

International Journal of *Mathematics And its Applications*

Spectral Properties of M-class A_k^* Operator

P. Shanmugapriya^{1,*} and P. Maheswari Naik¹

1 Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.

Abstract:	The Banach algebra on a non-zero complex Hilbert space H of all bounded linear operators are denoted by $B(H)$. An operator T is defined as an element in $B(H)$. If T belongs to $B(H)$, then T^* means the adjoint of T in $B(H)$. An operator
	T is called class $A(k)$ if $ T ^2 \leq \left(T^* T ^{2k} T\right)^{\frac{1}{k+1}}$ for $k > 0$. An operator T is called class A_k if $ T ^2 \leq \left(T^{k+1} ^{\frac{2}{k+1}}\right)$
	for some positive integer k. S. Panayappan [11] introduced class A_k^* operator as "an operator T is called class A_k^* if
	$ T^k ^{\frac{2}{k}} \ge T^* ^2$ where k is a positive integer" and studied Weyl and Weyl type theorems for the operator [9]. In this paper we introduced extended class A_k^* operator and studied some of its spectral properties. We also show that extended class A_k^* operators are closed under tensor product.
MSC:	47A63_47B37

MSC: 47A03, 47B37.

Keywords: Class A_k^* , Quasi Class A_k^* , Weyl's theorem. © JS Publication.

1. Introduction

An operator T is defined in B(H) is an element in B(H). Weyl and Weyl type theorems where studied for the following class of operators. Furuta et al introduced class A(k), k > 0 as a class of operators including p-hyponormal and log-hyponormal operators and studied Weyl type theorems. L.A.Coburn studied Weyl's theorem for non normal operators [3] then M. Berkani studied generalized Weyl's theorem for hyponormal operators [1, 2]. Panayappan extended this concept and introduced class A_k operators and verified Weyl's theorem [11]. In 2016, D. Senthil Kumar studied aluthge transformation for N-class A_k operators [10]. In 2013, Panayappan et al introduced a new class of operators in a different manner called class A_k^* operator, quasi class A_k^* operators and studied Weyl and Weyl type theorems and also proved tensor product of two quasi class A_k^* operators is closed [9]. An operator T is called class A_k^* if $|T^k|^{\frac{2}{k}} \ge |T^*|^2$ where k is a positive integer.

If k = 1 then class A_k^* operator coincides with hyponormal operator [9]. In this paper, we extended class A_k^* operator as a new class of operator named M-class A_k^* operators and studied some of its spectral properties.

Definition 1.1. An operator $T \in B(H)$ is said to be M-Class A_k^* operator if there exists positive real numbers M, k such that $|T*|^2 \leq M\left(\left|T^k\right|^{\frac{2}{k}}\right)$.

Proposition 1.2. If M = 1, then M-Class A_k^* operator coincides with class A_k^* operator. If M = 1 and k = 1, then M-Class A_k^* operator coincides with hyponormal operator. Hence, Hyponormal operator \Rightarrow class A_k^* operator \Rightarrow M-Class A_k^* operator.

^{*} E-mail: prsrinithin@gmail.com

2. Spectral Properties of M-Class A_k^* Operators

In this section, first we proved using matrix representation that the restriction of M-Class A_k^* operators to an invariant subspace is also M-Class A_k^* , and if T is M-Class A_k^* operator, then Weyl's theorem hold for T, T^{*} and f(T) for $f \in H(\sigma(T))$ and if T^{*} has SVEP, then a-Weyl's theorem hold for T, T^{*} and f(T) for $f \in H(\sigma(T))$.

Theorem 2.1. If T is M-Class A_k^* operator for positive real numbers M and k, then $T|_N$ is also M-Class A_k^* operator where N is an invariant subspace of T.

Proof. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the orthogonal projection of H onto N and $T|_N = T_1 = (PTP)|_N$ and TP = PTP. Since T is M-class A_k^* operator and P is a projection on N, $P\left(M |T^k|^{2/k} - |T^*|^2\right) P \ge 0$. By Hansen's Inequality [4, 10],

$$P\left(M\left|T^{k}\right|^{\frac{2}{k}}\right)P \leq M\left(PT^{*k}T^{k}P\right)^{1/k}$$
$$= \left(\begin{array}{cc}M\left|T_{1}^{k}\right|^{2} & 0\\0 & 0\end{array}\right)^{\frac{1}{k}}$$
$$= \left(\begin{array}{cc}M\left|T_{1}^{k}\right|^{\frac{2}{k}} & 0\\0 & 0\end{array}\right).$$

