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Abstract: The nonlinear fin equation in Spherical coordinates is studied in this paper. Classification of temperature dependent

thermal conductivity and radial variable heat transfer coefficient is performed via Lie symmetry analysis. Using these

symmetries, nonlinear fin equation in spherical coordinates has been transformed into an ordinary differential equation.
An Exact solution of this ODE is obtained whenever possible.
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1. Introduction

Fins are extended surfaces used to increase the heat exchange from a hot or cold surface to surrounding area. There are

multifarious uses of fins such as compressors, cooling of computer processor, air-cooled craft engine, in air conditioning etc.

The heat transfer in fins of different shapes and profiles with variety of boundary conditions is described by mathematical

models [8]. There have been studies using a number of techniques to discuss the heat transfer through fin of different shapes.

For example, [15] discussed the problem

∂2θ

∂x2
+
∂2θ

∂y2
= 0 (1)

using separation of variables and a Newton-Raphson method to compute the temperature profiles and heat transfer per fin

length. More recently, Ali, Bokhari, Zaman [22] have considered the fin equation in cylindrical coordinates in the form

1

x

∂

∂x
(xk(u)ux) +

1

x

∂

∂y
(
1

x
k(u)uy)−N2f(x)u = ut. (2)

They used Lie symmetry analysis to transform this equation into an ordinary differential equation and exact solution are

obtained. Pakdemirli, Sahin [20, 21] studied the problem

∂

∂x

(
k(θ)

∂θ

∂x

)
−N2f(x)θ = θt (3)

by using the Lie symmetries of the governing partial differential equation. This method was introduced by Sophus Lie that

has been applied to find exact solutions of a number of linear and nonlinear partial differential equations in engineering
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and mathematical physics. Bokhari, Kara, Zaman [5] studied the non-dimensional nonlinear fin equation in the case of

temperature dependent thermal conductivity which has the form

∂

∂x

(
k(u)

∂u

∂x

)
−N2h(x)u = ut (4)

where u is the dimensionless temperature, k the thermal conductivity, h the heat transfer coefficient and N the fin parameter.

They considered further group theoretic analysis that leads to an alternative set of exact solution. An extension of a series

solution of the non-linear fin problem with temperature dependent thermal conductivity is performed by Sin Kim, and

Cheng-Hung Huang [9] who considered the following problem:

Ac
d

dx

(
k(u)

du

dx

)
− ph(u− ua) = 0, 0 < x < L (5)

where h is the heat transfer coefficient that may depend on the temperature and generally it can be expressed in power form,

Ac is the constant cross-sectional area of fin, p and L are the perimeter and length of fin respectively. Moitshekia, Hayat

and Malik [18] improved the result of Sin Kim, and Cheng-Hung Huang [9] by finding exact solution of problem (4). They

used the Classical Lie symmetry techniques to construct the exact solutions which satisfy the realistic boundary conditions.

Moitsheki [12] considered a radial one-dimensional fin with a profile area Ap in the following form:

Ap
R

d

dR

(
Rf(R)k(u)

du

dR

)
= ph(u) (u− ua) , rb < R < ra. (6)

where k and h are the non-uniform thermal conductivity and heat transfer coefficient, respectively, depending on the

temperature. He constructed some exact solutions for thermal diffusion in a fin with a rectangular profile and another with

a hyperbolic profile by employing classical Lie symmetry techniques. Further, Moitsheki [13] studied a heat transfer problem

of a longitudinal fin with triangular and parabolic profiles by considering the following problem:

Ap
d

dx

(
F (x)k(u)

du

dx

)
= ph(u) (u− ua) , 0 < x < L (7)

where Ap is profile area, F (x) is the function of fin profile, k and h are the non-uniform thermal conductivity and heat

transfer coefficient depending on the temperature. He obtained exact solutions that satisfy the realistic boundary conditions.

