
Int. J. Math. And Appl., 7(2)(2019), 137–148

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Gradient Descent Method for Perron Eigenvalue

Minimization of Incomplete Pairwise Comparison

Matrices

Hailemariam Abebe Tekile1,∗

1 Department of Mathematics, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia.

Abstract: Pairwise comparison matrices are often employed as a basic tool in multi-criteria decision-making. Incomplete matrix
appears when some elements are missing. The paper aims to implement Gradient descent method for minimization of

Perron eigenvalue problem that arises from incomplete pairwise comparison matrices. Numerical example is given at the

end.
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1. Introduction

In multi-criteria decision-making, pairwise comparison matrices are often used as an important key since Thomas L. Saaty

proposed the Analytic Hierarchy Process (AHP) [31, 32]. A decision maker may not know the precise weights of criteria or

values of the alternatives even if the comparison is possible. A pairwise comparison matrix is introduced when a decision

maker wants to compare n criteria or alternatives with respect to a given criteria. It is given as A = [αij ]i,j=1,...,n, where

αij is the numerical answer for the question ’How many times is Criterion i better than Criterion j?’, or ’How many

times is Alternative i preferred to Alternative j?’. It is always positive and reciprocal. Mathematically, a real matrix

A = [αij ](n×n) is called pairwise comparison matrix if αij > 0 and αij = 1
αji

for all i, j = 1, ..., n. A pairwise comparison

matrix A = [αij ](n×n) is called consistent if the transitivity αijαjk = αik holds for all i, j, k = 1, 2, ..., n. Otherwise,

it is called inconsistent. Pairwise comparison matrix with one or more missing elements is called Incomplete Pairwise

Comparison Matrix (IPCM). Missing elements of pairwise comparison matrices are introduced by variables xi, and vector

x = (x1, x2, ..., xk) ∈ Rk+ with structure:

A(x) =



1 α12 x1 · · · α1n

1
α12

1 α23 · · · xk

1
x1

1
α23

1 · · · α3n

...
...

...
. . .

...

1
α1n

1
xk

1
α3n

· · · 1


. (1)
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There are totally 2k number of variables appear in A (k variables in the upper triangular part and another k number of

variables in its lower triangular part). After the completion of the missing elements, matrix A will be manipulated to verify

its consistency.

The aim is to determine an appropriate positive weight vector that describes the decision maker’s preference in the incomplete

case. There are a number of weight estimation methods for the pairwise comparison matrix filled in by the decision

maker [2, 9, 11, 19]. However, none of them are totally superior over the others. Each works best on its own standard

of effectiveness. Paper [26] addressed two methods: Eigenvector Method (EM) and Logarithmic Least Squares Method

(LLSM). The Eigenvector Method yields the real weight vector wEM (right eigenvector) of a pairwise comparison matrix A

such that

AwEM = λmaxw
EM , (2)

where λmax denotes the maximal eigenvalue, also known as Perron eigenvalue, of A. wEM is positive and unique up to a

scalar multiplication by Perron-Frobenius Theorem. A usual normalization is given by
n∑
i=1

wEMi = 1.

The Logarithmic Least Squares Method yields a positive real weight vector wLLSM as the optimal solution of the following

optimization problem:

min
(w1,...,wn)

n∑
i=1

n∑
j=1

[
logαij − log

wi
wj

]2
(3a)

n∑
i=1

wi = 1, wi > 0, i = 1, 2, ..., n. (3b)

Problem (3a)–(3b) can be solved by the geometric mean method. It is supposed that the solutions are geometrically

normalized and constitutes a unique optimal solution [19].

Definition 1.1 (Inconsistency Ratio). The inconsistency ratio CR, according to Saaty [31, 32], is defined as

CR =
CI

RIn

where CI = (λmax − n)/(n − 1) and RIn = λmax−n
n−1

, and λmax is an average value of the Perron eigenvalues of randomly

generated n× n pairwise comparison matrices. Some estimated values of RIn are provided in [9, 19, 31].