Hence,

$$M\left(\begin{array}{cc} \left|T_{1}^{k}\right|^{\frac{2}{k}} & 0\\ 0 & 0\end{array}\right) \ge P(M\left|T^{k}\right|^{\frac{2}{k}})P \ge P\left|T^{*}\right|^{2}P = \left(\begin{array}{cc} \left|T_{1}^{*}\right|^{2} + \left|T_{2}^{*}\right|^{2} & 0\\ 0 & 0\end{array}\right)$$

Hence $M \left|T_1^k\right|^{\frac{2}{k}} - \left|T_1^*\right|^2 \ge \left|T_2^*\right|^2 \ge 0$. Hence $T|_N$ is M-Class A_k^* operator on an invariant subspace N of T.

Theorem 2.2. If T is M-Class A_k^* operator for positive real numbers M and $k, \lambda \in \sigma_P(T)$ where $\lambda \neq 0$ and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $Ker(T - \lambda) \oplus ran(T - \lambda)^*$, then T_3 is M-Class A_k^* operator and $T_2 = 0$.

Proof. Let P be the orthogonal projection of H onto $Ker(T-\lambda)$. Since T is M-Class A_k^* operator, $M |T^K|^{2/k} - |T^*|^2 \ge 0$ this implies that $0 \le P \left[M |T^K|^{2/k} - |T^*|^2 \right] P$, where $P |T^*|^2 P = \begin{pmatrix} |\lambda|^2 + T_2 T_2^* & 0 \\ 0 & 0 \end{pmatrix}$ and $P |T^K|^2 P = \begin{pmatrix} |\lambda|^{2k} & 0 \\ 0 & 0 \end{pmatrix}$. Therefore,

$$P\left[M|T^{K}|^{2/k}\right]P = \begin{pmatrix} |\lambda|^{2} & 0\\ 0 & 0 \end{pmatrix} \ge P|T^{*}|^{2}P$$
$$= \begin{pmatrix} |\lambda|^{2} + T_{2}T_{2}^{*} & 0\\ 0 & 0 \end{pmatrix}.$$

Hence $T_2T_2^* = 0$ implies that $T_2 = 0$. Therefore,

$$0 \le M \left| T^{K} \right|^{2/k} - TT^{*} = \left(\begin{array}{cc} 0 & 0 \\ 0 & M \left| T_{3}^{k} \right|^{2/k} - \left| T_{3}^{*} \right|^{2} \right)$$

Hence T_3 is M-Class A_k^* operator.

Theorem 2.3. If T is M-Class A_k^* operator for positive real numbers M and k and $(T - \lambda)x = 0$ for all $\lambda \neq 0$ and $x \in H$ then $(T - \lambda)^*x = 0$.

Proof. Using Schwarz's and Holder McCarthy inequalities,

$$\begin{aligned} |\lambda|^2 ||x||^2 &= ||Tx||^2 \\ &= f(\sigma(T)) - \pi_{00}(T) \\ &= \langle T^*Tx, x \rangle \\ &= \langle (T^*T)x, x \rangle \\ &= \langle |T|^2 x, x \rangle \\ &\leq \left\langle M\left(\left|T^k\right|\right)^{2/k} x, x \right\rangle \\ &\leq \left\langle M\left(T^k x, T^k x\right) \right\rangle^{2/k} ||x||^{2(1-2/k)} \\ &\leq \left\langle M\left(T^k x, T^k x\right) \right\rangle^{2/k} ||x||^{2((k-2)/k)} \\ &= M |\lambda|^2 ||x||^2. \end{aligned}$$

Hence $|\lambda|^2 \langle x, x \rangle = \langle T^*Tx, x \rangle = \langle M(|T^k|)^{2/k} x, x \rangle$. Since, $\langle M(|T^k|)^{2/k} x \rangle$ and x are linearly independent. Therefore, $M(|T^k|)^{2/k} x = |\lambda|^2 x$ $\left\| (M|T^k|^{2/k} - |T^*|^2)^{1/2} x \right\|^2 = \langle |M(|T^k|)^{2/k} - (TT^*)|x, x \rangle = 0.$ Therefore, $(TT^*)x = M(|T^k|)^{2/k} x = |\lambda|^2 x = 0 \Rightarrow (T - \lambda)^* x = 0.$

Therefore, $(TT^*)x = M(|T^k|)^{2/k} x = |\lambda|^2 x = 0 \Rightarrow (T-\lambda)^* x = 0.$

Corollary 2.4. If T is M-Class A_k^* operator for positive real numbers M and k, $0 \neq \lambda \in \sigma_P(T)$ then T is of the form $T = \begin{pmatrix} \lambda & 0 \\ 0 & T_3 \end{pmatrix}$ on $Ker(T - \lambda) \oplus ran(T - \lambda)^*$, where T_3 is M-Class A_k^* and $Ker(T_3 - \lambda) = \{0\}$.

