ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On \mathbb{R} -Complex Finsler Space with Matsumoto Metric

S. M. Vanithalakshmi¹, S. K. Narasimhamurthy^{1,*} and M. K. Roopa¹

1 Department of Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India.

Abstract: In this paper, we determined the fundemental tensor fields $(\tilde{g}_{ij}, \tilde{g}_{i\bar{j}})$ and inverse of these tensor fields, their determinant.

Further, we studied some properties of non-Hermitian \mathbb{R} -complex Finsler space with Matsumoto metric.

MSC: 53C25, 53C40, 53D15

Keywords: \mathbb{R} -Complex Finsler space, \mathbb{R} -complex Finsler space with (α, β) metics, \mathbb{R} -complex Finsler space with Matsumoto metric.

© JS Publication.

1. Introduction

The studies of \mathbb{R} -Complex Finsler spaces are new concept in Finsler geometry. In [11], Munteanu and Purcuru have extended the notion of a Complex Finsler spaces to new class of Finsler space called \mathbb{R} -Complex Finsler spaces by reducing the scalars to $\lambda \in \mathbb{R}$. The outcome was a new class of Finsler space called \mathbb{R} -Complex Finsler spaces. In [14], the authors Nicolta Alda and Gheorghe Munteanu were studied the (α, β) -Complex Finsler metrics and also determined the fundamental metric tensor and some properties of Hermitian of the Complex Randers metrics. Then, some important results on \mathbb{R} -Complex Finsler spaces have been obtained in ([10, 16]). In the present paper, following the ideas from real Finsler spaces with class of Matsumoto metrics, we introduce the notions on \mathbb{R} -Complex Finsler space with Matsumoto metric.

2. Preliminaries

Let M be a complex Finsler manifold, $dim_c M = n$. The complexified of the real tangent bundle $T_c M$ splits into the sum of holomorphic tangent bundle $T^{'}M$ and its conjugates $T^{''}M$. The bundle $T^{'}M$ is in its turn a complex manifold, the local coordinate in a chart will be denoted by (z^k, η^k) and these are changed by the rules,

$$z^{'k} = z^{'k}(z), \quad \eta^{'k} = \frac{\partial z^{'k}}{\partial z^j} \eta^j. \tag{1}$$

The complexified tangent bundle of $T^{'}M$ is decompsed as $T_{c}(T^{'}M) = T^{'}(T^{'}M) \oplus T^{''}M$. A natural local frame for $T^{'}(T^{'}M)$ is $\left\{\frac{\partial}{\partial z^{k}}, \frac{\partial}{\partial \eta^{k}}\right\}$ which is changes by the rules obtained with Jacobi matrix of the above transformations. Note that the change rule of $\frac{\partial}{\partial z^{k}}$ contains the second order partial derivatives. A complex nonlinear connection breifly (c.n.c) is a supplementory distribution $H(T^{'}M)$ to a verticle distribution $V(T^{'}M)$ in $T^{'}(T^{'}M)$. The vertical distribution is spanned by $\frac{\partial}{\partial \eta^{k}}$ and an

^{*} E-mail: nmurthusk@amail.com

adapted frame in H(T'M) is $\frac{\delta}{\delta z^k} = \frac{\partial}{\partial z^k} - N_k^j \frac{\partial}{\partial \eta^j}$, where N_k^j are the coefficient of the c.n.c and they have a certain rule of changes at (1), so that $\frac{\delta}{\delta z^k}$ transform like vectors on the base manifold M. Next, we use the abbreviations $\partial_k = \frac{\partial}{\partial z^k}$, $\delta_k = \frac{\delta}{\delta z^k}, \, \dot{\partial}_k = \frac{\partial}{\partial \eta^k} \text{ and } \partial_{\bar{k}}, \, \dot{\partial}_k, \, \delta_{\bar{k}} \text{ for their conjugates. The dual adapted basis of } \delta_k, \dot{\partial}_k \text{ are } \left\{ dz^k, \delta \eta^k = d\eta^k + N_j^k dz^j \right\} \text{ and } \delta_{\bar{k}}, \, \dot{\delta}_k = \frac{\partial}{\partial \eta^k} \left\{ dz^k, \, \delta_{\bar{k}}, \, \delta_{\bar{k}},$ $\{d\bar{z}^k, \delta\bar{\eta}^k\}$ their conjugates. We recall, that the homogeneity of the metric function of a complex Finsler space (see more [2, 7, 8, 12, 15]) is with respect to complex scalars and the metric tensor of the space is a Hermitian one. In [11] slightly changed the definition of complex Finsler spaces as:

Definition 2.1. An \mathbb{R} -complex Finlser metric on M is continuous function $F:T^{'}M\longrightarrow\mathbb{R}$ satisfying:

- (1). $L = F^2$ is a smooth on $\widetilde{T'M}/0$:
- (2). $F(z, \eta) \ge 0$, the equality holds if and only if $\eta = 0$;
- (3). $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta}) = |\lambda| F(z, \eta, \bar{z}, \bar{\eta})$, for all $\lambda \in \mathbb{R}$.

