International Journal of Mathematics fud its Applications

Implementing Wiener's Extensions in the Range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$ and $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with Lattice Reduction

P. Anuradha Kameswari ${ }^{1, *}$ and S. B. T. Sundari Katakam ${ }^{1}$
1 Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India.

Abstract

In this paper, Wiener Attack extensions on RSA are implemented with approximation via lattice reduction. The continued fraction based arguments of Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}$ and $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}$, $|\rho q-p| \leq \frac{N^{\gamma}}{16}, 1 \leq \rho \leq 2, \gamma \leq \frac{1}{2}$, are implemented with the Lattice based arguments and the LLL algorithm is used for reducing a basis of a lattice.

MSC: 11T71, 94A60.

Keywords: Lattice reduction, LLL algorithm, quadratic form, Wiener Attack extensions.
(C) JS Publication

1. Introduction

Wiener's attack on RSA applies when the private exponent d is less than $N^{\frac{1}{4}}$. Whenever $d<\frac{N^{1 / 4}}{\sqrt{6}}$, the fraction $\frac{t}{d}$ is a convergent of $\frac{e}{N}$ and hence it is an approximation of $\frac{e}{N}$ and thus (d, t) may be obtained as a short vector by reducing the quadratic form $q(x, y)=M\left(\frac{\bar{e}}{N} x-y\right)^{2}+\frac{1}{M} x^{2}$ for an appropriate choice of M [8]. Now we adapt these ideas to Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}$ and $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with lattice reduction.

2. Implementing Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$ with Lattice Reduction

This section shows that for the bound of private exponent d in RSA, extended to N^{δ}, where $\frac{1}{4} \leq \delta<\frac{3}{4}-\beta$ and $\Delta=p-q=N^{\beta}$, $\beta \in\left(\frac{1}{4}, \frac{1}{2}\right)$, the attack may be implemented with lattice reduction. We first recall an estimation for $\varphi(N)$ and show that with this estimation we may consider a quadratic form and using this quadratic form, (d, t) may be obtained as a short vector of the quadratic form for some appropriate M.

Lemma 2.1. Let $N=p q$ where p, q are primes such that $q<p<2 q$ and $\Delta=p-q$. Then $0<p+q-2 N^{\frac{1}{2}}<\frac{\Delta^{2}}{4 N^{\frac{1}{2}}}$.
Lemma 2.2. An estimation of $\varphi(N)$ when $q<p<2 q$ is given by

$$
N+1-\frac{3}{\sqrt{2}} N^{\frac{1}{2}}<\varphi(N)<N+1-2 N^{\frac{1}{2}} .
$$

[^0]This estimation plays an important role in the following theorem.
Theorem 2.3. Let $p-q=\Delta=N^{\beta}$ and $d=N^{\delta}$, where $q<p<2 q, d<N^{\frac{3}{4}-\beta}$. Then

$$
\left|\frac{e}{N+1-2 N^{\frac{1}{2}}}-\frac{t}{d}\right|<\frac{1}{2 d^{2}}
$$

Hence by approximation theorem it follows that $\frac{t}{d}$ is a convergent of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$. Thus, $\frac{t}{d}$ is obtained from the list of convergent of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$ using continued fractions. Wiener's extension attack on RSA basically searches the convergent $\frac{t}{d}$ from the class of convergent of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$ that lead to (p, q, d) whenever $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}$.
Theorem 2.4 (Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$). Let $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$, $p-q=N^{\beta}$ and for any convergent $\frac{t^{\prime}}{d^{\prime}}$ of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$, take $\varphi^{\prime}(N)=\frac{e d^{\prime}-1}{t^{\prime}}, x^{\prime}=\frac{N-\varphi^{\prime}(N)+1}{2}$ and $y^{\prime}=\sqrt{x^{\prime 2}-N}$. If $x^{\prime}, y^{\prime} \in \mathbb{N}$, then the private key $(q, p, d)=\left(x^{\prime}-y^{\prime}, x^{\prime}+y^{\prime}, d^{\prime}\right)$.

