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Abstract: The Banach algebra on a non-zero complex Hilbert space H of all bounded linear operators are denoted by B(H). An
operator T is defined as an element in B(H). If T belongs to B(H), then T ∗ means the adjoint of T in B(H). An operator

T is called class A(k) if |T |2 ≤
(
T ∗ |T |2k T

) 1
k+1

for k > 0. An operator T is called class Ak if |T |2 ≤
(∣∣Tk+1

∣∣ 2
k+1

)
for some positive integer k. S. Panayappan [11] introduced class A∗

k operator as “an operator T is called class A∗
k if∣∣Tk∣∣ 2

k ≥ |T ∗|2 where k is a positive integer” and studied Weyl and Weyl type theorems for the operator [9]. In this paper

we introduced extended class A∗
k operator and studied some of its spectral properties. We also show that extended class

A∗
k operators are closed under tensor product.
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1. Introduction

An operator T is defined in B(H) is an element in B(H). Weyl and Weyl type theorems where studied for the following class

of operators. Furuta et al introduced class A(k), k > 0 as a class of operators including p-hyponormal and log-hyponormal

operators and studied Weyl type theorems. L.A.Coburn studied Weyl’s theorem for non normal operators [3] then M. Berkani

studied generalized Weyl’s theorem for hyponormal operators [1, 2]. Panayappan extended this concept and introduced class

Ak operators and verified Weyl’s theorem [11]. In 2016, D. Senthil Kumar studied aluthge transformation for N-class Ak

operators [10]. In 2013, Panayappan et al introduced a new class of operators in a different manner called class A∗
k operator,

quasi class A∗
k operators and studied Weyl and Weyl type theorems and also proved tensor product of two quasi class A∗

k

operators is closed [9]. An operator T is called class A∗
k if

∣∣T k∣∣ 2k ≥ |T ∗|2 where k is a positive integer.

If k = 1 then class A∗
k operator coincides with hyponormal operator [9]. In this paper, we extended class A∗

k operator as a

new class of operator named M-class A∗
k operators and studied some of its spectral properties.

Definition 1.1. An operator T ∈ B(H) is said to be M-Class A∗
k operator if there exists positive real numbers M, k such

that |T∗|2 ≤M
(∣∣T k∣∣ 2k ).

Proposition 1.2. If M = 1, then M-Class A∗
k operator coincides with class A∗

k operator. If M = 1 and k = 1, then M-Class

A∗
k operator coincides with hyponormal operator. Hence, Hyponormal operator ⇒ class A∗

k operator ⇒ M-Class A∗
k operator.
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2. Spectral Properties of M-Class A∗
k Operators

In this section, first we proved using matrix representation that the restriction of M-Class A∗
k operators to an invariant

subspace is also M-Class A∗
k, and if T is M-Class A∗

k operator, then Weyl’s theorem hold for T , T ∗ and f(T ) for f ∈ H(σ(T ))

and if T ∗ has SVEP, then a-Weyl’s theorem hold for T , T ∗ and f(T ) for f ∈ H(σ(T )).

Theorem 2.1. If T is M-Class A∗
k operator for positive real numbers M and k, then T |N is also M-Class A∗

k operator where

N is an invariant subspace of T.

Proof. Let P =

 1 0

0 0

 be the orthogonal projection of H onto N and T |N = T1 = (PTP )|N and TP = PTP . Since T

is M-class A∗
k operator and P is a projection on N, P

(
M
∣∣T k∣∣2/k − |T ∗|2

)
P ≥ 0. By Hansen’s Inequality [4, 10],

P

(
M
∣∣∣T k∣∣∣ 2k)P ≤M (

PT ∗kT kP
)1/k

=

 M
∣∣T k1 ∣∣2 0

0 0


1
k

=

 M
∣∣T k1 ∣∣ 2k 0

0 0

 .

Hence,

M

 ∣∣T k1 ∣∣ 2k 0

0 0

 ≥ P (M
∣∣∣T k∣∣∣ 2k )P ≥ P |T ∗|2 P =

 |T ∗
1 |2 + |T ∗

2 |2 0

0 0


Hence M

∣∣T k1 ∣∣ 2k − |T ∗
1 |2 ≥ |T ∗

2 |2 ≥ 0. Hence T |N is M-Class A∗
k operator on an invariant subspace N of T.

Theorem 2.2. If T is M-Class A∗
k operator for positive real numbers M and k, λ ∈ σP (T ) where λ 6= 0 and T is of the

form T =

 λ T2

0 T3

 on Ker(T − λ)⊕ ran(T − λ)∗, then T3 is M-Class A∗
k operator and T2 = 0.

