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Abstract: The present paper demonstrate the implementation of time derivative boundary conditions in the Chebyshev differentiation

matrices. The non-linear time dependent partial differential equations with time derivative boundary conditions(mixed

boundary conditions) is considered and the spectral collocation algorithm is developed and solutions are presented. Quasi-
linearization technique is used to convert the non-linear partial differential equation into linear form by using Taylor series

approximation about the initial guess. Lagrange interpolating polynomials are used as basis of the solution at the Gauss-

Labatto grid points. Also the time derivative boundary conditions are incorporated within the Chebyshev differentiation
matrices. MATLAB software is used to implement this algorithm and numerical results are depicted graphically. The

case study problem is solved using this approach and the solution found by the this method is more accurate compared

to the finite difference method with uniform grid points.
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1. Introduction

The partial differential equations plays a very important role in the mathematical modelling of industrial and engineering

problems. There are several phenomenons are non-linear in nature and hence the mathematical modelling of those phe-

nomenons leads to non-linear partial differential equations. These differential equations to be solved with respect different

types of boundary conditions coincides with real world situations. The time derivative boundary conditions or mixed Cauchy

type of conditions exits in many industrial and chemical engineering problems in particular the drainage and holdup of liquid

foams [1, 2]. In the present study it is demonstrated the implementation of the time derivative boundary condition such as

Cauchy’s or mixed boundary conditions in a Chebyshev differential matrix along with Gauss-Labatto collocation points. A

case study problem is taken from chemical engineering application which leads to a non-linear partial differential equation

with time derivative boundary condition [1, 2].

A general non-linear partial differential equation of the form given below is considered in this study with suitable initial and

boundary conditions:

Ut = F (z, t, U, Uz, Uzz) (1)

subject to the initial and mixed boundary conditions respectively;

U(z, 0) = f(z) (2)
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Ut(z0, t) + U(z0, t) = g1(t) (3)

and

Ut(z1, t) + U(z1, t) = g2(t) (4)

Many researchers are solved this partial differential equations of these categories using numerical methods such as finite

difference and finite elements. In present work the above said non-linear time dependent PDE is solved using Chebyshev

spectral collocation method. To obtain the solution of non-linear time dependent partial differential equations, the algorithm

developed is as follows. First the non-linear PDE is decomposed in to sum of linear and no-linear terms. Then by using

Taylor’s series expansion about the guessed solution the non-linear terms are taken to right hand side and they are not

unknowns any more. Further, the derivatives in the resultant equations are written in terms of Chebyshev differential

matrix by assuming the basis of the solution by Lagrange polynomials about the Gauss-Labatto collocation points.Finally,

the boundary conditions are implemented inside these matrices and 1 and N+1 rows and the system of equations are solved

for the unknown. The implementation of time derivative boundary conditions in the Chebyshev differentiation matrices

is considered to be the uniqueness of the present study compared to that of other works by several authors. The method

discussed in this paper is found to be accurate and fast solver of non-linear partial differential equations.

2. Case Study Problem

To demonstrate the method and theory developed in this paper it is applied to the following case study problem in the form

of non-linear partial differential equation which arises in the chemical engineering while modelling the drainage of foams and

it is given [1, 2] in terms of partial differential equation:

∂W
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(5)

in the domain zε [0, 1]. Where W0 and W1 are some known functions of z and t representing, mass balance for film and Mass

balance for horizontal Plateau borders, respectively. Subject to the time derivative mixed (Cauchy) boundary conditions at

z = 0 and z = 1 in non-dimensional form;
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where k0, k1, c1 and c2 are some non-dimensional parameters. This equation is of practical importance in many chemical

engineering experiments representing the shape of the polyhedral bubbles in foam is assumed to be pentagonal dodecahedral.

Hence, a polyhedral foam consists of three essential parts, viz. films, horizontal and vertical Plateau borders. The mass

balance equations for films and horizontal Plateau borders remain same as that of [1]. However, the equation for vertical

Plateau border changes from that of [1] due to the inclusion of Plateau border suction in overall foam drainage.

3. Numerical Solution

3.1. Quasi-linearization

The partial differential equation considered in above section is non-linear in nature, hence the closed form solution of it does

not exists. In this section we present the detailed quasi-linearization process to reduce this differential equation in to linear
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form [3]. Let
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
here F , H, and L are linear parts of equations (5)-(7) and G, J and N are non-linear parts of equations (5)-(7), respectively.