Transient heat transfer through a longitudinal fin of several profiles which has the following form

ρcv
∂u

∂t
= Ap

∂

∂x

(
F (x)k(u)

∂u

∂x

)
− pδbH(u) (u− ua) , 0 < x < L (8)

where k and H are the non-uniform thermal conductivity and heat transfer coefficients depending on the temperature, Ap

profile area, p perimeter of the fin profile, F (x) function of fin profiles and δb is the thickness of the fin at the base, is studied

by Moitsheki and Harley [16]. They applied classical point symmetry method and performed some reductions. For heat

transfer in a two-dimensional rectangular fin, Moitsheki and Rowjee [19] considered the problem:

∂

∂y1

(
k(u)

∂u

∂y1

)
+

∂

∂x1

(
k(u)

∂u

∂x1

)
= s(u) (9)

Here, u is the dimensionless temperature, x1 is the longitudinal coordinate, y1 is the transverse coordinate, s is the internal

heat generation function, and k is the thermal conductivity. They constructed exact solution for the resulting linear equation

and used symmetry analysis to classify the internal heat generating function and some reduction are executed. Many authors
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have considered the two-dimensional problem with s = 0 in equation (9) and thermal conductivity being a constant (see,

e.g. [11, 15]) and the case s = 0 with a temperature-dependent thermal conductivity [7]. Moitsheki and Harley [17] also

considered a two-dimensional pin fin with length L and radius R that has the following form.

1

R

∂

∂R

(
Rk(u)

∂u

∂R

)
+

∂

∂x

(
k(u)

∂u

∂x

)
= s(u) (10)

They employed symmetry techniques to determine forms of the source or sink term for which the extra Lie point symmetries

are admitted. Method of separation of variables is used to construct exact solutions when the governing equation is linear.

Symmetry reductions result in reduced ordinary differential equations when the problem is nonlinear and some invariant

solution for the linear case. In this paper, we intend to study the nonlinear (2 + 1) fin equation by considering spherical fins

with nonlinear thermal conductivity and variable heat transfer coefficient. The Lie symmetry method will be used to obtain

exact solutions to this problem. The governing equation in this case is given by

1

r2
∂

∂r

(
r2k(u)

∂u

∂r

)
+

1

rsinθ

[
∂

∂θ

(
1

r
sinθk(u)

∂u

∂θ

)]
−N2f(r)u = ut (11)

The above equation can be rewritten as

r2k(u)urr + r2kuu
2
r + 2rk(u)ur + k(u)uθθ + kuu

2
θ +

cos θ

sin θ
k(u)uθ − r2N2f(r)u− r2ut = 0 (12)

Using the substitution r = x, and cos θ = y, the above equation is transformed to

x2k(u)uxx + x2kuu
2
x + 2xk(u)ux + k(u)(1− y2)uyy + ku(1− y2)u2

y − 2yk(u)uy − x2N2f(x)u− x2ut = 0 (13)

This paper is organized as follows. In section 2, symmetry analysis of the given problem is performed via Lie symmetry and

in section 3 complete classifications of solutions of equation (13) is presented. In section 4 symmetry generators are listed.

Reduction of the problem to an ODE are shown in section 5. Finally, we conclude some results about this problem.

2. Symmetry Analysis of the Fin Equation

In this section, we perform the symmetry analysis of (13). To this end, we use the Lie symmetry method. The symmetry

generator associated with (13) is given by

X = ξ(x, y, t, u)
∂

∂x
+ η(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t
+ φ(x, y, t, u)

∂

∂u
,

Requiring invariance of (13) with respect to the prolonged symmetry generator yields,

X(2) = X + φx
∂

∂ux
+ φy

∂

∂uy
+ φt

∂

∂ut
+ φxy

∂

∂uxy
+ φxt

∂

∂uxt
+ φyt

∂

∂uyt
+ φxx

∂

∂uxx
+ φyy

∂

∂uyy
+ φtt

∂

∂utt
. (14)