An operator T is called normaloid if r(T) = ||T||, where $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. An operator T is called hereditarily normaloid, if every part of it is normaloid. If iso $\sigma(T) \subseteq \pi(T)$ then an operator T is called polaroid where $\pi(T)$ is the set of poles of the resolvent of T and iso $\sigma(T)$ is the set of all isolated points of $\sigma(T)$. An operator T is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator T is said to be reguloid if for every isolated point λ of $\sigma(T)$, $\lambda I - T$ is relatively regular. An operator T is known as relatively regular if and only if ker T and T(X) are complemented. Hence, we can say that **Polaroid\Rightarrowreguloid\Rightarrowisoloid**.

Theorem 2.5. If T is M-Class A_k^* operator for positive real numbers M and k, then for $\lambda \in C$, if $\sigma(T) = \lambda$ then $T = \lambda$.

Proof.

Case (A): Let $\lambda = 0$. It is obvious that, Hyponormal operator \subset k-paranormal \subset normaloid [11]. Therefore M-Class A_k^* operator is also normaloid. Therefore T = 0.

Case (B): Let $\lambda \neq 0$. Since T is M-Class A_k^* operator then T is invertible, so is also M-Class A_k^* . Hence it is also normaloid. We know that, if $\lambda \in T$ then $\frac{1}{\lambda} \in T^{-1}$. Hence $||T|| ||T^{-1}|| = |\lambda| |\frac{1}{\lambda}| = 1 \Rightarrow T$ is covexoid (i.e) $w(T) = \{\lambda\} \Rightarrow T = \lambda$.

Since class A_k^* operator are k^* paranormal, by [8] class A_k^* operators are normaloid by the inclusion property M- class A_k^* operators are also normaloid and by [7] we have the following results.

Theorem 2.6. If T is M-Class A_k^* operator for positive real numbers M and k, then

173

- (1). T is Polaroid.
- (2). T is isoloid.
- (3). If $\lambda \in \sigma(T)$ is a isolated point then $E_{\lambda}H = Ker(T \lambda)$ and hence λ is an eigen value of T.
- (4). If $\lambda \neq 0$ be an isolated point in $\sigma(T)$, then E_{λ} is self adjoint and satisfies

$$E_{\lambda}H = Ker(T - \lambda) = Ker(T - \lambda)^*.$$

- (5). T has SVEP, $P(\lambda I T) \leq 1$ for every $\lambda \in C$ and T^* is reguloid.
- (6). Weyl's theorem holds for T and T^* . In addition, T^* has SVEP, then a-Weyl's theorem holds for both T and T^* and for f(T) for every $f \in H(\sigma(T))$.

Theorem 2.7. If T is M-Class A_k^* operator for positive real numbers M and k then $(T - \lambda)$ has finite ascent for $\lambda \in C$.

Proof. By Theorem 2.5, for $\lambda \neq 0$

$$Ker(T - \lambda) \subseteq Ker(T - \lambda)^*.$$

Hence if $x \in \ker(T-\lambda)^2$, then $(T-\lambda)^*(T-\lambda)x = 0$ for $\lambda \neq 0$. Hence $||(T-\lambda)x||^2 = 0$ implies $x \in \ker(T-\lambda)$. Hence $\ker(T-\lambda)^2 = \ker(T-\lambda)$. If $\lambda = 0$, it is sufficient to prove $\ker T^{2k} \subset \ker T^k$. Let $x \in \ker T^{2k}$ and $x \neq 0$. By holder MC Carthy inequality,

$$0 = \left\| T^{2k} \right\|^2 = \left\langle \left| T^{2k} \right|^2 x, x \right\rangle$$
$$\geq \left\langle \left| T^{2k} \right|^{2/k} x, x \right\rangle^k$$
$$\geq \left\langle \left| T^2 \right|^2 x, x \right\rangle^k \|x\|^{2k}$$
$$= \|Tx\|^{2/k} \|x\|^{2k}$$

Hence $x \in \ker T \subset \ker T^k \Rightarrow T$ has finite asent.

Theorem 2.8. If T is M-Class A_k^* operator for positive real numbers M and k then $f(w(T)) = w(f(T)) \forall f \in (\sigma(T))$.