Hence equations (5)-(7) can be written as

F +G = 0 (8)

H + J = 0 (9)

L+N = 0 (10)

To reduce the non-linear parts G, J , and N of equations (8)-(10) to linear form we make use of quasi-linearization technique.

In this technique we assume Wr be the approximate solution of the non-linear partial differential in rth iteration and

Wr+1 −Wr � 1 then G, J and N can be expanded as multivariate Taylor series about Wr, respectively given by
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The above equations are obtained after ignoring second and higher order terms. Further simplifying these equations by

taking the known terms purely in Wr to right hand side, we get
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The equations (11)-(13) are in linear form, hence they can be solved by any method. In the present work these equations

are solved by using spectral Chebyshev collocation technique discussed in the next section below.

3.2. Bivariate Spectral Collocation

To obtain the numerical solution of equations (11)-(13) by spectral method the domain [0, 1] is transformed to [−1, 1] by

using N + 1, M + 1 Gauss-Labatto grid points in space as well as time respectively and are given by (see [3? ])

Zi = cos

(
πi

N

)
, i = 0, 1, 2, ....N (17)

and

Tj = cos

(
πj

N

)
, j = 0, 1, 2, ....M (18)

these grid points are in computational domain for spectral collocation method. They can be transformed to physical domain

by using

z =
(Z + 1)

2
(19)

t =
Lt(T + 1)

2
(20)

for some time interval [0, Lt]. The solution Wr is assumed to be of the sum of product of Lagrangian polynomials in z and

t as given below

Wr(z, t) =

M∑
k=0

N∑
j=0

cjkφj(z)φk(t) (21)

Where φ as the Kronecker delta property. Further these solution at collocation points becomes

Wr(zi, tp) =
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k=0
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cjkφj(zi)φk(tp) (22)

Similarly the partial derivatives at these collocation points transform to
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Where djk and D are called Chebyshev differentiation matrices of order M + 1 ×M + 1 and N + 1 × N + 1 respectively.

Replacing the continuous derivatives by derivatives at collocation points [see [3–5]] equations (11)-(13) becomes

a2rD
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Further by using initial condition at j = M + 1 the solution is known for spacial grids the above equations reduces to
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Expanding equation(22) for all j = 0, 1, 2...M , we get

(A0 − d0,0I)W0 − (d0,1W1 + d0,2W2 + .....+ d0,M−1WM−1) = K10

−d1,0W0 + (A2 − d1,1I)W1 − (d1,2W2 + ....+ d1,M−1WM−1) = K11

−d2,0W0 − d2,1W1 + (A3 − d2,2I)W2 − (d2,3W3 + ....+ d2,M−1WM−1) = K12

and so on

−dM−1,0W0 − dM−1,1W1 − ....− dM−1,M−2WM−2 + (AM−1 − dM−1,M−1I)WM−1 = K1M−1

These equations can be put in the following matrix form AW = K



A0,0 A0,1 . . . A0,M−1
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. . . . . .

. . . . . .
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.

.
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=
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.
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
(31)

Hence by using the boundary conditions given equation (29) and (30) in this matrix system and one can easily obtain W

by using W = A\K. This entire algorithm is implemented in MATLAB with suitable initial guess and results are presented

in next section.
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4. Results and Discussion

The non-linear time dependent partial differential equation with respect to time derivative boundary conditions is solved

using spectral collocation method with Lagrange interpolating polynomials as basis of the solution with an initial guess

W (z, 0) = φ(z). The numerical results are presented graphically in figures (1)-(5) are well coincides with the experimental

results of [1, 2]. Also these results are more accurate than the results produced by [1] using finite difference method.

Figure 1. Graph of W (z, t) vs. z for various values of t

Figure 2. Graph ofW (z, t) vs. z for various values of t

Figure 3. Graph of W (z, t) vs. t for various values of z
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Figure 4. Graph of W (z, t) vs. z for various values of t

Figure 5. Graph of W (z, t) vs. t for various values of z

5. Conclusion

The non-linear partial differential equation is solved using Chebyshev spectral collocation method by implementing the

time derivative boundary conditions with in the Chebyshev differential matrices. The results presented in above section

are accurate and coincide with the results obtained by previous authors. Also the number of collocation points required to

get accuracy is less when compared with finite difference method. Further the cost and computational time of the method

presented in this study is better than the finite difference and finite element methods. Hence it is concluded that the spectral

collocation method described in this paper is faster and accurate compared to other numerical techniques.
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