It follows that L is (2,0) homogeneous with respect to the real scalar λ and is proved that the following identities are fulfilled [10];

$$\frac{\partial L}{\partial n^i} \eta^i + \frac{\partial L}{\partial \bar{n}^i} \bar{\eta}^i = 2L; \qquad g_{ij} \eta^i + g_{\bar{j}i} \bar{\eta}^i = \frac{\partial L}{\partial n^j}, \tag{2}$$

$$\frac{\partial L}{\partial \eta^{i}} \eta^{i} + \frac{\partial L}{\partial \bar{\eta}^{i}} \bar{\eta}^{i} = 2L; \qquad g_{ij} \eta^{i} + g_{\bar{j}i} \bar{\eta}^{i} = \frac{\partial L}{\partial \eta^{j}}, \qquad (2)$$

$$\frac{\partial g_{ik}}{\partial \eta^{j}} \eta^{j} + \frac{\partial g_{ij}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} = 0; \qquad \frac{\partial g_{i\bar{k}}}{\partial \eta^{j}} \eta^{j} + \frac{g_{i\bar{k}}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} = 0, \qquad (3)$$

$$2L = g_{i\bar{j}}\eta^i\eta^j + g_{\bar{i}\bar{j}}\bar{\eta}^i\bar{\eta}^j + 2g_{i\bar{j}}\eta^i\bar{\eta}^j, \tag{4}$$

where,

$$g_{ij} = \frac{\partial^2 L}{\eta^i \eta^j}; \quad g_{\bar{i}\bar{j}} = \frac{\partial^2 L}{\eta^i \bar{\eta}^j}; \quad g_{\bar{i}\bar{j}} = \frac{\partial^2 L}{\partial \bar{\eta}^i \partial \bar{\eta}^j}.$$

Definition 2.2. An \mathbb{R} -complex Finsler space (M,F) is called (α,β) -metric if the fundamental function $F(z,\eta,\bar{z},\bar{\eta})$ is \mathbb{R} homogeneous by means of functions $\alpha(z,\eta,\bar{z},\bar{\eta})$ and $\beta(z,\eta,\bar{z},\bar{\eta})$ -depends on z^i,η^i,\bar{z}^i and $\bar{\eta}^i,$ $(i=1,2,\ldots,n)$ by means of $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$. That is

$$F(z, \eta, \bar{z}, \bar{\eta}) = F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})), \tag{5}$$

where,

$$\alpha^{2}(z,\eta,\bar{z},\bar{\eta}) = \frac{1}{2} (a_{ij}\eta^{i}\eta^{j} + a_{\bar{i}\bar{j}}\bar{\eta}^{i}\bar{\eta}^{j} + 2a_{i\bar{j}}\eta^{i}\bar{\eta}^{j}) = Re\left\{a_{ij}\eta^{i}\eta^{j} + a_{i\bar{j}}\eta^{i}\bar{\eta}^{j}\right\},$$

$$\beta(z,\eta,\bar{z},\bar{\eta}) = \frac{1}{2} (b_{i}\eta^{i} + b_{i}\bar{\eta}^{i}) = Re(b_{i}\eta^{i}),$$
(6)

with $a_{ij} = a_{ij}(z)$, $a_{i\bar{j}} = a_{i\bar{j}}(z)$, $b_i = b_i(z)$. We denote

$$L(\alpha(z,\eta,\bar{z},\bar{\eta}),\beta(z,\eta,\bar{z},\bar{\eta}) = F^2(\alpha(z,\eta,\bar{z},\bar{\eta}),\beta(z,\eta,\bar{z},\bar{\eta})). \tag{7}$$

Definition 2.3. An \mathbb{R} -Complex Finsler space (M,F) is called Hermitian space, if the tensor $g_{ij}=0$ and the Hermitian matric $g_{i\bar{j}}$ is invertible. An \mathbb{R} -Complex Finsler space (M,F) is called non-Hermitian space if the metric tensor $g_{i\bar{j}}=0$ and the Hermitian matric g_{ij} is invertible. Where, g_{ij} and $g_{i\bar{j}}$ are the metric tensors of the space and are given by, $g_{ij} = \frac{\partial}{\partial \eta^i} \frac{\partial}{\partial \eta^j} L$ and $g_{i\bar{j}} = \frac{\partial}{\partial n^i} \frac{\partial}{\partial \bar{n}^j} L$.