In the above expression, the coefficients of the prolonged generator are functions of (x, y, t, u) and can be determined by the

formulae

φi = Di(φ− ξux − ηuy − τut) + ξux,i +ηuy,i +τut,i ,

φij = DiDj(φ− ξux − ηuy − τut) + ξux,ij + ηuy,ij + τut,ij ,

109



Classification of a Nonlinear Fin Equation in Spherical Coordinates via Lie Symmetry Method

where Di represents total derivative and subscripts of u partial derivative with respect to the respective coordinates. At

this stage we use the Lie symmetry criterion that the PDE (13) is invariant under the prolonged symmetry generator (14)

modulu the PDE, namely,

X(2)[x2k(u)uxx + x2k(u)uu
2
x + xk(u)ux + k(u)uu

2
y + k(u)uyy − x2N2f(x)u− x2ut]

∣∣∣
PDE(13)

= 0. (15)

whenever ut = 1
x2

[x2k(u)uxx +x2kuu
2
x + 2xk(u)ux +k(u)(1− y2)uyy +ku(1− y2)u2

y−2yk(u)uy−x2N2f(x)u]. Using results

from (15) and comparing terms involving derivatives of the dependent function u, leads to the following over determined

system of linear PDEs in ξ, η, τ and φ:

ξu = 0 = ηu = τu = τx = τy = φuu, (16)

kuφ− 2kξx + kτt = 0, (17)

x2ηx + (1− y2)ξy = 0, (18)

− 2kξ + 2xkuφ+ x2ξt − 2kxξx + 2kyξy + 2xkτt − kx2ξxx − kξyy + ky2ξyy + 2kx2φxu = 0, (19)

− 2xykη − 2kξ + 2ky2ξ + xφku − xy2φku − 2xkηy + 2xky2ηy + xkτt − xky2τt = 0, (20)

− 2xkη+ 4kyξ − 2xykuφ+ x3ηt − 2kx2ηx + 2xykηy − 2xykτt − x3kηxx − xkηyy + xy2kηyy + 2xkφyu − 2xy2kφyu = 0, (21)

−N2x2fxuξ−N2x2fφ+ 2xkφx−x2φt +x2kφxx + kφyy − y2kφyy +N2x2fuφu−N2x2fuφu−n2x2fuτt− 2ykφy = 0. (22)

To determine the unknown functions ξ, τ, η and φ, we solve the above system starting by first considering (17), we have

φ =
k

ku
(2ξx − τt) (23)

Differentiating (17) with respect to u twice yields

φuu = (
k

ku
)uu(2ξx − τt) (24)

Using (16) into (24) leads to

(
k

ku
)uu(2ξx − τt) = 0. (25)

In what follows, we consider the above equation to perform a complete classification of both k and f .

3. Classification

In this section, we provide a complete classification of solutions of (13). Firstly, we notice that the following three cases

arise from (25):

(I) ( k
ku

)uu = 0,

(II) 2ξx − τt = 0,

(III) 2ξx − τt = 0 = ( k
ku

)uu.

For complete classification, we consider all the three cases one by one.
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3.1. Case I

Solving the differential equation ( k
ku

)uu = 0, we determine k(u) as,

k(u) = γ(αu+ β)
1
α , (26)

where γ, α and β are some integration constants. Using (26) into (23), instantly gives

φ = (αu+ β)(2ξx − τt). (27)

Using (26) and (27) into (19), yields

−2γ(αu+β)
1
α ξ+ 2xγ(αu+β)

1
α ξx+x2ξt+ 2yγ(αu+β)

1
α ξy + (4α−1)x2γ(αu+β)

1
α ξxx− (1−y2)γ(αu+β)

1
α ξyy = 0. (28)

Differentiating (28) with respect to u gives

− 2γ(αu+ β)
1
α
−1 [ξ − xξx − yξy − (4α− 1)x2ξxx + (1− y2)ξyy

]
= 0. (29)

All constants involved in the above Eqs. are non-zero. Thus this is satisfied only when ξ − xξx − yξy − (4α − 1)x2ξxx +

(1− y2)ξyy = 0 (the case α = 1 not be considered as it becomes a special case of (I.b) that is dealt with later. The Ansatz

solution of the above equation is

ξ = λ1(t)x+ λ2(t)y. (30)

Using (30) into (28) yields

ξ = c1x+ c2y. (31)

Using (31) into (18) yields

η =
1− y2

x
c2 + γ(y, t). (32)