Therefore, the search of $\frac{t}{d}$ leading to solution (p, q, d) may be obtained from the class of convergent of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$. As convergent are approximations, the fraction $\frac{t}{d}$ is a rational approximation of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$. In the following theorem, we prove that (d, t) may be obtained as a short vector of quadratic form $q(x, y)=M(\bar{\alpha} x-y)^{2}+\frac{1}{M} x^{2}$ for $\alpha=\frac{e}{N+1-2 N^{\frac{1}{2}}}$.
Theorem 2.5. Let $N=p q$, for $q<p<2 q$, be the modulus for $R S A$ with $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}, \beta \in\left(\frac{1}{4}, \frac{1}{2}\right)$, e be the public enciphering exponent and d be the deciphering exponent, then for t such that ed $-1=\varphi(N) t$ and $\frac{t}{d}$, (d,t) is a short vector of a lattice $\mathbf{Z}^{\mathbf{2}}$ equipped with a quadratic form

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for an appropriate M.
Proof. First note for each choice of $M=10^{l}$ for some l, and $\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}$ decimal approximation of $\frac{e}{N+1-2^{N^{\frac{1}{2}}}}$ to the precision $\frac{1}{M}$ we reduce the lattice \mathbf{Z}^{2} with a quadratic form $q(x, y)$ in the variables x, y given as

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

the 2-dimensional Gram-matrix for the above is given as

$$
A=\left[\begin{array}{cc}
\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}\right)^{2} M+\frac{1}{M}-\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}\right) M \\
-\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}\right) M & M
\end{array}\right]
$$

and note the corresponding lattice in R^{2} is given by the basis as columns of matrix B given as

$$
B=\left[\begin{array}{cc}
\frac{1}{\sqrt{M}} & 0 \\
\left.\left(\frac{-}{e}\right) \sqrt{M+1-2 N^{\frac{1}{2}}}\right) & -\sqrt{M}
\end{array}\right]
$$

which may be deduced by the results in Lattices and Quadratic Forms of [3]. Now applying LLL algorithm to B^{T}, we get reduced basis matrix B^{\prime} and repeating the arguments as above we have a integer unimodular transformation matrix U

$$
U=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

with (a, c) as short vector obtained for the choice of $M=10^{l}$. Now note for any (v, u) such that $\frac{u}{v}$ is an approximation of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$, we have

$$
\begin{aligned}
q(v, u) & =M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} v-u\right)^{2}+\frac{1}{M} v^{2} \\
& =M v^{2}\left(\frac{\bar{e}}{N+1-2^{N^{\frac{1}{2}}}}-\frac{u}{v}\right)^{2}+\frac{1}{M} v^{2} \\
& =O\left(\frac{M}{v^{2}}\right)+O\left(\frac{v^{2}}{M}\right)+O(1)
\end{aligned}
$$

For any short vector (v, u) as $q(u, v)=O(1)$, note for $M \approx d^{2}$ the above holds for $v \ni v \approx d$. Therefore, by Theorem 2.3 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N+1-2 N^{\frac{1}{2}}},(d, t)$ is a short vector for the given quadratic form $q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}$, for $M \approx d^{2}$.

Note 1. The search of convergent $\frac{t}{d}$ leading to solution (p, q, d) may be obtained from the class of short vectors (d, t) of

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for an appropriate choice of M.
In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be interpreted as Wiener's extension with lattice reduction.
Theorem 2.6 (Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$ with Lattice Reduction). Let $N=p q, q<p<2 q$ be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent for $N^{\frac{1}{4}}<d<N^{\frac{3}{4}-\beta}$ and $p-q=\Delta=N^{\beta}$, then there is a M such that (d, t) is a short vector of the quadratic form,

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

where $\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}$ is a decimal approximation of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$ to precision $\frac{1}{M}$.
Proof. By Theorem 2.3 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N+1-2 N^{\frac{1}{2}}}$, we have by above theorem that (d, t) is a short vector for a quadratic form