3. \mathbb{R} -Complex Matsumoto metrics.

The \mathbb{R} -complex Finsler space produce the tensor fields g_{ij} and $g_{i\bar{j}}$. The tensor field must $g_{i\bar{j}}$ be invertible in Hermitian geometry. These problems are about to Hermitian \mathbb{R} -complex Finsler spaces, if $\det(g_{i\bar{j}} \neq 0)$ and non-Hermitian \mathbb{R} -complex Finsler spaces, if $\det(g_{i\bar{j}} \neq 0)$ and non-Hermitian \mathbb{R} -complex Finsler spaces, if $\det(g_{i\bar{j}} \neq 0)$. In this section, we determine the fundamental tensor of complex Matsumoto metric and obtained condition for property of non-Hermitian \mathbb{R} -complex Finsler spaces. Consider \mathbb{R} -Complex Finsler space with Matsumoto metric,

$$L(\alpha, \beta) = \left(\frac{\alpha^2}{\alpha - \beta}\right)^2. \tag{8}$$

Then, it follows that $F = \frac{\alpha^2}{\alpha - \beta}$. Now, we find the following quantities on \mathbb{R} -complex Finsler spaces with Matsumoto metric $F = \frac{\alpha^2}{\alpha - \beta}$. From the equalities (2) and (3) with metric (8), we have

$$\alpha L_{\alpha} + \beta L_{\beta} = 2L,$$
 $\alpha L_{\alpha\alpha} + \beta L_{\alpha\beta} = L_{\alpha},$ (9)

$$\alpha L_{\alpha\beta} + \beta L_{\beta\beta} = L_{\beta}, \qquad \alpha^2 L_{\alpha\alpha} + 2\alpha\beta L_{\alpha\beta} + \beta^2 L_{\beta\beta} = 2L,$$
 (10)

where

$$L_{\alpha} = \frac{\partial L}{\partial \alpha}, \ L_{\beta} = \frac{\partial L}{\partial \beta}, \ L_{\alpha\beta} = \frac{\partial^2 L}{\partial \alpha \partial \beta}, \ L_{\alpha\alpha} = \frac{\partial^2 L}{\partial \alpha^2}, \ L_{\beta\beta} = \frac{\partial^2 L}{\partial \beta^2}.$$
 (11)

$$L_{\alpha} = \frac{2\alpha^{3}(\alpha - 2\beta)}{(\alpha - \beta)^{3}},\tag{12}$$

$$L_{\beta} = \frac{2\alpha^4}{(\alpha - \beta)^3},\tag{13}$$

$$L_{\alpha\alpha} = 2\alpha^2 \left\{ \frac{\alpha^2 - 4\alpha\beta + 6\beta^2}{(\alpha - \beta)^4} \right\},\tag{14}$$

$$L_{\beta\beta} = \frac{6\alpha^4}{(\alpha - \beta)^4},\tag{15}$$

$$L_{\alpha\beta} = \frac{2\alpha^3(\alpha - 4\beta)}{(\alpha - \beta)^4},\tag{16}$$

$$\alpha L_{\alpha} + \beta L_{\beta} = \alpha \left[\frac{2\alpha^{3}(\alpha - 2\beta)}{(\alpha - \beta)^{3}} + \beta \frac{2\alpha^{4}}{(\alpha - \beta)^{3}} \right],$$

$$= \frac{2\alpha^{5} - 2\alpha^{4}\beta}{(\alpha - \beta)^{3}} = \frac{2\alpha^{4}}{(\alpha - \beta)^{2}} = 2L,$$
(17)

$$\alpha L_{\alpha\alpha} + \beta L_{\alpha\beta} = \alpha \left[\frac{2\alpha^2 (\alpha^2 - 4\alpha\beta + 6\beta^2)}{(\alpha - \beta)^4} \right] + \beta \left[\frac{2\alpha^3 (\alpha - 4\beta)}{(\alpha - \beta)^4} \right]$$
$$= \frac{2\alpha^5 - 3\alpha^4\beta + 4\alpha^3\beta^2}{(\alpha - \beta)^4} = \frac{2\alpha^3 (\alpha - 2\beta)}{(\alpha - \beta)^3} = 2L.$$
(18)

