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Abstract: In this paper, we have obtained an analytical solution of the queue: (m, n) system for machine interference with balking and

spares considering the discipline FIFO. The probabilities have been calculated for the transient case, we have calculated

the system availability and up time ratio. They had studied (m,n) system with spares only. It has been discussed the
truncated Poissonion queue: MIM/C/k/N for machine interference but without assumption of balking, reneging or spares,

They considered the system; MIMICm m with spares only. Medhi obtained a solution for the system: MIMIC/mn/rn

without assumption of balking, reneging or spares, and derived an analytical solution of the queue: M/MJC/k/N for
machine interference with balking, reneging and spares.
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1. The Model

We assume a multi-component system, which consists of n identical and independent components each with failure rate λ

arranged to form an (m,n) system. Suppose r repair facilities are available and the repair time is exponentially distributed

with mean 1/t. we assume that, initially we have N spares on hand so that a failed component can be replaced immediately

with n spare. Thus a component can be in any one of three possible states: (1) operating in system, (2) waiting in spares

storage to be used and (3) waiting for or receiving repair service. Suppose that i indicates a system state in which exactly i

components are failed. Thus the only possible system states are 0, 1, . . ., N + n−m+ 1. Let λi∆t, t denote the probability

that a failed component joins repair facslity during an interval of length ∆t and let µi∆t denote the probability that a

repaired component leaves the repair facility during an interval of length ∆t. A transition from i + j to i or from i − j

to i for j = 2 has probability of magnitude o(∆t), hence the only possible transition can be of the form i → i + 1 for

i = 0, 1, ..., N + n −m or 1 for i → l, 2, . . . , N + n −m + 1. Now we assume that b is the probability that a unit joins the

queue. Then we may say that (I − b) is the probability that a unit does not join the queue (because of lack of space), we

can say that the unit is in balked situation.

0 ≤ b < 1

0, if r < i ≤ N + n−m+ 1

and 1, if i < r.

Now we discus tow cases as follows:
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Case 1: r ≤ N . The set of birth - death coefficients are

λi =



nλ, if 0 ≤ i < r

nbλ, if r ≤ i < N

(N + n− i)bλ, if N ≤ i < N + n−m

0, otherwise

and

µi =


iµ, if 1 ≤ i ≤ r

rµ, if r ≤ i ≤ N + n−m+ 1

0, otherwise

We may write the probability differential - difference equations in the following manner:

P ′0 (t) = −nλP0 (t) + µP1 (t) , i = 0 (1)

P ′i (t) = − (nλ+ iµ)Pi (t) + nλP i−1 (t) + (i+ l)µPi−1 (t) , 1 ≤ i < r (2)

P ′r (t) = − (nbλ+ rµ)Pr (t) + nλP r−1 (t) + rµPr−1 (t) , i = r (3)

P ′i (t) = − (nbλ+ rµ)Pi (t) + nλP i−1 (t) + rµPi−1 (t) , r + 1 ≤ i ≤ N (4)

P ′i (t) = −{(N + n− i) bλ+ rµ} P i (t) + (N + n− i+ 1) bλP i−1 (t) + rµPi−1 (t) , N < i < N + n−m+ 1 (5)

P ′N+n−m+1 (t) = −rµPN+n−m+1 +mbλPN+n−m = 0, i = N + n−m+ 1 (6)

We assume that initial conditions are P0(0) = 1 and Pi(0) = 0. Now, taking Laplace transform of above equations, we

obtain the following system or equations:

(s+ nλ)L0 (s)− µL1 (s) = 1, i = 0 (7)

(s+ nλ+ iµ)Li (s)− nλLi−1 (s)− (i+ 1)µLi−1 (s) = 0, 1 ≤ i < r (8)

(s+ nbλ+ rµ)Lr (s)− nλLr−1 (s)− rµLr−1 (s) = 0, i = r (9)

(s+ nbλ+ rµ)Li (s)− nbλLi−1 (s)− rµLi−1 (s) = 0, r + 1 ≤ i ≤ N (10)

[s+ {(N + n− i)bλ+ rµ}] Li (s)− (N + n− i+ 1) bλLi−1 (s)− rµLi−1 (s) = 0, N < i < N + n−m+ 1 (11)

(s+ rµ)LN+n−m+1 (s)−mbλLN+n−m (s) = 0, i = N + n−m+ 1 (12)

To solve the above system of equations, we write these in matrix form

AX = B (13)

where

X =



L0(s)

L1(s)

...