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for $M=10^{l}$ for some appropriate l, such that $d \approx \sqrt{M}$. The search for this M is described in the following: Let

$$
r=\left\{\begin{array}{ll}
\frac{d(N)}{2} & \text { if } d(N) \\
\text { is even } \\
\frac{d(N)+1}{2} & \text { if } d(N)
\end{array}\right. \text { is odd }
$$

where $d(N)$ is the number of digits in N. Then for all s with $r \leq s<d(N)$, note $M_{s}=10^{s}$ is such that $N^{\frac{1}{2}}<M_{s}<N$. Now note as d is such that $N^{\frac{1}{4}}<d<N^{\frac{3}{4}-\beta}$ for $\beta \in\left(\frac{1}{4}, \frac{1}{2}\right)$. Considering the maximum upper bound for d at $\beta=\frac{1}{4}$, we have $N^{\frac{1}{4}}<d<N^{\frac{1}{2}}$, this implies $N^{\frac{1}{2}}<d^{2}<N$. Therefore, d^{2} and M_{s} lie in the same range i.e., $N^{\frac{1}{2}}<M_{s}, d^{2}<N$. Now varying s from r to $d(N)$, note as M_{s} gets close to $d^{2}, M_{s} \approx d^{2}$ i.e., $s \approx d\left(d^{2}\right)$ the short vector corresponding to such M_{s} gives the required (d, t). Note such M_{s} can be reached with utmost $\frac{d(N)}{2}$ variations for s. Further note for $d>N^{\frac{1}{2}}$, as d does not satisfy the hypothesis of theorem, note $\frac{t}{d}$ of the required (d, t) may not be a convergent of $\frac{e}{N+1-2 N^{\frac{1}{2}}}$, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic form for some M for $d>N^{\frac{1}{2}}$.

In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:
Theorem 2.7. Let $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}$ and let $M=10^{s}$ for $r \leq s \leq d(N)$, then for short vector $\left(d_{s}, t_{s}\right)$ of the quadratic form,

$$
q(x, y)=M\left(\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

take $\varphi_{s}(N)=\frac{e d_{s}-1}{t_{s}}, x_{s}=\frac{N-\varphi_{s}(N)+1}{2}$ and $y_{s}=\sqrt{x_{s}{ }^{2}-N}$. If $x_{s}, y_{s} \in \mathbb{N}$, then $\left(d_{s}, t_{s}\right)$ is the required short vector giving the private key $(q, p, d)=\left(x_{s}-y_{s}, x_{s}+y_{s}, d_{s}\right)$.

Proof. Suppose $x_{s}, y_{s} \in \mathbb{N}$ for some s in range $1 \leq s \leq r$, then by definition of y_{s} in theorem, we have

$$
\begin{aligned}
N & =x_{s}^{2}-y_{s}^{2} \\
& =\left(x_{s}+y_{s}\right)\left(x_{s}-y_{s}\right) .
\end{aligned}
$$

Since $x_{s}+y_{s}, x_{s}-y_{s} \in \mathbb{N}$, they are the factors of N, i.e., $x_{s}+y_{s}, x_{s}-y_{s}$ are $1, p, q$ or N. Now as $p<q$ we have two cases:
(i). $x_{s}+y_{s}=N, x_{s}-y_{s}=1$,
(ii). $x_{s}+y_{s}=p, x_{s}-y_{s}=q$.

Note Case (i) is not possible, for as $x_{s}+y_{s}=N$ and $x_{s}-y_{s}=1$, then $\frac{N+1}{2}=x_{s}$,

$$
\text { and } \begin{aligned}
& x_{s} & =\frac{N-\varphi_{s}(N)+1}{2} \\
\Rightarrow & \frac{N+1}{2} & =\frac{N-\varphi_{s}(N)+1}{2} \\
\Rightarrow & \frac{e d_{s}-1}{t} & =0 \\
\Rightarrow & e d_{s} & =1 \\
\Rightarrow & e & =1
\end{aligned}
$$

which is not possible. Therefore, Case (i) is not possible since $e>1$. Thus, the only possible Case is (ii). Therefore and we have $x_{s}+y_{s}=p, x_{s}-y_{s}=q$, whenever $x_{s}, y_{s} \in \mathbb{N}$. Now, we show that $d=d_{s}$. By definition of x_{s} we have

$$
\begin{aligned}
x_{s} & =\frac{N-\varphi_{s}(N)+1}{2} \\
\Rightarrow \varphi_{s}(N) & =N-2 x_{s}+1 \\
& =N-(q+p)+1 \\
& =\varphi(N) \\
\Rightarrow d_{s} & \equiv d \bmod \varphi(N)
\end{aligned}
$$