We propose to determine the metric tensors of an R-complex Finsler space with using the following equalities as:

$$g_{ij} = \frac{\partial^2 L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^i \partial \eta^j}, \quad g_{i\bar{j}} = \frac{\partial^2 L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^i \partial \bar{\eta}^j}.$$

Each of these being of interest in the following:

We consider,

$$\frac{\partial \alpha}{\partial \eta^i} = \frac{1}{2\alpha} (a_{ij}\eta^j + a_{i\bar{j}}\bar{\eta}^j) = \frac{1}{2\alpha l_i}, \quad \frac{\partial \beta}{\partial \eta^i} = \frac{1}{2}b_i.$$

$$\frac{\partial \alpha}{\partial \bar{\eta}^i} = \frac{1}{2\alpha} (a_{\bar{i}\bar{j}}\bar{\eta}^j + a_{i\bar{j}}\eta^j) = \frac{\partial \beta}{\partial \bar{\eta}^i} = \frac{1}{2}b_{\bar{i}},$$

where, $l_i=(a_{i\bar{j}}\eta^j+a_{i\bar{j}}\eta^{\bar{j}}), l_{\bar{j}}=a_{i\bar{j}}\bar{\eta}^i+a_{i\bar{j}}\eta^i$. We find immediately, $l_i\eta^i+l_{\bar{j}}\bar{\eta}^j=2\alpha^2$. We denote:

$$\eta^{i} = \frac{\partial L}{\partial \eta^{i}} = \frac{\partial}{\partial \eta^{i}} F^{2} = 2F \frac{\partial}{\partial \eta^{i}} \left(\frac{\alpha^{2}}{\alpha - \beta} \right),$$
$$\eta_{i} = \rho_{0} l_{i} + \rho_{1} b_{i},$$

where

$$\rho_0 = \frac{1}{2}\alpha^{-1}L_\alpha,\tag{19}$$

and

$$\rho_1 = \frac{1}{2} L_\beta. \tag{20}$$

Differentiating ρ_0 and ρ_1 with respect to η^j and $\bar{\eta}^j$ respectively, which yields:

$$\frac{\partial \rho_0}{\partial \eta^j} = \rho_{-2} l_j + \rho_{-1} b_j,$$

and

$$\frac{\partial \rho_0}{\partial \bar{\eta}^j} = \rho_{-2} l_{\bar{j}} + \rho_{-1} b_{\bar{j}}.$$

Similarly $\frac{\partial \rho_1}{\partial \eta^i} = \eta_{-1} l_i + \mu_0 b_i$, $\frac{\partial \rho_1}{\partial \bar{\eta}^i} = \rho_{-1} l_{\bar{i}} + \mu_0 b_{\bar{i}}$, where,

$$\rho_{-2} = \frac{\alpha L_{\alpha\alpha - L_{\alpha}}}{4\alpha^3}, \quad \rho_{-1} = \frac{L_{\alpha\beta}}{4\alpha}, \quad \mu_0 = \frac{L_{\beta\beta}}{4}. \tag{21}$$

By direct computation, using (19), (20), (20) and (21), we obtain the following result.

Theorem 3.1. The invariants of \mathbb{R} -complex Finsler space with Matsumoto metric: $\tilde{\rho}_0$, $\tilde{\rho}_1$, $\tilde{\rho}_{-2}$, $\tilde{\rho}_{-1}$ and μ_0 are given by:

$$\tilde{\rho}_0 = \frac{1}{2}\alpha^{-1}L_\alpha = \frac{\alpha^2(\alpha - 2\beta)}{(\alpha - \beta)^3},$$

$$\tilde{\rho}_1 = \frac{1}{2}L_\beta = \frac{\alpha^4}{(\alpha - \beta)^3},$$

$$\tilde{\rho}_{-2} = \frac{\beta(\alpha - 4\beta)}{(\alpha - \beta)^4},$$

$$\tilde{\rho}_{-1} = \frac{\alpha^2(\alpha - 4\beta)}{2(\alpha - \beta)^4}$$

$$\tilde{\mu}_0 = \frac{L_{\beta\beta}}{4} = \frac{3\alpha^4}{2(\alpha - \beta)^4},$$

subscripts -2, -1, 0, 1 gives us the degree of homogeneity of these invariants.