To determine γ(y, t) we use (32) into (20) to find that,

γ(y, t) =
√

1− y2β(t). (33)

Therefore, (32) becomes

η =
1− y2

x
c2 +

√
1− y2δ(t). (34)

Again, to determine δ(t) , we use (34) into (21), to infer that,

[
−2kx

√
1− y2 − 2kxy2√

1− y2
+ kx(1− y2)

−3
2 − kxy2(1− y2)

−3
2

]
δ(t) + x3

√
1− y2δt(t) = 0. (35)

The solution of the above equation is the trivial solution which is δ(t) = 0. Consequently, (34) becomes

η =
1− y2

x
c2. (36)

Using (31) and (36) into (22) yields

−N3x3fxuc1 −N2x2yfxuc2 − βN2x2f(2c1 − τt) + x2(αu+ β)τtt −N2x2fuτt = 0. (37)
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Differentiating (37) with respect to t gives

βN2x2fτtt + x2(αu+ β)τttt −N2x2fuτtt = 0. (38)

Again, differentiating (38) with respect to t , we obtain

τttt
τtt

=
N2f

α
. (39)

This implies that f(x) = c and hence

τ(t) =
c3α

2

N4c2
e
N2c
α + c4t+ c5. (40)

Using (40) with f(x) = c into (38), yields

βc3(1 +
1

α
) = 0. (41)

From (41) four cases arise:

(I.a) β = 0, c3 6= 0 and α > 0,

(I.b) β 6= 0, c3 = 0 and α > 0,

(I.c) β 6= 0, c3 6= 0 and α = −1,

(I.d) β = 0, c3 6= 0 and α = −1.

We first consider I.a.

3.1.1. Subcase (I.a.) k(u) = γ(αu)
1
α and f(x) = c.

Using (40) into (37), leads to c4 = 0. Therefore, the expression for the infinitesimal symmetry generators ξ, η, τ and φ take

the form,

ξ = c1x+ c2y, η =
(1− y2)

x
c2, τ =

c3α

cN2
exp

(
N2c

α
t

)
+ c5,

φ = αu

(
2c1 − c3cN2 exp

(
N2c

α
t

))
.

(42)

The four symmetry generators associated with above infinitesimals are given by,

X1 = x
∂

∂x
+ 2αu

∂

∂u
, X2 = y

∂

∂x
+

(1− y2)

x

∂

∂y
,

X3 =
α

cN2
e
N2c
α

t ∂

∂t
− αue

N2c
α

t ∂

∂u
, X4 =

∂

∂t
.

(43)

3.1.2. Subcase (I.b.) k(u) = γ(αu+ β)
1
α and f(x) = c.

Using (40) into (37) with the above values of k and f , lead to c4 = 0 = c1. Therefore, the expression for the infinitesimal

symmetry generators ξ, η, τ and φ take the form,

ξ = c2y, η =
(1− y2)

x
c2, τ = c5, φ = 0. (44)

The two symmetry generators associated with above infinitesimals are given by,

X1 = y
∂

∂x
+

(1− y2)

x

∂

∂y
, X2 =

∂

∂t
. (45)
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3.1.3. Subcase (I.c.) k(u) = γ
β−u and f(x) = c.

Using (40) into (37) with the above values of k and f, lead to c4 = 0 = c1 = c3. Therefore, the expression for the infinitesimal

symmetry generators ξ, η, τ, and φ take the form,

ξ = c2y, η =
(1− y2)

x
c2, τ = c5, φ = 0. (46)

The two symmetry generators associated with above infinitesimals are given by,

X1 = y
∂

∂x
+

(1− y2)

x

∂

∂y
, X2 =

∂

∂t
. (47)

3.1.4. Subcase (I.d.) k(u) = − γ
u

and f(x) = c.

Using (40) into (37) with the above values of k and f , lead to c4 = 0. Therefore, the expression for the infinitesimal

symmetry generators ξ, η, τ and φ take the form,

ξ = c1x+ c2y, η =
(1− y2)

x
c2,

τ =
−c6
cN2

e−cN
2t + c5, φ = −u(2c1 − c3e−cN

2t).