Now note that the short vector (d, t) is either $\left(d_{s}, t_{s}\right)$ or obtained as a short vector in the later iterations for some $M=10^{l}$, for $l>s$. Then as $M \approx d^{2}$, we have $d_{s} \leq d$. Therefore as $d<\varphi(N)$, we have $d_{s} \leq d<\varphi(N)$. Hence $d_{s} \equiv d \bmod \varphi(N) \Rightarrow$ $d=d_{s}$.

An algorithm for the implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$ with lattice reduction is given in the following:

Algorithm:

Step 1: Start
Step 2: Input e, N.
Step 3: Compute $\frac{e}{N+1-2 N^{\frac{1}{2}}}$ to $d(N)$ decimals, where

$$
r= \begin{cases}\frac{d(N)}{2} & \text { if } d(N) \text { is even } \\ \frac{d(N)+1}{2} & \text { if } d(N) \text { is odd. }\end{cases}
$$

Step 4: Set $i=r$.
Step 5: Set $M=10^{i}, \frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}=\frac{e}{N+1-2 N^{\frac{1}{2}}}$ corrected to i decimal places.
Step 6: Set

$$
B=\left[\begin{array}{cc}
\frac{1}{\sqrt{M}} & 0 \\
\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}} & -\sqrt{M}
\end{array}\right]
$$

Apply LLL algorithm to B^{T} and then obtain unimodular transformation matrix $U=B^{-1}\left(B^{\prime}\right)^{T}$, where B^{\prime} is the resultant obtained using LLL

$$
U=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Set $t_{i}=|c|, d_{i}=|a|$
Step 7: Compute $\varphi_{i}(N)=\frac{e d_{i}-1}{t_{i}}, x_{i}=\frac{N-\varphi_{i}(N)+1}{2}, y_{i}=\sqrt{x_{i}^{2}-N}$.
Step 8: If $\varphi_{i}(N), x_{i}, y_{i} \in N$, then $(q, p, d)=\left(x_{i}-y_{i}, x_{i}+y_{i}, d_{i}\right)$, otherwise $i=i+1$ and go to Step 5 .
Example 2.8. Consider $(e, N)=(948120312068323160758410969049,1774710840319667979443236768633)$. Then the decimal representation of $\left(\frac{e}{N+1-2 \sqrt{N}}\right)$ which is equal to $0.53423931974041775745656621940281027437235911349 \ldots$ Now, as N has 30 digits and is even, choose $M=10^{\frac{d(N)}{2}}=10^{15}$ and find the decimal expansion of $\left(\frac{e}{N+1-2 \sqrt{N}}\right)$ corrected to 15 decimals. Thus, $\left(\frac{\bar{e}}{N+1-2 \sqrt{N}}\right)=0.534239319740418$. Now construct the matrix B and apply LLL algorithm to B^{T} :

$$
B^{T}=\left[\begin{array}{cc}
25242656200601446943299 / 798242877864727758214047141574 & \\
& \\
& 0
\end{array}\right]
$$

Now, the LLL matrix, B^{\prime} is given by :

$$
B^{\prime}=\left[\begin{array}{lll}
219871663642535196542050032278 / 399121438932363879107023570787 & -92624145646797102878218498 / 571872376224625780500438845 \\
\\
420394048784967165357206138787 / 798242877864727758214047141574 & 949541211558837338213946734 / 571872376224625780500438845
\end{array}\right]
$$

Finally, the unimodular integral transformation matrix is given by:

$$
U=\left[\begin{array}{cc}
17420644 & 16654113 \\
9306793 & 8897282
\end{array}\right]
$$