It is shown that λmax ≥ n, and equals to n if and only if the matrix is consistent [31]. In practice one should accept matrices

with values CR ≤ 0.1 and reject values with CR > 0.1 [31, 36]. Note that in solving real decision problems, the weight

vector w can be approximated by using the inconsistent pairwise comparison matrix although the levels of inconsistency

are different. The real decision maker accepts some of them [7]. Different consistency indices have been presented in several

literature. Saaty [31, 32] proposed the Consistency Index as CI = (λmax − n)/(n− 1). However, the Consistency Index CI

by itself is not guaranteed to compare matrices of different orders due to the variations of expectations of CI values [9]. So,

it needs to be re-scaled. It must be noted that logical name of CI would be inconsistency index, but customarily it is called

consistency index.

Example 1.2. Take a pairwise comparison matrix A as

A =



1 3 8 1

1/3 1 1/2 1/7

1/8 2 1 3

1 7 1/3 1


.
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Here, the maximum eigenvalue, λmax(A) = 5.3612. Applying the formula for CR, we have

CR =
CI

RI4
=

(5.3612− 4)/3

0.8816
≈ 0.5146,

which is greater than 0.1 significantly. Hence, in Saaty sense, the matrix A is too inconsistent. So, the decision has to be

revised by a decision maker until CR < 0.1 [19].

It is a natural phenomenon to demonstrate pairwise comparison matrices in multi-criteria decision-making process with the

corresponding associated graph structures. An indirect relation through its associated undirected graph may describe two

criteria that have no direct relation. For a given n×n (in)complete pairwise comparison matrix A, its associated undirected

graph G is given by G := (V,E), where V = {1, 2, ..., n} represents the vertices (vertices) corresponding to matrix having

order n, and E= {e(i, j)|αij (and αji) is given, i 6= j} denotes the undirected edges corresponding to the matrix entries.

The edge is assigned exactly from vertex i to j if the comparison entry αij is already known. Missing elements in the matrix

can not be described by edges.

According to Saaty’s inconsistency ratio CR [31], Shiraishi, Obata and Daigo [33, 34] considered the Perron eigenvalue

minimization problem for a given incomplete pairwise comparison matrix A as

min
x∈Rk

+

λmax(A(x)), (4)

where x = (x1, x2, ..., xk) ∈ Rk+ denotes the missing entries in the matrix, and Rk+ represents the positive orthant of the

k-dimensional Euclidean space whereas λmaxA(x) is the maximum eigenvalue that can be obtained from (A(x)) in 1.

The goal is to solve the Perron eigenvalue minimization problem (1) by using different appropriate algorithms. That means,

equivalently, we need to get the best completion of the given incomplete matrix such that the minimum inconsistency ratio

(CR) is satisfied [31, 32].

Theorem 1.3 ([5], Theorem 2). The optimal solution of the Perron eigenvalue minimization problem (4) is unique if and

only if the graph G corresponding to the incomplete pairwise comparison matrix is connected.

The Perron eigenvalue optimization problem (4) is a non-convex function of its variables. However, if graph G associated to

the incomplete pairwise comparison matrix is connected, then by applying the exponential parametrization x1 = et1 , x2 =

et2 , ..., xk = etk , it can be transformed into a strictly convex optimization problem.
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Figure 1: Non-convexity of the function x 7→ λmax(M(x)) in

Example 1.4
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Figure 2: Strict convexity of the function t 7→ λmax(M(et))

in Example 1.4
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The formula of the maximum Perron eigenvalue λmax for 3×3 incomplete pairwise comparison matrix M (Based on Tummala

and Ling [36], and x, y, z are the variables in the upper triangular part of the matrix):

M(x, y, z) =


1 x y

1
x

1 z

1
y

1
z

1


is given as

λmax(M(x, y, z)) = 1 + 3

√
y

xz
+ 3

√
xz

y
. (5)

Example 1.4. Let M be a 3× 3 pairwise comparison matrix with one missing entry x as:

M =


1 x 3

1
x

1 6

1
3

1
6

1

 .