(48)

The four symmetry generators associated with above infinitesimals are given by,

X1 = x
∂

∂x
− 2u

∂

∂u
, X2 = y

∂

∂x
+

(1− y2)

x

∂

∂y
,

X3 = − 1

cN2
e−N

2ct ∂

∂t
+ ue−N

2ct ∂

∂u
, X4 =

∂

∂t
.

(49)

3.2. Case II

In accordance with 2ξx − τt = 0, the system ((16)-(22)) becomes

ξu = 0 = ηu = τu = φ = τy = τx, (50)

x2ηx + (1− y2)ξy = 0, (51)

− 2kξ + x2ξt + 2kxξx + 2kyξy − kx2ξxx − kξyy + ky2ξyy = 0, (52)

− 2xykη − 2kξ + 2ky2ξ − 2xkηy + 2xky2ηy + 2xkξx − 2xky2ξx = 0, (53)

− 2xkη + 4kyξ − 2xykuφ+ x3ηt − 2kx2ηx + 2xykηy − 4xykξx − x3kηxx − xkηyy + xy2kηyy = 0, (54)

−N2x2fxuξ − 2N2x2fuξx = 0. (55)

From (51), we have

ηx = − (1− y2)

x2
ξy. (56)

Differentiation (52) with respect to u yields

− 2kuξ + 2kuxξx + 2kuyξy − kux2ξxx − kuξyy + kuy
2ξyy = 0, (57)

then,

ku
(
−2ξ + 2ξx + 2yξy − x2ξxx − ξyy + y2ξyy

)
= 0. (58)
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This leads to (
−2ξ + 2ξx + 2yξy − x2ξxx − ξyy + y2ξyy

)
= 0, (59)

From previous case, the solution of (59) is given by

ξ = c1x+ c2y. (60)

We follow the same procedure followed in the previous case, we end up with the following expressions of ξ, η, τ and φ, namely,

ξ = c1x+ c2y, η =
(1− y2)

x
c2, τ = 2c1, φ = 0. (61)

The above values of ξ, η, τ and φ satisfy the system ((50)-(54)). At this stage, we use (61) in (55) to get,

− fx(c1x+ c2y)− 2c1f = 0 (62)

Differentiating (62) with respect to y, we obtain

− c2fx = 0. (63)

From (63), two cases arise:

(II.a) c2 = 0, and fx 6= 0,

(II.b) c2 6= 0, and fx = 0.

First, we consider (II.a).

3.2.1 Case II.a

Using theses conditions arising in this case into (62), gives

− c1[xfx + 2f ] = 0 (64)

From (64), two cases arise:

(II.a.1) c1 = 0 and xfx + 2f 6= 0,

(II.a.2) c1 6= 0 and xfx + 2f = 0.

Considering first (II.a.1).

3.2.1.1 Case II.a.1

In the light of the conditions of this case, the k(u), and f(x) are arbitrary functions and the general expressions of ξ, η, τ

and φ, have the following form:

ξ = η = φ = 0, τ = c3. (65)

the only one generator corresponding to this case is X = ∂
∂t

.

3.2.1.1 Case II.a.2

In accordance with these conditions of this case, the k(u), is arbitrary function, f(x) = c
x2

and the general expressions of

ξ, η, τ and φ, have the following form:

ξ = c1x, η = 0, τ = 2c1t+ c3, φ = 0. (66)
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and the generators in this case are

X1 = x
∂

∂x
− 2t

∂

∂t
, X2 =

∂

∂t
. (67)

3.2.2 Case II.b (c2 6= 0 and f(x) = c.)

Using theses conditions arising in this case into ((62),gives c1 = 0. Thus, we infer that f(x) = c and k(u) is arbitrary, and

hence the general expression of ξ, η, τ and φ are

ξ = c2y, η =
(1− y2)

x
c2, τ = c3, φ = 0. (68)

The symmetry generators in this case are,

X1 = y
∂

∂x
+

(1− y2)

x

∂

∂y
, X2 =

∂

∂t
. (69)

4. Symmetry Generators

In this section, we list the Lie symmetry generators obtained above for different values of k(u) and f(x).