Thus, the convergent obtained is $\frac{t}{d}=\left|\frac{9306793}{17420644}\right|=\frac{9306793}{17420644}$ and do not give integer values for $\varphi_{s}(N), x_{s}$ and y_{s}. Therefore, discarding this convergent, we update M to 10^{16} and consider 16 decimals of $\left(\frac{e}{N+1-2 \sqrt{N}}\right)$. Thus, $\left(\frac{\bar{e}}{N+1-2 \sqrt{N}}\right)=$
0.5342393197404178 . Now proceeding as above, note we obtain the same convergent, so we again discard this convergent and next update M to 10^{17} and consider 17 decimals of the $\left(\frac{e}{N+1-2 \sqrt{N}}\right)$. Thus, $\left(\frac{\bar{e}}{N+1-2 \sqrt{N}}\right)=0.53423931974041776$. Now construct the matrix B and apply LLL algorithm to B^{T} :

$$
B^{T}=\left[\begin{array}{lll}
27272480621782245960612 / 8624315620763702785491703096421 & & 4334864986046 / 25659 \\
& 0 & -7982428778647277582140471415740 / 25242656200601446943299
\end{array}\right]
$$

Now, the LLL matrix, B^{\prime} is given by :

$$
B^{\prime}=\left[\begin{array}{lll}
2829719853610307547623124167796 / 8624315620763702785491703096421 & -271238245164079764474912938 / 647701315451232527118109041 \\
\\
-13673495092142570585715361164852 / 8624315620763702785491703096421 & -221129753178901684114343038 / 215900438483744175706036347
\end{array}\right]
$$

Finally, the unimodular integral transformation matrix is given by:

$$
U=\left[\begin{array}{cc}
103757333 & -501366021 \\
55431247 & -267849442
\end{array}\right]
$$

Now, required convergent is given by, $\frac{t}{d}=\left|\frac{-55431247}{103757333}\right|=\frac{55431247}{103757333}$ and we have

$$
\begin{aligned}
\varphi_{s}(N) & =\frac{e d-1}{t}=\frac{(948120312068323160758410969049)(103757333)-1}{55431247} \\
& =1774710840319665277283460346228 \\
x_{s} & =\frac{N-\varphi_{s}(N)+1}{2}=1351079888211203 \\
y_{s} & =\sqrt{x_{s}^{2}-N}=225179981368524
\end{aligned}
$$

Therefore as $\varphi_{s}(N), x_{s}$ and y_{s} are integers we have the private key given as

$$
\begin{aligned}
(q, p, d) & =\left(x_{s}-y_{s}, x_{s}+y_{s}, d\right) \\
& =(1125899906842679,1576259869579727,103757333) .
\end{aligned}
$$

This process of varying M_{s} in the range $N^{\frac{1}{2}}<M_{s}<N$ and applying LLL to obtain $\frac{t_{s}}{d_{s}}$ leading to private key is depicted in the following table:

M	$\bar{\alpha}=\frac{\bar{e}}{N+1-2 N^{\frac{1}{2}}}$	Unimodular matrix using LLL $U=\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]$	$\frac{t_{s}}{d_{s}}=\left\|\frac{c}{a}\right\|$	$\varphi_{s}(N)=\frac{e d_{s}-1}{t_{s}}$	$\begin{aligned} & x_{s} \varphi_{s}(N)+1 \\ & \frac{N-l^{2}}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & y_{s} \\ & =\sqrt{x_{s}{ }^{2}-N} \end{aligned}\right.$	$(q, p, d)=\left(x_{s}-y_{s}, x_{s}+\right.$ $\left.y_{s}, d_{s}\right) / \text { Set } M \text { to iterate }$
$M=10^{15}$	0.534239319740418	$U=\left[\begin{array}{cc}17420644 & 16654113 \\ 9306793 & 8897282\end{array}\right]$	$\frac{9306793}{17420644}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	Set $M=10^{16}$
$M=10^{16}$	0.5342393197404178	$U=\left[\begin{array}{cc}17420644 & 103757333 \\ 9306793 & 55431247\end{array}\right]$	$\frac{9306793}{17420644}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	Set $M=10^{17}$
$M=10^{17}$	0.53423931974041776	$\left[\begin{array}{l} U \\ {\left[\begin{array}{cc} 103757333 & -501366021 \\ 55431247 & -267849442 \end{array}\right]} \end{array}=\right.$	$\frac{55431247}{103757333}$	1774710840319665277283460 346228	135107988821120	225179981368524	$\begin{aligned} & (1125899906842679, \\ & 1576259869579727, \\ & 103757333) \end{aligned}$

