*, %) — D (2", y¥).
(2) = d(Dn(z*,))(y) = H(y)(y — z*), where H(y) = V>h(y). So
Di(x",y") — Du(a",2") > (y* —a*, H(z")(a" —27)).
It follows that
Di(y",2"") < Du(a®, 2" ") = D™, a") + ||ly" — 2" |Jla* — 2" ||| H(=")|

h is twice Continuously Differentiable on S and {z*} is bounded, so {H(z")} is bounded, therefore

3 K>0,Yk ,/%Hm* — 2| H(N)|| < K.

Whence
Du(y*, 2" < Dp(2*, ") — D (2", 2%) + K/ wer.

k*l)

Since Dy, (y*, x > 0, we have:

Di(z*,2%) < Di(z*, 2" 1) + K/ Aien,
>k Ve < +o0o = Dy (z*,2%) = 1> 0.
Theorem 4.9. We assume:
(1). 0 <A< g,
(2). 3"V Aker < 400,
(3). {z*} generated by Ps(h) is bounded,
(4). h is twice Continuously Differentiable on S and Dy(.,.) is convex jointly,
(5). Vh is a strongly convex operator.
Then
(a). f(z*) = inf f.
(b). ¥ — x* € Argminf.
Proof.

(a). is verified from the Theorem 4.5.

(b). Let * € Adh{z"}, it exists then the sub-sequence {z*¢} of {z*} such that z* — z*. From Hy4, Dy (z*,z") — 0. From

the Proposition 4.8. and (B), we have: Dy (z*,2") — 1. So
Dy (z*,2") =0

According to the Proposition 2.3, z* — z*.
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5. Conclusion

The entropic proximal algorithm proposed in this labor constitute a unified framework for the existing algorithms and

provide others, thus:
o If A(.) = %|.||?, then P(1) & P3(h).

2

o If &, =0,V k then Py(h) < Ps(h).
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