Then applying formula (5) and exponential parametrization x = et, we get λmax(M(x)) = 1+ 3

√
1
2x

+ 3
√

2x and λmax(M(et)) =

1 + 3

√
1

2et
+

3
√

2et, respectively. Hence, it can be seen that the transformation of non-convexity of the function λmax(M(x))

in Figure 1 into convexity of the function λmax(M(et)) in Figure 2.

Another Logarithmic Least Squares Method for incomplete pairwise comparison matrix A is its extension by taking only

the the given entries αij , denoted by ILLSM, can be defined as

min
(w1,...,wn)

∑
1≤i<j≤n

[
logαij − log

wi
wj

]2
+

[
logαji − log

wj
wi

]2
(6a)

n∑
i=1

wi = 1, wi > 0, i = 1, 2, ..., n. (6b)

The objective function (6a) comprises each pair of elements related to αij and αji. The elements related to i = j are 0 and

omitted from the objective function.

Theorem 1.5 ([5], Theorem 4). The optimal solution of the incomplete LLSM problem (6a)–(6b) is unique if and only if

graph G corresponding to the incomplete pairwise comparison matrix is connected.

2. Algorithms for Perron Eigenvalue Minimization Problem

In this section, three practical Perron eigenvalue minimization algorithms are presented in order to find the best (λmax-

optimal) completion to the eigenvalue minimization problem (4), or equivalently, to minimize the inconsistency ratio CR.

The generalization of the eigenvector method for incomplete matrix is also considered as proposed by Shiraishi, Obata and

Diago [33, 34]. It is also shown that the Perron eigenvalue optimization problem can be transformed into convex optimization

problem using exponential parametrization. Hence, the existence of optimal solution is guaranteed [5]. For filling in the

gap of the incomplete pairwise comparison matrix as good as possible (i.e. CR < 0.1), one can provide an algorithm with

or without derivative information. Bozóki et al. [5] proposed cyclic coordinates by using a general optimization function

fminbnd in MATLAB to find the best optimal completion. Further, Ábele-Nagy [1] suggested Newton’s Method for univariate

and multivariate case to solve the Perron eigenvalue minimization problem. He used Harker’s [23] first and second derivatives

in his paper. In this paper, a gradient descent method is proposed under Section 2.3.
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2.1. Cyclic Coordinate Algorithm

Cyclic coordinate’s algorithm minimizes the function λmax cyclically with respect to the coordinate variables iterative. It

is independent of the derivatives. In the method of cyclic coordinates, the problem is divided to many, single variable

minimization problems. In each iteration, a single variable function is minimized. The step is, with arbitrary or algorithmic

initial value x
(0)
i , i = 1, 2, ..., k, where k represents the number of missing entries (current variables) by considering the

upper triangular matrix only. Each iteration of the method consists of k steps. Thus, x1 is changed first by fixing the rest

associated variables, then x2 and so forth through xk. Until it achieves the stopping criteria, the process is then repeated

starting with x1 again [27].

The cyclic coordinate’s algorithm is stated as follows in reference to [1, 5, 19, 27]. Here, we apply the incomplete pairwise

comparison matrix A. The goal is to find a complete matrix A so that λmax is minimal. Let x = (x1, x2, ..., xk) , where

xi ∈ R+ are the missing entries for finite i. The value of xi in the mth step of the iteration is also supposed to be x
(m)
i .

Algorithm 1. Cyclic coordinate algorithm for min
x
λmax(A(x))

1: Input: Let x
(m)
i denote the value of xi in the mth step of the iteration and ti = log xi ∀i = 1, 2, ..., k.

2: Set m← 0, and x
(0)
i ← 1 ∀i

3: while max
i=1,2,..,k

||x(m)
i − x(m−1)

i || > Tolerance do

4: choose i ∈ {1, 2, .., k}

5: x
(m)
i ← arg min

xi
λmaxA(x

(m)
1 , ..., x

(m)
i−1, xi, x

(m−1)
i+1 , ..., x

(m−1)
k )

6: repeat step 5 for all i ∈ {1, 2, .., k}, then go to step 7

7: m← m+ 1

8: end while

end

Its global convergence is stated and proved in ([27], pages 266–267). It is difficult to compare cyclic coordinates method with

that of the steepest descent method and Newton’s method, regarding the rates of convergence, since scale factor changes do

not affect it. However, rotation of coordinates affects it. Nonetheless, some comparison is possible.