Table 1: Implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}$ with Lattice Reduction

3. Implementing Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}$, $\gamma \leq \frac{1}{2}$ with Lattice Reduction

For $q<p<2 q$, the maximum difference between p and q is \sqrt{N}. In this section, if $|\rho q-p| \leq \frac{N^{\gamma}}{16}$ for $1 \leq \rho \leq 2, \gamma \leq \frac{1}{2}$, then the RSA is insecure when $d=N^{\delta}$ and $\delta<\frac{1}{2}-\frac{\gamma}{2}$.

Lemma 3.1. Let $|p-\rho q| \leq \frac{N^{\gamma}}{16}$, where $\gamma \leq \frac{1}{2}$ and $1 \leq \rho \leq 2$. Then

$$
\left|p+q-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}\right|<\frac{N^{\gamma}}{8} .
$$

Theorem 3.2. Let $|p-\rho q| \leq \frac{N^{\gamma}}{16}$ with $1 \leq \rho \leq 2, \gamma \leq \frac{1}{2}$ and $d=N^{\delta}$ and $\delta<\frac{1}{2}-\frac{\gamma}{2}$ then

$$
\left|\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}-\frac{t}{d}\right| \leq \frac{1}{2 d^{2}}
$$

Hence by approximation theorem it follows that $\frac{t}{d}$ is a convergent of $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$. Thus, $\frac{t}{d}$ is obtained from the list of convergent of $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1}$ using continued fractions. This Wiener's extension attack on RSA basically searches the convergent $\frac{t}{d}$ from the class of convergent of $\frac{e}{N-\left(\sqrt{\bar{p}}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1}$ that lead to (p, q, d) whenever $\delta<\frac{1}{2}-\frac{\gamma}{2}$.
Theorem 3.3 (Wiener's extension in the range $\left.N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}\right)$. Let $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ and for any convergent $\frac{t^{\prime}}{d^{\prime}}$ of, $\frac{e}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ take $\varphi^{\prime}(N)=\frac{e d^{\prime}-1}{t^{\prime}}, x^{\prime}=\frac{N-\varphi^{\prime}(N)+1}{2}$ and $y^{\prime}=\sqrt{x^{\prime 2}-N}$. If $x^{\prime}, y^{\prime} \in \mathbb{N}$, then the private key $(q, p, d)=\left(x^{\prime}-y^{\prime}, x^{\prime}+y^{\prime}, d^{\prime}\right)$.

Therefore, the search of $\frac{t}{d}$ leading to solution (p, q, d) may be obtained from the class of convergent of $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$. As convergent are approximations, the fraction $\frac{t}{d}$ is a rational approximation of $\frac{e}{N-\left(\sqrt{p}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1}$. In the following theorem, we prove that (d, t) may be obtained as a short vector of quadratic form $q(x, y)=M(\bar{\alpha} x-y)^{2}+\frac{1}{M} x^{2}$ for $\alpha=\frac{e}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$.
Theorem 3.4. Let $N=p q$, for $q<p<2 q$ be the modulus for RSA and $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$, e be the public enciphering exponent and d be the deciphering exponent. Then for t such that ed $-1=\varphi(N) t,(d, t)$ is a short vector of a lattice \mathbf{Z}^{2} equipped with a quadratic form

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for an appropriate M.
Proof. First note for each choice of $M=10^{l}$ for some $l, \frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ and decimal approximation of $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ to the precision $\frac{1}{M}$ we reduce the lattice \mathbf{Z}^{2} with a quadratic form $q(x, y)$ in the variables x, y given as and