1-f(x) = c

a- k(u) = γ(αu)
1
α . In this case the symmetry generators are

X1 = x
∂

∂x
+ 2αu

∂

∂u
, X2 = y

∂

∂x
+

(1− y2)

x

∂

∂y
, X3 =

∂

∂t
,

X4 =
α

N2c
exp

(
N2c

α
t

)
∂

∂t
− αu exp

(
N2c

α
t

)
∂

∂u
.

The commutation relation for these generators are given in the following table.

[Xi, Xj ] X1 X2 X3 X4

X1 0 −X2 0 X2

X2 X2 0 0 X1

X3 0 0 0 cN2

α
X4

X4 0 0 − cN2

α
X4 0

Table 1. Commutator table of the fin equation

b- k(u) = γ(αu+ β)
1
α . In this case the symmetry generators are

X1 = y
∂

∂x
+

(1− y2)

x

∂

∂y
, X2 =

∂

∂t
.

The commutation relation for these generators are given in the following table.

[Xi, Xj ] X1 X2

X1 0 0

X2 0 0

c- k(u) = γ
(β−u) . In this case the symmetry generators are

X1 = y
∂

∂x
+

(1− y2)

x

∂

∂y
, X2 =

∂

∂t
.

The commutation relation for these generators are given in the following table.
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[Xi, Xj ] X1 X2

X1 0 0

X2 0 0

Table 2. Commutator table of the fin equation

[Xi, Xj ] X1 X2 X3 X4

X1 0 −X2 0 X2

X2 X2 0 0 X1

X3 0 0 0 −cN2X4

X4 0 0 cN2X4 0

Table 3. Commutator table of the fin equation

d- k(u) = − γ
u

. In this case the symmetry generators are

X1 = x
∂

∂x
− 2u

∂

∂u
, X2 = y

∂

∂x
+

(1− y2)

x

∂

∂y
, X3 =

∂

∂t
, X4 = − 1

N2c
exp(−N2ct)

∂

∂t
+ u exp(−N2ct)

∂

∂u
.

The commutation relation for these generators are given in the following table.

2- f(x) and k(u) are arbitrary functions. In this case, we have only one generator which is X = ∂
∂t

.

3- f(x) =
c

x2
and k(u)is arbitrary. In this case, we have only two generators which are

X1 = x
∂

∂x
+ 2t

∂

∂t
, X2 =

∂

∂t
.

The commutation relation for these generators are given in the following table.

[Xi, Xj ] X1 X2

X1 0 −2X2

X2 2X2 0

Table 4. Commutator table of the fin equation

5. Reduction Under two Dimensional Subalgebra

In what follows, we will show the reduction of the given problem to an ODE using two dimensional subalgebra.

5.1. Case 1

In this subsection, we present solutions of (13) via reductions. These reductions are obtained by the similarity variables

obtained through symmetry generators. To perform reductions of (13), we first consider two symmetry generators, from

Table (1) (In this case k(u) = γ(αu)
1
α and f(x) = c). Here X1, and X3 span an abelian subalgebra. To start reduction, we

first consider X3. The characteristic equation corresponding to this generator,

dx

0
=
dy

0
=
dt

1
=
du

0
. (70)

Solving the above equation it is straight forward [1] to find that it yields the similarity variables, r = x and s = y with

w(r, s) = u. Replacing u in (13) in terms of new variables becomes,

r2k(w)wrr + r2kww
2
r + 2rk(w)wr + k(w)(1− s2)wss + (1− s2)kww

2
s − 2sk(w)ws −N2cr2w = 0. (71)
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To proceed further, we first transform X1 in terms of new variables r, s and w. Thus, X̂1 = r ∂
∂r

+ 2αw ∂
∂w

. The similarities

corresponding to this generator are z = s and v(z) = r2αw. This reduces (71) to a second-order differential equation given

by,

2γα
1
α
+1(2α− 1)v

1
α
+1 + 8γα

1
α
+1v

1
α
+1 + γα

1
α (1− z2)v

1
α vzz + γα

1
α
−1(1− z2)v

1
α
−1v2z − 2γα

1
α zv

1
α vz −N2cv = 0. (72)