3.1. Fundamental tensor of \mathbb{R} -Complex Finsler space with Matsumoto metric

The fundamental metric tensors of \mathbb{R} -complex Finsler space with (α, β) metric are given by [14]:

$$g_{ij} = \rho_0 a_{ij} + \rho_{-2} l_i l_j + \mu_0 b_i b_j + \rho_{-1} (b_j l_i + b_i l_j)$$
(22)

From Theorem 3.1, we have

$$\tilde{g}_{ij} = \frac{\alpha^2(\alpha - 2\beta)}{(\alpha - \beta)^3} a_{ij} + \frac{\beta(\alpha - 4\beta)}{(\alpha - \beta)^4} l_i l_j + \frac{3\alpha^4}{2(\alpha - \beta)^4} b_i b_j + \frac{\alpha^2(\alpha - 4\beta)}{2(\alpha - \beta)^4} (b_j l_i + b_i l_j). \tag{23}$$

$$\tilde{g}_{i\bar{j}} = \frac{\alpha^2(\alpha - 2\beta)}{(\alpha - \beta)^3} a_{i\bar{j}} + \frac{\beta(\alpha - 4\beta)}{(\alpha - \beta)^4} l_i l_{\bar{j}} + \frac{3\alpha^4}{2(\alpha - \beta)^4} b_i b_{\bar{j}} + \frac{\alpha^2(\alpha - 4\beta)}{2(\alpha - \beta)^4} (b_{\bar{j}} l_i + b_i l_{\bar{j}}). \tag{24}$$

Or, equivalently,

$$\tilde{g}_{ij} = \rho_0 \left[a_{ij} + p l_i l_j + q b_i b_j + r \eta_i \eta_j \right], \tag{25}$$

$$\tilde{g}_{i\bar{j}} = \rho_0 \left[a_{i\bar{j}} + p l_i l_{\bar{i}} + q b_i b_{\bar{j}} + r \eta_i \eta_{\bar{i}} \right], \tag{26}$$

where, $\rho_0 = \frac{1}{2}\alpha^{-1}L_{\alpha}$.

$$p = \frac{\beta(\alpha - 4\beta)}{2\alpha^2(\alpha - \beta)(\alpha - 2\beta)},\tag{27}$$

$$p = \frac{\beta(\alpha - 4\beta)}{2\alpha^2(\alpha - \beta)(\alpha - 2\beta)},$$

$$q = \frac{3\alpha^2}{2(\alpha - \beta)(\alpha - 2\beta)},$$
(27)

$$r = \frac{(\alpha - 4\beta)}{2(\alpha - \beta)(\alpha - 2\beta)}. (29)$$

The next objectives is to obtain the determinant and the inverse of the tensor field \tilde{g}_{ij} . The solution of the non-singular non-Hermitian metric \tilde{Q}_{ij} as follows. The following proposition is proved by [6].

Proposition 3.2. Suppose:

- (Q_{ij}) is a non-singular $n \times n$ complex matrix with inverse Q^{ji} ;
- C_i and $C_{\bar{i}} = \bar{C}_i, i = 1, \dots, n$ are complex numbers;
- $C^i := Q^{ji}C_j$ and its conjugates; $C^2 := C^iC_i = \bar{C}^iC_{\bar{i}}$; $H_{ij} := Q_{ij} \pm C_iC_j$.

Then,

- (i). $det(H_{ij}) = (1 \pm C^2) det(Q_{ij}),$
- (ii). Whenever $(1 \pm C^2) \neq 0$, the matrix (H_{ij}) is invertible and in this case its inverse is $H^{ij} = Q^{ji} \pm \frac{1}{1+C^2}C^iC^j$.