Proof. If T is M-Class A_k^* operator for positive real numbers M and k then T is of finite Ascent (by Theorem 2.9) by [5], (Proposition 38.5) $ind(T - \lambda) \neq 0$ for all complex numbers λ . Therefore by Theorem 5 of [13] $f(w(T)) = w(f(T)) \forall f \in (\sigma(T))$.

Theorem 2.9. If T is M-Class A_k^* operator for positive real numbers M and k, then Weyl's theorem holds for f(T) for every $f \in (\sigma(T))$.

Proof. By Theorem 2.7, T is isoloid and Weyl's theorem holds for T. By lemma of [6],

$$f(\sigma(T) - \pi_{00}(T)) = \sigma(f(T)) - \pi_{00}(f(T)), \quad for every f \in H(\sigma(T))$$

By Theorem 2.8,

$$f(w(T)) = w(f(T)) \ \forall \ f \in (\sigma(T))$$

Hence, $\sigma(f(T)) - \pi_{00}(f(T)) = f(\sigma(T)) - \pi_{00}(T) = f(w(T)) = w(f(T))$. Hence, Weyl's theorem holds for $f(T) \quad \forall f \in H(\sigma(T))$.

3. Tensor Product of M-Class A_k^* Operators

In this section, we proved that M-Class A_k^* operators are closed under tensor product.

Theorem 3.1. If $T \in B(H)$ and $S \in B(K)$ are non-zero operators, then $T \otimes S$ is M-Class A_k^* operator if and only if T and S are M-Class A_k^* operators. $|T^*|^2 \leq M |T^K|^{2/k}$.

Proof. Assume that T and S are M-Class A_k^* operators. Then

$$M \left| (T \otimes S)^k \right|^{2/k} = M |T^k|^{2/k} \otimes M |S^k|^{2/k}$$
$$\geq |T^*|^2 \otimes |S^*|^2$$
$$= |T^* \otimes S^*|^2$$

Hence, $T \otimes S$ is M-Class A_k^* operator.

Conversely, assume that $T \otimes S$ is M-Class A_k^* operator. Without loss of generality, it is enough to show that T is M-Class A_k^* operator. Since $|T^* \otimes S^*|^2 \leq M |(T \otimes S)^k|^{2/k}$. We have $|T^*|^2 \otimes |S^*|^2 \leq M |T^k|^{2/k} \otimes M |S^k|^{2/k}$. Therefore,

$$\begin{split} \|T^*\|^2 &= \sup\left\{\left\langle |T^*|^2 \, x, x\right\rangle : \, x \in H \, and \, \|x\| = 1\right\} \\ &\leq \sup\left\{\left\langle M|T^k|^{2/k} x, x\right\rangle : \, x \in H \, and \, \|x\| = 1\right\} \\ &\leq M \sup\left\{\left\langle |T^k|^2 x, x\right\rangle^{1/k} : \, x \in H \, and \, \|x\| = 1\right\} \\ &\leq M \|T^k\|^{2/k} \\ &\leq M \|T^*\|^2 \end{split}$$

Similarly, $||S^*||^2 \leq M ||S^*||^2$. Hence both T and S are M-Class A_k^* operators.

References

- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130(2002), 1717-1723.
- [2] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, Journal of the Australian Mathematical Society, 76(2004), 291-302.
- [3] L. A. Coburn, Weyls's theorem for non normal operators, Michigan Math. J., 13(1966), 285-288.
- [4] F. Hansen, An inequality, Math. Ann., 246(1980), 249-250.
- [5] H. Heuser, Functional Analysis, Marcel Dekker, New York, (1982).
- [6] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J., 38(1)(1996), 61-64.
- [7] S. Panayappan, D. Sumathi and N. Jayanthi, Generalised Weyl and Weyl type theorems for algebraically k*-paranormal operators, Scientiamagna, 8(1)(2012), 111-121.
- [8] C. S. Ryoo and P. Y. Sik, k*-paranormal operators, Pusan Kyongnam Math. J., 11(2)(1995), 243-248.
- [9] S. Panayappan and N. Jayanthi, Weyl and Weyl type theorems for class Ak* and Quasi Class Ak* operators, Int. Journal of Math. Analysis, 7(14)(2013), 683-698.
- [10] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Operators and Matrices, 4(2)(2010), 213-223.

- [11] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl's theorem and Tensor product for class Ak Operators, Pure Mathematical Sciences, 1(1)(2012), 13-23.
- [12] D. Senthilkumar and R. Murugan, Aluthge transformation of N-class Ak Operators, International Journal of Pure and Applied Mathematics, 106(8)(2016), 27-31.
- [13] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc., 349(1997), 2115-2124.