LN+n−m+1(s)


, B =



1

0

...

0


And A is a (N + n−m+ 2)× (N + n−m+ 2) matrix. The entries are given by a11 = (s+ nλ); a12 = −µ, a13 = otherwise.
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For 2 ≤ i < r.

aij−1 = −nλ, aij = s+ nbλ+ rµ, aij−1 = −rµ, aij = 0, otherwise;

For r + 1 ≤ i ≤ N .

aij−1 = −nbλ, aij = s+ nbλ+ rµ, aij−1 = −rµ, aij = 0, otherwise;

For N < I ≤ N + n−m+ 1.

aij−1 = − (N + n− i+ 2) bλ, aij = s+ {(N + n− i+ 1) bλ+ rµ} , aij−1 = −rµ, aij = 0, otherwise;

For i = N + n−m+ 2.

aN+n−m−2N+n−m+1 = −mbλ, aN+n−m−2N+n−m+2 = s+ rµ.

Case 2: N < r = N + n−m. The birth-death coefficients are

λi =



nλ, if 0 ≤ i < N

(n+N − i)λ, if N ≤ i < r

(n+N − i)bλ, if r ≤ i < N + n−m

0 otherwise

µi =


iµ, if 0 ≤ i ≤ r

rµ, if r < i ≤ N + n−m

0 otherwise

The probability differential- difference equations are:

P ′0 (t) = −nλP0 (t) + µP1 (t) , i = 0 (14)

P ′i (t) = −(nλ+ iµ)Pi (t) + nλPi−1 (t) + (i+ 1)µPi−1 (t) , 1 ≤ i ≤ N (15)

P ′i (t) = [(N + n− i)λ+ iµ]Pi (t) + (N + n− i+ 1)λPi−1 (t) + (i+ 1)µPi−1 (t) , N < i < r (16)

P ′i (t) = [(N + n− r)bλ+ rµ]Pr (t) + (N + n− r + 1)λPr−1 (t) + rµPr−1 (t) , i = r (17)

P ′i (t) = [(N + n− i)bλ+ rµ]Pi (t) + (N + n− i+ 1)bλPi−1 (t) + rµPi−1 (t) , r < i < N + n−m+ 1 (18)

P ′N−n+m+1 (t) = −rµPN−n+m+1 (t) +mbλPN−n+m (t) , i = N + n−m+ 1 (19)

(20)

Taking Laplace transform, we obtain the following system of equations:

(s+ nλ)L0 (s)− µL1 (s) = 1 (21)

For 1 ≤ i ≤ N .

(s+ nλ+ iµ)Li (s)− nλLi−1 (s)− (i− 1)µLi−1 (s) = 0 (22)

For N < i < r.

[s+ (N + n− i)λ+ iµ]Li (s)− (N + n− i+ 1)λLi−1 (s)− (i− 1)µLi−1 (s) = 0 (23)
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For i = r.

[s+ (N + n− r) bλ+ rµ]Lr (s)− (N + n− r + 1)λLr−1 (s)− rµLr−1 (s) = 0 (24)

For r < i < N + n−m+ 1.

[s+ (N + n− i) bλ+ rµ]Li (s)− (N + n− i+ 1) bλLi−1 (s)− rµLi−1 (s) = 0 (25)

For i = N + n−m+ 1.

(s+ rrµ)LN+n−m+1 (s)−mbλLN+n−m (s) = 0 (26)

In this case the entries of matrix A can be written as:

a11 = s+ nλ, a12 = −µ, aij = 0, otherwise;

For 2 ≤ i ≤ N + 1.

aii−1 = −nλ, aii = s+ nλ+ (i− 1)µ, aij+1 = −iµ, aij = 0, otherwise;

For N + 1 < i < r + 1.

aij−1 = − (N + n− i+ 2)λ, aij = s+ (N + n− i+ 1)λ+ (i− 1)µ, aij−1 = −iµ, aij = 0, otherwise;

For i = r + 1.

aij−1 = − (N + n− i+ 2)λ, aij = s+ (N + n− i+ 1)λ+ (i− 1)µ, aij−1 = −iµ, aij = 0, otherwise;

For r < i ≤ N + n−m+ 1.

aij−1 = − (N + n− i+ 2) bλ, aij = s+ (N + n− i+ 1)bλ+ rµ, aij−1 = −rµ, aij = 0, otherwise;

For i = N + n−m+ 2.

aN+n−m+2N−n+m−1 = −mbλaN+n−m+2N−n−m−2 = s+ rµ

The system availability is given by

A(t) = 1− PN+n−m+1 (27)

Using the method of determinants, we obtain

LN+n−m+1 =
detA′

detA
(28)

where the matrix A can be obtained from A replacing the (N + n−m+ 2)th column vector B.

detA′ = nN .bi−r.λN+n−m+1.
n!