Using the above proposition we prove the following theorem:

Theorem 3.3. For a non-Hermitian \mathbb{R} -Complex Finsler space with Matsumoto metric $F = \frac{\alpha^2}{\alpha - \beta}$, then they have the following:

(i). The contravarient tensor \tilde{g}^{ij} of the fundamental tensor \tilde{g}_{ij} is:

$$\tilde{g}^{ji} = \frac{(\alpha-\beta)^3}{\alpha^2(\alpha-2\beta)}a^{ji} + \left[\frac{p}{1+p\gamma} + \frac{p^2q\epsilon^2}{\tau(1+p\gamma)^2}\right]\eta^i\eta^j + \frac{qb^ib^j}{\tau} + \frac{pq\epsilon}{\tau(1+p\gamma)}(b^i\eta^j + b^j\eta^i) + \frac{M^2\eta^i\eta^j + MN(\eta^ib^j + \eta^jb^i + N^2b^ib^j)}{1+(M\gamma+N\epsilon)\sqrt{r}},$$

where,

$$M = \left[1 + \left(\frac{p}{1 + p\gamma} + \frac{p^2q\epsilon^2}{\tau(1 + p\gamma)^2}\right)\right]\gamma + \frac{pq\epsilon}{\tau(1 + p\gamma)^3} \quad and \quad N = \frac{q}{\tau} + \frac{pq\epsilon\gamma}{\tau(1 + p\gamma)},$$

(ii).
$$det(a_{ij} + pl_il_j + qb_ib_j + r\eta_i\eta_j) = [1 + (M\gamma + N\epsilon)\sqrt{r}] \left[1 + \omega + \frac{p\epsilon^2}{1+p\gamma}\right] (1+p\gamma)det(a_{ij}), where, r = \frac{(\alpha-4\beta)}{2(\alpha-\beta)(\alpha-2\beta)}$$

Proof. **Step 1:** We claim of this theorem proved by following three steps:

We write \tilde{g}_{ij} from (25) in the form.

$$\tilde{g}_{ij} = \rho_0[a_{ij} + pl_i l_j + ql_i l_j + r\eta_i \eta_j]. \tag{30}$$

We take $\tilde{Q}_{ij} = a_{ij}$ and $\tilde{C}_i = \sqrt{p}l_i$. By applying the Proposition 3.2 we obtain $\tilde{Q}^{ij} = a^{ji}$, $\tilde{C}^2 = \tilde{C}_i \tilde{C}^i = \sqrt{p}l_i \times \tilde{Q}^{ji} \times \tilde{C}_j = \sqrt{p}l_i \times a^{ji} \times \sqrt{p}l_j = p \times l_i a^{ij}l_j = p\gamma$, and $1 + \tilde{C}^2 = (1 + p\gamma)$. So, the matrix $\tilde{H}_{ij} = a_{ij} - pl_i l_j$, is invertible with

$$\tilde{H}^{ij} = a^{ji} + \frac{1}{1+p\gamma} \eta^i \eta^j,$$

$$det(a_{ij} + pl_i l_j) = (1+p\gamma) = det(a_{ij}).$$

Step 2: Now, we consider $\tilde{Q}_{ij} = a_{ij} + pl_i l_j$, and $\tilde{C}_i = \sqrt{q}b_i$, By applying the Proposition 3.2 we have

$$\begin{split} \tilde{Q}^{ji} &= a^{ji} + \frac{p\eta^i\eta^j}{1+p\gamma}, \\ \tilde{C}^2 &= \tilde{C}_i\tilde{C}^i = \tilde{Q}^{ji} \times \tilde{C}_j = \sqrt{q}b_i \left[a^{ij} + \frac{p\eta^i\eta^j}{1+p\gamma}\sqrt{q}b^j \right], \\ \tilde{c}^2 &= q \left[\omega + \frac{p\epsilon^2}{1+p} \right]. \end{split}$$

Therefore,

$$1 + \tilde{C}^2 = 1 + q \left[\omega + \frac{p\epsilon^2}{1 + p\gamma} \right] \neq 0,$$

where, $\in = b_j \eta^j$, $\omega = b_j b^j$. It results that the inverse of $\tilde{H}_{ij} = a_{ij} + p l_i p_j + q b_i b_j$ exists and it is

$$\tilde{H}^{ji} = Q^{ji} + \frac{1}{1+C^2}C^iC^j,$$

$$tildeH^{ji} = a^{ji} + \frac{p\eta^i\eta^j}{1+p\gamma} + \frac{q\left[b^i + \frac{p\epsilon\eta^i}{1+p\gamma}\right]\left[b^j + \frac{p\epsilon\eta^j}{1+p\gamma}\right]}{\tau}$$

$$\tilde{H}^{ji} = a^{ji} + \left(\frac{p}{1+p\gamma} + \frac{qp^2\epsilon^2}{\tau(1+p\gamma)^2}\right)\eta^i\eta^j + \frac{pq\epsilon}{1+p\gamma}(b^i\eta^j + b^j\eta^i) + \frac{q}{\tau}b^ib^j,$$
(32)

where,

$$\tau = 1 + q \left[\omega + \frac{p\epsilon^2}{1 + p\gamma} \right].$$

and,

$$det \left[a_{ij} + pl_i l_j + q b_i b_j \right] = \left[1 + q \left(\omega + \frac{p \epsilon^2}{1 + p \gamma} \right) \right] (1 + p \gamma) det(a_{ij}). \tag{33}$$