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

the 2-dimensional Gram-matrix for the above is given as

$$
A=\left[\begin{array}{cc}
\left(\frac{\bar{e}}{N-\left(\sqrt{\bar{P}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right)^{2} M+\frac{1}{M}-\left(\frac{\bar{e}}{N-\left(\sqrt{\bar{P}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right) M \\
-\left(\frac{\bar{e}}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right) M & M
\end{array}\right]
$$

and note the corresponding lattice in R^{2} is given by the basis as columns of matrix B given as

$$
B=\left[\begin{array}{cc}
\frac{1}{\sqrt{M}} & 0 \\
\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right) \sqrt{M} & -\sqrt{M}
\end{array}\right]
$$

which may be deduced by the results in Lattices and Quadratic Forms of [4]. Now applying LLL algorithm to B^{T}, we get reduced basis matrix B^{\prime} and repeating the arguments as above we have a integer unimodular transformation matrix U

$$
U=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

with (a, c) as short vector obtained for the choice of $M=10^{l}$. Now note for any (v, u) such that $\frac{u}{v}$ is an approximation of $\frac{e}{N}$, we have

$$
\begin{aligned}
q(v, u) & =M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} v-u\right)^{2}+\frac{1}{M} v^{2} \\
& =M v^{2}\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}-\frac{u}{v}\right)^{2}+\frac{1}{M} v^{2} \\
& =O\left(\frac{M}{v^{2}}\right)+O\left(\frac{v^{2}}{M}\right)+O(1)
\end{aligned}
$$

For any short vector (v, u) as $q(u, v)=O(1)$, note for $M \approx d^{2}$ the above holds for $v \ni v \approx d$. Therefore by Theorem 3.2 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1}$ and (d, t) is a short vector for the given quadratic form $q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}$, for $M \approx d^{2}$.

Note 2. The search of convergent $\frac{t}{d}$ leading to solution (p, q, d) may be obtained from the class of short vectors

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for an appropriate choice of M.
In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be interpreted as Wiener Attack extension via lattice reduction.
Theorem 3.5 (Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with Lattice Reduction). Let $N=p q, q<p<2 q$ be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent such that $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq$ $\frac{1}{2},|p-\rho q| \leq \frac{N^{\gamma}}{16}, 1 \leq \rho \leq 2$, , then there is a M such that (d, t) is a short vector of a quadratic form,

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

$\frac{\bar{e}}{N-\left(\sqrt{\bar{P}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ is a decimal approximation of $\frac{e}{N-\left(\sqrt{\bar{P}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{\bar{N}}+1}$ to precision $\frac{1}{M}$.

Proof. By Theorem 3.2 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$, we have by above theorem that (d, t) is a short vector for a quadratic form

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

for $M=10^{l}$ for some appropriate l, such that $d \approx \sqrt{M}$. The search for this M is described below:
Let

$$
r= \begin{cases}\frac{d(N)}{2} & \text { if } d(N) \\ \text { is even, } \\ \frac{d(N)+1}{2} & \text { if } d(N) \text { is odd }\end{cases}
$$

where $d(N)$ is the number of digits in N. Then for all s with $r \leq s<d(N)$, note $M_{s}=10^{s}$ is such that $N^{\frac{1}{2}}<M_{s}<N$. Now note as d is such that $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)},|\rho q-p| \leq \frac{N^{\gamma}}{16}, 1 \leq \rho \leq 2, \gamma \leq \frac{1}{2}$, considering the maximum upper bound for d at $\gamma \approx 0$, we have $N^{\frac{1}{4}}<d<N^{\frac{1}{2}}$, this implies $N^{\frac{1}{2}}<d^{2}<N$. Therefore, d^{2} and M_{s} lie in the same range i.e., $N^{\frac{1}{2}}<M_{s}, d^{2}<N$. Now varying s from r to $d(N)$, note as M_{s} gets close to $d^{2}, M_{s} \approx d^{2}$ i.e., $s \approx d\left(d^{2}\right)$, the short vector corresponding to such M_{s} gives the required (d, t). Note such M_{s} can be reached with utmost $\frac{d(N)}{2}$ variations for s. Further note for $d>N^{\frac{1}{2}}$, as d does not satisfy the hypothesis of theorem, note $\frac{t}{d}$ of the required (d, t) may not be a convergent of $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic form for some M for $d>N^{\frac{1}{2}}$.