2.2. Newton’s Method

Newton’s method is the popular method that is used to determine an optimal solution using derivative information for

both univariate and multivariate cases [1]. In this section, multivariate Newton’s algorithm is presented for solving Perron

eigenvalue minimization problem 4. Ábele-Nagy [1] proposed the univariate and multivariate Newton methods for his optimal

completion by following Bozóki et al. [5] paper. In the univariate case, in order to optimize only one variable at a time,

he used the method of cyclic coordinates with Newton iteration. By using Newton’s Multivariate method, it is possible to

optimize all the variables at the same time rather than optimizing one variable at a time.

The steps for multivariate Newton’s method is given as follows in reference to [1]. Let x = et be in the position of (i, j) in

the incomplete matrix and R(t) = λmax(et1 , et2 , ..., etk ), where k is the number of elements in the upper triangular matrix

at a time. The derivatives ∂λmax(x)
∂x

and ∂2λmax(x)

(∂x)2
are known by Harker [20]. Here, the aim is to minimize R. To do so,

Newton’s iteration is used as

t(m+1) = t(m) − γ[HR(t(m))]−1∇R((t(m)), (7)

where HR(t(m)) denotes the Hessian matrix of R(t), ∇R(t(m)) is the gradient vector of R(t), and the step size γ. The gradient
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vector ∇R(t) = ( ∂R
∂t1

, ..., ∂R
∂tk

) can be found from the following formula [1, 20] and it is also appeared in the Appendix (4):

∂R(t)

∂t
=
∂λmax(et)

∂t
=
∂λmax(x)

∂x
· ∂(et)

∂t
=
∂λmax(x)

∂x
· et. (8)

Similarly, from the paper ([1], page 65), the derivation for the Hessian matrix has been given. The stopping criteria must

be given for x, but not for t, as small changes in t results in large differences in x.

Algorithm 2. Newton’s Multivariate Algorithm for min
x
λmax(A(x))

1: Input: Let t(m) denote the value of t in the mth iteration, and x
(m)
i be the value of xi in the mth iteration and ti = log xi

∀i = 1, 2, ..., k.

2: Starting values of t, where t = log x, and step size γ

3: Set m← 0

4: while max
i=1,2,..,k

||x(m)
i − x(m−1)

i || > Tolerance do

5: t(m+1) ← t(m) − γ[HR(t(m))]−1∇R(t(m))

6: m← m+ 1.

7: end while

end

Newton’s method will have a quadratic convergence by assuming the Jacobian matrix at the current point is has no in-

verse. Otherwise, the global converge may not be guaranteed. Its global convergence is stated and proved in Numerical

Optimization, Nocedal and Wright’s book ([30], pages 44–45).

2.3. Gradient Descent Method

Gradient descent method is a first-order derivative iterative optimization method by considering steps proportional to the

negative of the gradient function at the current point. In this section, the gradient descent method is implemented for solving

the eigenvalue minimization problem (4). Let R(t) = λmax(et1 , et2 , ..., etk ) with parametrization x = et, where k denotes

the number of missing elements in the upper triangular incomplete matrix 1. The goal is to minimize R(t). The gradient

function ∇R(t) = ( ∂R
∂t1

, ..., ∂R
∂tk

) is derived from R(t) in equation (??). (See also the appendix for Harker’s [20] first derivative

formula). For a given point t = t, the approximation of R(t) can be presented as a linear approximation because R(t) is

convex and differentiable with small norm ||d||:

R(t+ d) ≈ R(t) +∇R(t)T d

Now we choose d so as to make the scalar product ∇R(t)T d is as small as possible. A particular direction d∗ = −∇R(t)

||∇R(t)||

provides the smallest scalar product with the gradient ∇R(t) by normalizing d with ||d|| = 1. This reality can be asserted

by the following inequality [16, 19]:

∇R(t)T d ≥ −||∇R(t)|| · ||d|| = ∇R(t)T
(
−∇R(t)

||∇R(t)||

)
= ∇R(t)T d∗.