Step 3: We put

$$\tilde{Q}_{ji} = a_{ij} + pl_i l_j + qb_i b_j, \tag{34}$$

and $\tilde{C}_i = \sqrt{r}\eta_i$, clearly observe that and obtain

$$\tilde{Q}^{ji} = a^{ji} + \left(\frac{p}{1+p\gamma} + \frac{qp^2\epsilon^2}{\tau(1+p\gamma)}\right)\eta^i\eta^j + \frac{pq\epsilon}{1+p\gamma}(b^i\eta^j + b^j\eta^i) + \frac{q}{1+p\gamma}b^ib^j, \tag{35}$$

and $\tilde{C}_i = M\eta^i + Nb^j$, where

$$M = \left[1 + \left(\frac{p}{1+p\gamma} + \frac{p^2 q \epsilon^2}{\tau (1+p\gamma)^2}\right)\right] \gamma + \frac{pq\epsilon}{\tau (1+p\gamma)^3},\tag{36}$$

$$N = \frac{q}{\tau} + \frac{pq\epsilon\gamma}{\tau(1+p\gamma)}. (37)$$

And

$$\tilde{C}^2 = (M\gamma + N\epsilon)\sqrt{r},$$

$$1 + \tilde{C}^2 = 1 + (M\gamma + N\epsilon)\sqrt{r} \neq 0,$$

clearly, the matrix \tilde{H}_{ij} is invertible.

$$\tilde{C}^{i} = a^{ji} + \left\{ \frac{p\eta^{i}\eta^{j}}{1 + p\gamma} + \frac{q\left[b^{i} + \frac{p\epsilon\eta^{i}}{1 + p\gamma}\right]\left[b^{j} + \frac{p\epsilon\eta^{j}}{1 + p\gamma}\right]}{\tau} \right\} \eta_{j},$$

and

$$\tilde{C}^{j} = a^{ji} + \left\{ \frac{p\eta^{i}\eta^{j}}{1 + p\gamma} + \frac{q\left[b^{i} + \frac{p\epsilon\eta^{i}}{1 + p\gamma}\right]\left[b^{j} + \frac{p\epsilon\eta^{j}}{1 + p\gamma}\right]}{\tau} \right\} \eta_{i},$$

where $\tilde{C}^i\tilde{C}^j=M^2\eta^i\eta^j+MN(\eta^ib^j+\eta^jb^i)+N^2b^ib^j$. Again by applying Proposition 3.2 we obtain the inverse of \tilde{H}_{ij} as:

$$\tilde{H}^{ji} = a^{ji} + \left[\frac{p}{1 + p\gamma} + \frac{p^2 q \epsilon^2}{\tau (1 + p\gamma)^2} \right] \eta^i \eta^j + \frac{q b^i b^j}{\tau} + \frac{p q \epsilon}{\tau (1 + p\gamma)} (b^i \eta^j + b^j \eta^i)$$

$$+ \frac{M^2 \eta^i \eta^j + M N (\eta^i b^j + \eta^j b^i) + N^2 b^i b^j}{1 + (M\gamma + N\epsilon) \sqrt{\tau}}.$$
(38)

$$det(a_{ij} + pl_i l_j + qb_i b_j + r\eta_i \eta_j) = \left[1 + (M\gamma + N\epsilon)\sqrt{r}\right] \left[1 + \omega + \frac{p\epsilon^2}{1 + p\gamma}\right] (1 + p\gamma)det(a_{ij}). \tag{39}$$

But $\tilde{g}_{ij} = \rho_0 \tilde{H}_{ij}$, with \tilde{H}_{ij} from last step. Thus

$$\tilde{g}^{ji} = \frac{1}{\rho_0} \tilde{H}^{ij}. \tag{40}$$

Therefore, from equation (38) in (40) and the equation 39, then we obtained claims (i) and (ii). Where, \tilde{g}_{ij} and $\tilde{g}_{i\bar{j}}$ represents the \mathbb{R} -complex Finsler space with Matsumoto metric.