Proof. Let P be the orthogonal projection of H onto Ker(T −λ). Since T is M-Class A∗
k operator, M

∣∣TK∣∣2/k− |T ∗|2 ≥ 0

this implies that 0 ≤ P
[
M
∣∣TK∣∣2/k − |T ∗|2

]
P , where P |T ∗|2 P =

 |λ|2 + T2T
∗
2 0

0 0

 and P
∣∣TK∣∣2 P =

 |λ|2k 0

0 0

.

Therefore,

P
[
M |TK |2/k

]
P =

 |λ|2 0

0 0

 ≥ P |T ∗|2 P

=

 |λ|2 + T2T
∗
2 0

0 0

 .

Hence T2T
∗
2 = 0 implies that T2 = 0. Therefore,

0 ≤M
∣∣∣TK∣∣∣2/k − TT ∗ =

 0 0

0 M
∣∣T k3 ∣∣2/k − |T ∗

3 |2

 .

Hence T3 is M-Class A∗
k operator.
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Theorem 2.3. If T is M-Class A∗
k operator for positive real numbers M and k and (T − λ)x = 0 for all λ 6= 0 and x ∈ H

then (T − λ)∗x = 0.

Proof. Using Schwarz’s and Holder McCarthy inequalities,

|λ|2 ‖x‖2 = ‖Tx‖2

= f(σ(T ))− π00(T )

= 〈T ∗Tx, x〉

= 〈(T ∗T )x, x〉

=
〈
|T |2 x, x

〉
≤
〈
M
(∣∣∣T k∣∣∣)2/k x, x〉

≤
〈
M
(
T kx, T kx

)〉2/k

‖x‖2(1−2/k)

≤
〈
M
(
T kx, T kx

)〉2/k

‖x‖2((k−2)/k)

= M |λ|2 ‖x‖2 .

Hence |λ|2 〈x, x〉 = 〈T ∗Tx, x〉 =
〈
M
(∣∣T k∣∣)2/k x, x〉. Since,

〈
M
(∣∣T k∣∣)2/k x〉 and x are linearly independent. Therefore,

M
(∣∣T k∣∣)2/k x = |λ|2 x ∥∥∥∥(M

∣∣∣T k∣∣∣2/k − |T ∗|2)1/2x

∥∥∥∥2 =
〈∣∣∣M(

∣∣∣T k∣∣∣)2/k − (TT ∗)
∣∣∣x, x〉 = 0.

Therefore, (TT ∗)x = M
(∣∣T k∣∣)2/k x = |λ|2 x = 0⇒ (T − λ)∗x = 0.

Corollary 2.4. If T is M-Class A∗
k operator for positive real numbers M and k, 0 6= λ ∈ σP (T ) then T is of the form

T =

 λ 0

0 T3

 on Ker(T − λ)⊕ ran(T − λ)∗, where T3 is M-Class A∗
k and Ker(T3 − λ) = {0}.

An operator T is called normaloid if r(T ) = ‖T‖, where r(T ) = sup{|λ| : λ ∈ σ(T )}. An operator T is called hereditarily

normaloid, if every part of it is normaloid. If iso σ(T ) ⊆ π(T ) then an operator T is called polaroid where π(T ) is the set

of poles of the resolvent of T and iso σ(T ) is the set of all isolated points of σ(T ). An operator T is said to be isoloid if

every isolated point of σ(T ) is an eigenvalue of T. An operator T is said to be reguloid if for every isolated point λ of σ(T ),

λI − T is relatively regular. An operator T is known as relatively regular if and only if ker T and T (X) are complemented.

Hence, we can say that Polaroid⇒reguloid⇒isoloid.

Theorem 2.5. If T is M-Class A∗
k operator for positive real numbers M and k,then for λ ∈ C, if σ(T ) = λ then T = λ.

Proof.

Case (A): Let λ = 0. It is obvious that, Hyponormal operator ⊂ k-paranormal ⊂ normaloid [11]. Therefore M-Class A∗
k

operator is also normaloid. Therefore T = 0.

Case (B): Let λ 6= 0. Since T is M-Class A∗
k operator then T is invertible, so is also M-Class A∗

k. Hence it is also normaloid.

We know that, if λ ∈ T then 1
λ
∈ T−1. Hence ‖T‖

∥∥T−1
∥∥ = |λ|

∣∣ 1
λ

∣∣ = 1⇒ T is covexoid (i.e) w(T ) = {λ} ⇒ T = λ.

Since class A∗
k operator are k∗ paranormal, by [8] class A∗

k operators are normaloid by the inclusion property M- class A∗
k

operators are also normaloid and by [7] we have the following results.

Theorem 2.6. If T is M-Class A∗
k operator for positive real numbers M and k, then
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(1). T is Polaroid.

(2). T is isoloid.