As a consequence, at the current point t, the denormalized direction d = −∇R(t) is called the direction of gradient descent,

or simply descent direction. It is important to note that d
T∇R(t) = −∇R(t)T∇R(t) < 0 only if ∇R(t) 6= 0, i.e. d is the

descent direction provided that ∇R(t) 6= 0. As small changes in t results in large differences in x, the stopping criteria must

be given for x but not for t. In each iteration, the locally optimal step size γ maybe chosen by an exact or inexact line
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search algorithm or just by fixed γ. However, doing line search can be time-taking. Using a fixed γ on the other hand can

result in poor convergence. To get fewer iterations, it can be better options by using Newton’s method and Hessian versions

of conjugate gradient methods. But, each iteration cost is higher. Nonetheless, the gradient descent algorithm works well

in any number of dimension. Its global convergence is stated and proved in ([16], pages 3–5). The algorithm is constructed

as follows.

Algorithm 3. Gradient Descent Algorithm for min
x
λmax(A(x))

1: Input: Let tm denote the value of t in the mth iteration, and xmi be the value of xi in the mth iteration where ti = log xi

∀i = 1, 2, ..., k.

2: Choose starting values of t and step size γ

3: Set m← 0

4: while max
i=1,2,..,k

||x(m)
i − x(m−1)

i || > Tolerance do

5: dm ← −∇R(tm)

6: If dm = 0, then stop. Otherwise, go to step 7

7: tm+1 ← tm + γdm

8: m← m+ 1

9: end while

end

3. Numerical Illustration

Consider an 8× 8 incomplete pairwise comparison matrix (Saaty’s ’buying a house’ incomplete version [31]) as follows:

A(x) =



1 5 3 7 6 6 1/3 1/4

1/5 1 x1 5 x2 3 x3 1/7

1/3 1/x1 1 x4 3 x5 6 x6

1/7 1/5 1/x4 1 x7 1/4 x8 1/8

1/6 1/x2 1/3 1/x7 1 x9 1/5 x10

1/6 1/3 1/x5 4 1/x9 1 x11 1/6

3 1/x3 1/6 1/x8 5 1/x11 1 x12

4 7 1/x6 8 1/x10 6 1/x12 1



.

Both Bozóki et al. [5] and Ábele-Nagy [1] have used this matrix as an example in their papers. It is worth noting that the

graph associated to the matrix is connected [5]: the first row is completely filled in, and node 1 is directly connected to all

nodes.

The aim is to get a complete matrix A so that λmax is minimal by applying gradient descent algorithm. In this matrix, the

missing entries are represented by vector x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ∈ R12
+ . The approximated values

(up to 4 digits) for all variables in each iteration are given in Table 1 based on the algorithm. Moreover, the tolerance

T = 10−4 and initial value x
(0)
k have been used by taking the weights (values) from Incomplete Logarithmic Least Squares

Method (ILLSM) in [1, 8, 19] with regard to an appropriate position of x
(0)
k in the matrix (i, j) such that x

(0)
k = wi/wj for

k = 1, ..., 12. After several numerical experiments, the value for step size γ = 6.77 is applied in order to get the minimum
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number of iterations. Hence, 21 iterations (the least possible number of iterations) were obtained which can be seen in

Table 1. The gradient descent algorithm gives 25 iterations with γ = 6.55 when the starting value x
(0)
k = 1∀k = 1, ..., 12.

But, its number of iterations becomes higher(for instance, 37 with γ = 6.77). Newton’s method with ILLSM for x
(0)
k and

γ = 0.45 yield m = 14 number of iterations in both univariate and multivariate case. But, with starting value x
(0)
k = 1, again

γ = 0.45 resulted in m = 15 in the univariate case while m = 26 iterations in the multivariate case [1]. However, Newton’s

multivariate method has provided the least possible iterations (m = 20) with γ = 1.77 and x
(0)
k = 1 for all k = 1, 2, .., 12.