(m− 1)!

So

LN+n−m+1 (s) = nN .bi−r.λN+n−m+1.
n!

(m− 1)!detA
(29)

From equation (28), we can obtain the value of P (t) by expanding det A and taking inverse Laplace transform. With the

help of Equations (1)-(6) and (14)-(19), we can also obtain steady - state solution in both cases.
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Case: r ≤ N

Pi =



(nλ)i

i! µi
P0, if 0 ≤ i < r (30)

(nλ)ibi−r

i! µi.ri−r
P0, if r ≤ i ≤ N (31)

nN . λi. bi−rn (n− 1) (n− 2) . . . (n+N − i+ 1)

r!µi.ri−r
, if N < i ≤ N + n−m (32)

Case: N < r ≤ N + n−m

Pi =



(nλ)i

i! µi
P0, if 1 ≤ i < N (33)

nN . λi. n (n− 1) . . . (n+N − i+ 1)

i! µi.
P0, if N < i < r (34)

nN . λi. bi−rn (n− 1) (n− 2) . . . (n+N − i+ 1)

r!µi.ri−r
, if r ≤ i ≤ N + n−m+ 1 (35)

Where

P0 = 1−
N+n−m+1∑

i=1

Pi (36)

The computation of the up time ratio thus follows from the fact that

UTR = 1− PN+n−m+1 (37)

Special Case:

Let b⇒ (m,n) systems with spares only. From equations (29)-(34), we have

Case 1: r = N .

Pi =


(nλ)i

i!µi P0, if 0 ≤ i < r

(nλ)i

i!µi.ri−r P0, if r ≤ i ≤ N
nN ,λi.bi−rn(n−1)(n−2)...(n+N−i+1)

r!µi.ri−r , if N < i ≤ N + n−m+ 1

Case 2: N < r ≤ N + n−m.

Pi =


(nλ)i

i!µi P0, if 1 ≤ i ≤ N
nN .λi.n(n−1)...(n+N−i+1)

i!µi P0, if N ≤ i ≤ r
nNλi·n(n−1)(n−2)...(n+N−i+1)

r!µiri−r , if r ≤ i ≤ N + n−m+ 1

References

[1] Kailash C. Madan, A Single Queue with Mutually Replacing m servers, Journal of Mathematics Research (Canada),

3(1)(2011), 03-08.

[2] S. Gopinath, Energy based reliable multicast routing protocol for packet forwarding in MANET, Journal of Applied

Research and Technology, 13(2015), 374-381.

[3] Aamir and Zaidi, A buffer management scheme for packet queues in MANET, Tsinghua Science and Technology, 18(2013),

543-553.

[4] Natalia Yankovic, Identifying Good Nursing Levels: A Queuing Approach, Operations Research, 59(4)(2011), 942-955.

[5] Luke Plonsky, A Meta-Analysis of Reliability Coefficients in Second Language Research, The Modern Language Journal,

100(2)(2011), 538-553.

187



The Machine Interference Model; (m,n) Systems with Balking and Spares

[6] Yang Jing, Queuing Time Calculation Model for Bus Stop with Two Berths Based on Operation Reliability, J. Tran. Sys.

Eng. & Info. Tech., 11(3)(2011), 108-112.

[7] B. Anrig F. Beichelt, Disjoint sum forms in reliability theory, ORiON, 16(1)(2000), 75-86.

[8] Giddaluru Madhavi, Queuing Methodology Based Power Efficient Routing Protocol for Reliable Data Communications

in Manets, Cornell University, (2013).

[9] R. P. Ghimire and Madhu Jain, Machine Repair Queuing System With Non-Reliable Service Stations And Heterogeneous

Service Discipline, International Journal of Engineering, 12(4)(1999), 271-276.

188


	The Model
	References