(3). If λ ∈ σ(T ) is a isolated point then EλH = Ker(T − λ) and hence λ is an eigen value of T.

(4). If λ 6= 0 be an isolated point in σ(T ), then Eλ is self adjoint and satisfies

EλH = Ker(T − λ) = Ker(T − λ)∗.

(5). T has SVEP, P (λI − T ) ≤ 1 for every λ ∈ C and T ∗ is reguloid.

(6). Weyl’s theorem holds for T and T ∗. In addition, T ∗ has SVEP, then a-Weyl’s theorem holds for both T and T ∗ and

for f(T ) for every f ∈ H(σ(T )).

Theorem 2.7. If T is M-Class A∗
k operator for positive real numbers M and k then (T − λ) has finite ascent for λ ∈ C.

Proof. By Theorem 2.5, for λ 6= 0

Ker(T − λ) ⊆ Ker(T − λ)∗.

Hence if x ∈ ker(T − λ)2, then (T − λ)∗(T − λ)x = 0 for λ 6= 0. Hence ‖(T − λ)x‖2 = 0 implies x ∈ ker(T − λ). Hence

ker(T − λ)2 = ker(T − λ). If λ = 0, it is sufficient to prove kerT 2k ⊂ kerT k. Let x ∈ kerT 2k and x 6= 0. By holder MC

Carthy inequality,

0 =
∥∥∥T 2k

∥∥∥2 =

〈∣∣∣T 2k
∣∣∣2 x, x〉

≥
〈∣∣∣T 2k

∣∣∣2/k x, x〉k
≥
〈∣∣T 2

∣∣2 x, x〉k ‖x‖2k
= ‖Tx‖2/k ‖x‖2k

Hence x ∈ kerT ⊂ kerT k ⇒ T has finite asent.

Theorem 2.8. If T is M-Class A∗
k operator for positive real numbers M and k then f(w(T )) = w(f(T )) ∀ f ∈ (σ(T )).

Proof. If T is M-Class A∗
k operator for positive real numbers M and k then T is of finite Ascent (by Theorem 2.9) by [5],

(Proposition 38.5) ind(T − λ) 6= 0 for all complex numbers λ. Therefore by Theorem 5 of [13] f(w(T )) = w(f(T )) ∀ f ∈

(σ(T )).

Theorem 2.9. If T is M-Class A∗
k operator for positive real numbers M and k, then Weyl’s theorem holds for f(T ) for

every f ∈ (σ(T )).

Proof. By Theorem 2.7, T is isoloid and Weyl’s theorem holds for T. By lemma of [6],

f(σ(T )− π00(T )) = σ(f(T ))− π00(f(T )), forevery f ∈ H(σ(T )).

By Theorem 2.8,

f(w(T )) = w(f(T )) ∀ f ∈ (σ(T )).

Hence, σ(f(T )) − π00(f(T )) = f(σ(T )) − π00(T ) = f(w(T )) = w(f(T )). Hence, Weyl’s theorem holds for f(T ) ∀ f ∈

H(σ(T )).
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3. Tensor Product of M-Class A∗
k Operators

In this section, we proved that M-Class A∗
k operators are closed under tensor product.

Theorem 3.1. If T ∈ B(H) and S ∈ B(K) are non-zero operators, then T ⊗ S is M-Class A∗
k operator if and only if T

and S are M-Class A∗
k operators. |T ∗|2 ≤M

∣∣TK∣∣2/k.

Proof. Assume that T and S are M-Class A∗
k operators. Then

M
∣∣∣(T ⊗ S)k

∣∣∣2/k = M |T k|2/k ⊗M |Sk|2/k

≥ |T ∗|2 ⊗ |S∗|2

= |T ∗ ⊗ S∗|2

Hence, T ⊗ S is M-Class A∗
k operator.

Conversely, assume that T ⊗ S is M-Class A∗
k operator. Without loss of generality, it is enough to show that T is M-Class

A∗
k operator. Since |T ∗ ⊗ S∗|2 ≤M

∣∣(T ⊗ S)k
∣∣2/k. We have |T ∗|2 ⊗ |S∗|2 ≤M

∣∣T k∣∣2/k ⊗M ∣∣Sk∣∣2/k. Therefore,

‖T ∗‖2 = sup
{〈
|T ∗|2 x, x

〉
: x ∈ H and ‖x‖ = 1

}
≤ sup

{〈
M |T k|2/kx, x

〉
: x ∈ H and ‖x‖ = 1

}
≤M sup

{〈
|T k|2x, x

〉1/k

: x ∈ H and ‖x‖ = 1

}
≤M‖T k‖2/k

≤M‖T ∗‖2

Similarly, ‖S∗‖2 ≤M ‖S∗‖2. Hence both T and S are M-Class A∗
k operators.
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