In addition to this, it can be seen that in Figure 3 the objective function’s value decreases in the first few iterations (with 4

decimal place approximation). However, if we take 15 decimal places, λmax(A(x)) values decrease throughout the iterations.

For instance, λmax value for the 20th and 21st iterations is 9.298092250616087 and 9.298092250477843, respectively [19].

m x
(m)
1 x

(m)
2 x

(m)
3 x

(m)
4 x

(m)
5 x

(m)
6 x

(m)
7 x

(m)
8 x

(m)
9 x

(m)
10 x

(m)
11 x

(m)
12

0 0.3823 1.8428 0.4758 8.9924 4.2688 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200

1 0.3338 1.7890 0.4866 9.7728 4.7893 0.5609 0.5426 0.1495 0.8975 0.1061 0.3045 0.3834

2 0.3384 1.7603 0.4746 9.6902 4.7370 0.5565 0.5396 0.1445 0.9084 0.1063 0.2961 0.3979

3 0.3341 1.7529 0.4727 9.7944 4.7905 0.5626 0.5344 0.1446 0.9142 0.1075 0.2953 0.3967

4 0.3333 1.7403 0.4710 9.8250 4.8064 0.5641 0.5320 0.1437 0.9199 0.1079 0.2941 0.3999

5 0.3322 1.7351 0.4692 9.8566 4.8199 0.5297 0.5297 0.1434 0.9231 0.1084 0.2930 0.4002

6 0.3315 1.7298 0.4686 9.8752 4.8313 0.5669 0.5285 0.1431 0.9257 0.1086 0.2926 0.4015

7 0.3311 1.7270 0.4677 9.8899 4.8365 0.5680 0.5274 0.1429 0.9273 0.1088 0.2921 0.4017

8 0.3307 1.7246 0.4674 9.8987 4.8425 0.5683 0.5267 0.1427 0.9285 0.1090 0.2919 0.2918

9 0.3305 1.7232 0.4670 9.9059 4.8447 0.5688 0.5263 0.1427 0.9293 0.1091 0.2916 0.4024

10 0.3303 1.7221 0.4669 9.9100 4.8478 0.5690 0.5260 0.1426 0.9299 0.1092 0.2915 0.4027

11 0.3303 1.7214 0.4667 9.9136 4.8487 0.5693 0.5257 0.1425 0.9303 0.1092 0.2914 0.4028

12 0.3302 1.7209 0.4666 9.9155 4.8503 0.5693 0.5256 0.1425 0.9306 0.1092 0.2914 0.4029

13 0.3301 1.7205 0.4665 9.9173 4.8507 0.5694 0.5255 0.1425 0.9308 0.1092 0.2913 0.4029

14 0.3301 1.7203 0.4665 9.9182 4.8515 0.5695 0.5254 0.1425 0.9309 0.1093 0.2913 0.4030

15 0.3301 1.7201 0.4664 9.9190 4.8516 0.5695 0.5254 0.1425 0.9310 0.1093 0.2913 0.4030

16 0.3300 1.7199 0.4664 9.9194 4.8520 0.5695 0.5253 0.1424 0.9310 0.1093 0.2912 0.4030

17 0.3300 1.7199 0.4663 9.9198 4.8520 0.5695 0.5253 0.1424 0.9311 0.1093 0.2912 0.4030

18 0.3300 1.7198 0.4663 9.9200 4.8522 0.5695 0.5253 0.1424 0.9311 0.1093 0.2912 0.4030

19 0.3300 1.7198 0.4663 9.9202 4.8523 0.5695 0.5252 0.1424 0.9311 0.1093 0.2912 0.4030

20 0.3300 1.7198 0.4663 9.9204 4.8524 0.5695 0.5253 0.1424 0.9312 0.1093 0.2912 0.4030

21 0.3300 1.7198 0.4663 9.9205 4.8524 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 1: The 21 iterations of the gradient descent algorithm to the given incomplete pairwise comparison matrix A.
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Figure 3: λmax(A(x)) values for the first 21 iterations
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Based on the algorithm results from Table 1, the optimal solution of the Perron eigenvalue minimization problem for the

given incomplete matrix A is presented as follows. Here, the missing entries are given with four digits accuracy. The

algorithm results in the same value with that of Bozóki et al. [5] and Ábele-Nagy [1], except few variants in the third and

fourth decimal places (missing values are taken from the last iteration). Hence, we’ve the completed matrix as