We observed the terms of γ , ϵ , and δ from above Theorem 3.1, immediately we state:

Proposition 3.4. In a non-Hermitian \mathbb{R} -complex Finsler space with Matsumoto metric then have the following properties.

$$\gamma + \bar{\gamma} = l_i \eta^i + l_{\bar{j}} \eta^{\bar{j}} = a_{ij} \eta^j \eta^i + a_{\bar{j}\bar{k}} \eta^{\bar{k}} \eta^{\bar{j}} = 2\alpha^2, \tag{41}$$

$$\epsilon + \bar{\epsilon} = b_j \eta^j + b_{\bar{i}} \eta^{\bar{j}} = 2\beta, \quad \delta = \epsilon,$$
 (42)

where

$$l_{i} = a_{ij}\eta^{j}, \quad \eta_{i} = \frac{\alpha^{2}(\alpha - 2\beta)}{(\alpha - \beta)^{3}}a_{ij}\eta^{i} + \frac{\alpha^{4}}{(\alpha - \beta)^{3}}b_{i}, \quad \gamma = a_{jk}\eta^{j}\eta^{k} = l_{k}\eta^{k}, \quad \epsilon = b_{j}\eta^{j},$$
$$b^{k} = a^{jk}b_{j}, \quad b_{l} = b^{k}a_{kl}, \quad \delta = a_{jk}\eta^{j}b^{k} = l_{k}b^{k}, \quad l_{j} = a^{jl}l_{i} = \eta^{j}.$$

4. Conclusion

The \mathbb{R} -complex Finsler space is an important quantities in complex Finsler geometry and it has well known interrelation with the other quantities like \mathbb{R} -complex Finsler space with class of (α, β) -metrics. In this paper we determined the fundamental metric tensors \tilde{g}_{ij} and $\tilde{g}_{i\bar{j}}$ of \mathbb{R} -complex Finsler space with Matsumoto metrics and also find their determinants. Finally, we studied the property of non-Hermitian \mathbb{R} -complex Matsumoto metric.

References

- [1] T. Aikau, On Finsler geometry on complex vector bundles, Riemann Finsler spaces, Indian J.
- [2] T. Aikau, Projective Flatness of Complex Finsler Metricsss, Publ. Math. Debrecen, 63(2003), 343-362.
- [3] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian Finsler Geometry, Springer-verlag, (2000).
- [4] Gheorghe Munteanu and Monica Purcuru, On R-complex Finsler spaces, Balkan Journal of Geometry and its Applications, 14(1)(2009).
- [5] Gauree Shankar and Ruchi Kaushik Sharma, R-complex Finsler space with infinite series (α, β) -metric, Bullletin of the Transilvania University of Brasov, 11(1)(2018).
- [6] M. Matsumoto, On Theory of Finsler spaces with (α, β) -metric, Rep. on Math. Phys., 31(1991), 43-83.
- [7] M. Abate and G. Patrizio, Finsler metrics-A Global Approach, Lecturer Notes im Math., 1591, Springer-Verlag, (1994).
- [8] R. Miron, General Randers spaces, Kluwer AcadPubl, (1996).
- [9] R. Miron and B. T. Hassan, Variational problems in Finsler space with (α, β) -metric, Algebra Groups and Geometries, 20(2003), 285-300.
- [10] Monica Purcuru, On R-complex Finsler spaces with Kropina metrics, Bulletin of the Transilvania University of Brasov, 4(53)(2011), 79-88.
- [11] G. Munteanu and M. Purcuru, On R-complex Finsler spaces, Balkan J. Geom. Appl., 14(2009), 15-59.
- [12] G. Munteanu, Complx spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141(13)(2004).
- [13] Nicolta Aldea and Gheorghe Munteanu, (α, β) -Comlex Finer metrics, Proceedings of the 4th-International Colloquim, "Mathematics in Engineering and Numerical Physics", October 6-8, Bucharest, Romania, (2006), 1-6.
- [14] Nicolta Aldea and Gheorghe Munteanu, On ComplexFinsler spaces with Randers metrics, J. Korean Math. Soc.,46(5)(2009), 949-966.
- [15] V. S. Sabau and H. Shimida, Remarkable classes of (α, β) -metric spaces, Rep. On Math. Phys., 47(1)(2001), 31-48.
- [16] G. Shankar and S. A. Baby, R-complex Finsler spaces with special (α, β) -metrics, Int. J. of appl. Math., 29(5)(2016), 609-619.