5.2. Case 2

From Table 1, [X1, X4] = 0 are commutative. Thus, the reduction can be started either by X1 or X4. To this end, we first

consider X1. The characteristic equation corresponding to this generator is

dx

x
=
dy

0
=
dt

0
=

du

2αu
(73)

The similarity variables corresponding to above equation become r = y, s = t and u = x2αw. These variables reduce (13)

to a PDE of the form,

2γα
1
α
+1(2α−1)w

1
α
+1+8γα

1
α
+1w

1
α
+1+γα

1
α (1−r2)w

1
αwrr+γα

1
α
−1(1−r2)w

1
α
−1w2

r−2γα
1
α rw

1
αwr−N2cw−ws = 0. (74)

Using similarity variables transformation obtained from X4, transforms X̂4 = α
N2c

exp
(
N2c
α
s
)

∂
∂s
−αw exp

(
N2c
α
s
)

∂
∂w
. This

leads to the new coordinates r = z, v(z) = exp(−N2cs)w. In the light of these similarities, (74) transforms to,

(4α2 − 6α)v + (1− z2)vzz +
1

α
(1− z2)

1

v
v2z − 2zvz = 0. (75)

Choosing α = 3
2

, the above equation takes the form,

(1− z2)vzz +
2

3
(1− z2)

1

v
v2z − 2zvz = 0. (76)

giving exact solution

u(x, y, t) = c2x
3 exp(−N2ct) (6c1 + 5 ln(y − 1)− 5 ln(y + 1))

3
5 . (77)

The graph of this solution is plotted in Figure 1 and Figure 2.

Figure 1. Plot of solution given by (77) with c1 = 2, N2c = 1, c2 = 1 and x = constant.

117



Classification of a Nonlinear Fin Equation in Spherical Coordinates via Lie Symmetry Method

Figure 2. Plot of solution given by (77) with c1 = 0, N2c = 1 c2 = 1, and y = constant.

5.3. Case 3

In this case we execute reduction using table (3). Here f(x) =
c

x2
and k(u) is arbitrary. We consider the symmetry

generators X1, X2 which satisfy a commutative relationship [X1, X2] = −2X2 as shown in table(4). First considering X2,

and follow the procedure in the previous cases, the generator X2 reduces (13) to

r2k(w)wrr + r2kww
2
r + 2rk(w)wr + k(w)(1− s2)wss + (1− s2)kww

2
s − 2sk(w)ws −N2cw = 0. (78)

In the light of X2, the X1 transforms to X̂1 = r ∂
∂r

which gives z = s with w = v(z). In the light of these similarity variables,

(78) reduces to the following ODE:

k(v)(1− z2)vzz + (1− z2)kvv
2
z − 2zk(v)vz −N2cv = 0. (79)

The reductions performed above are given in the tabular form in the following:

Case# Algebra Reduction z v

Case 1 [X1, X3] = 0

2γα
1
α
+1(2α− 1)v

1
α
+1 + 8γα

1
α
+1v

1
α
+1 + γα

1
α (1 − z2)v

1
α vzz

+γα
1
α
−1(1 − z2)v

1
α
−1v2z − 2γα

1
α zv

1
α vz −N2cv = 0 y x2αu

Case 2 [X1, X4] = 0 (4α2 − 6α)v + (1 − z2)vzz + 1
α

(1 − z2) 1
v
v2z − 2zvz = 0 y e−N

2ctx2αu

Case 3 [X1, X2] = −2X2 k(v)(1 − z2)vzz + (1 − z2)kvv2z − 2zk(v)vz −N2cv = 0 y u

Table 5. Reduction

6. Conclusion

As a consequence of the results obtaining in this paper, we notice that the reduction of the given equation to ODE may lead

to find its exact solution. Some of these ODEs can not be solved readily. However, the reduced form is generally simpler

than the original non-linear PDE and we may use symmetry or other methods to solve them.
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