A(x∗) =



1 5 3 7 6 6 1/3 1/4

1/5 1 0.3300 5 1.7198 3 0.4664 1/7

1/3 3.0303 1 9.9205 3 4.8524 6 0.5696

1/7 1/5 0.1008 1 0.5253 1/4 0.1424 1/8

1/6 0.5815 1/3 1.9040 1 0.9312 1/5 0.1093

1/6 1/3 0.2061 4 1.0740 1 0.2912 1/6

3 2.1445 1/6 7.0225 5 3.4341 1 0.4030

4 7 1.7556 8 9.1491 6 2.4814 1



.

The minimum value of the objective function λmax(A(x∗)) is 9.2981. The associated normalized right eigenvector is

wEM = (0.1894, 0.0567, 0.2116, 0.0175, 0.0319, 0.0354, 0.1509, 0.3066)T .

Its inconsistency ratio can be evaluated as

CR =
CI

RI8
=

(9.2981− 8)/7

1.4057
≈ 0.1319,

which is above the threshold (i.e. CR > 0.1). Hence, the matrix is a bit above acceptable inconsistency according to Saaty’s

criteria [19, 31, 32].

4. Conclusion

The necessary and sufficient conditions for the optimal completion of a given incomplete pairwise comparison matrix is

the connectedness of an associated graph 1.3-1.5. In this paper, implementation of Gradient descent method for Perron

eigenvalue minimization of incomplete pairwise comparison matrices is presented. Since the Perron eigenvalue minimization

problem can be transformed into convex problem (strictly convex in the case of connected graph), the global convergence

of the algorithms (cyclic coordinates method, Newton’s method, and gradient descent method) is guaranteed. However,

the choice of step size still affects the stability of the algorithms. The future research can be the choice of step size γ and

comparison analysis of the algorithms.
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Appendix

The following Harker’s [20] formulas are associated to Section 2. Harker’s formulas for the derivatives of the Perron eigenvalue

are presented as follows [1, 19, 20]. Let A denote a pairwise comparison matrix, and let x = x(A) denote the left Perron

eigenvectors, y = y(A) denote its right Perron eigenvector and λmax = λmax(A) its Perron eigenvalue, so Ax = λmaxx and

yTA = λmaxy
T . The normalization for the eigenvectors in this case is yTx = 1. Let Q = λmaxI−A. Also let Q+ denote the

pseudoinverse of Q, with properties: QQ+Q = Q, Q+QQ+ = Q+, Q+Q = QQ+. Further, ∂αij represents differentiation

with respect to the entry in position (i, j) in A, and similarly ∂αkl represents differentiation with respect to the entry in

position (k, l). Applying these notations, the formulas are given as follows:

• Harkers formula for the first derivative ∂λmax(x)
∂x

:

(
∂λmax
∂ij

‖i > j

)
=

(
[yixj ]−

[yjxi]

[αij ]2

)

where vectors x = x(A), y = y(A) are the right-hand side and left-hand side eigenvectors of A, respectively.
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• Harker’s formula for the second derivative (when i 6= k or j 6= l):

∂2λmax
∂ij∂kl

= (xyT )liQ
+
jk+(xyT )jkQ

+
li−

(xyT )kiQ
+
jl + (xyT )jlQ

+
ki

[αkl]2
−

(xyT )ljQ
+
ik + (xyT )ikQ

+
lj

[αij ]2
−

(xyT )klQ
+
il + (xyT )ilQ

+
kj

[αij ]2[αkl]2
.

• Harker’s formula for the second derivative (when i 6= k or j 6= l):

∂2λmax
∂ij∂kl

=
2(xyT )ij

[αij ]3
+ 2(xyT )jiQ

+
ii − 2

(xyT )iiQ
+
jj + (xyT )jjQ

+
ii

[αij ]2
+ 2

(xyT )ijQ
+
ij

[αij ]4
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