In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:

Theorem 3.6. Let $|p-\rho q| \leq \frac{N^{\gamma}}{16}$ with $1 \leq \rho \leq 2, \gamma \leq \frac{1}{2}, d=N^{\delta}$ and $\delta<\frac{1}{2}-\frac{\gamma}{2}$ and let $M=10^{s}$ for $r \leq s \leq d(N)$, then for short vector $\left(d_{s}, t_{s}\right)$ of the quadratic form,

$$
q(x, y)=M\left(\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1} x-y\right)^{2}+\frac{1}{M} x^{2}
$$

take $\varphi_{s}(N)=\frac{e d_{s}-1}{t_{s}}, x_{s}=\frac{N-\varphi_{s}(N)+1}{2}$ and $y_{s}=\sqrt{x_{s}{ }^{2}-N}$. If $x_{s}, y_{s} \in \mathbb{N}$, then $\left(d_{s}, t_{s}\right)$ is the required short vector giving the private key $(q, p, d)=\left(x_{s}-y_{s}, x_{s}+y_{s}, d_{s}\right)$.

Proof. The proof is same as the proof of Theorem 3.5.
An algorithm for the implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with lattice reduction is given in the following:

Algorithm:

Step 1: Start
Step 2: Input e, N.
Step 3: Compute $\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ to $d(N)$ decimals, where

$$
r= \begin{cases}\frac{d(N)}{2} & \text { if } d(N) \\ \text { is even } \\ \frac{d(N)+1}{2} & \text { if } d(N) \text { is odd. }\end{cases}
$$

Step 4: Set $i=r$.
Step 5: Set $M=10^{i}, \frac{\bar{e}}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}=\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}$ corrected to i decimal places.

Step 6: Set

$$
B=\left[\begin{array}{cc}
\frac{1}{\sqrt{M}} & 0 \\
\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1} \sqrt{M} & -\sqrt{M}
\end{array}\right]
$$

Apply LLL algorithm to B^{T} and then obtain unimodular transformation matrix $U=B^{-1}\left(B^{\prime}\right)^{T}$, where B^{\prime} is the resultant obtained using LLL

$$
U=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Set $t_{i}=|c|, d_{i}=|a|$
Step 7: Compute $\varphi_{i}(N)=\frac{e d_{i}-1}{t_{i}}, x_{i}=\frac{N-\varphi_{i}(N)+1}{2}, y_{i}=\sqrt{x_{i}^{2}-N}$.
Step 8: If $\varphi_{i}(N), x_{i}, y_{i} \in N$, then $(q, p, d)=\left(x_{i}-y_{i}, x_{i}+y_{i}, d_{i}\right)$, otherwise $i=i+1$ and go to Step 5 .
Example 3.7. Consider $(e, N)=(1242349,2035153)$. Then the decimal representation of $\left(\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{p}}\right) \sqrt{N}+1}\right)$ which is equal to $0.611353789122353 \ldots$. Now, as N has 7 digits and is odd, choose $M=10^{\frac{d(N)+1}{2}}=10^{4}$ and find the decimal expansion of $\left(\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right)$ corrected to 4 decimals. Thus, $\frac{\bar{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}=\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}=0.6114$. Choosing $M=10^{4}$, we didn't get the desired convergent. Hence update M as $M=10^{5}$ and find the next convergent by considering 5 decimals of $\left(\frac{e}{N-\left(\sqrt{\bar{\rho}}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right), \bar{\alpha}=0.61135$. Now construct the matrix B and apply LLL algorithm to B^{T} :

$$
B^{T}=\left[\begin{array}{cc}
9815920 / 3104066453 & 1633031337 / 8447041 \\
0 & -2709261463 / 8567437
\end{array}\right]
$$

Now, the LLL matrix, B^{\prime} is given by :

$$
B^{\prime}=\left[\begin{array}{cc}
2247845680 / 3104066453 & -19452456259019 / 72369491603917 \\
-2424532240 / 3104066453 & -78954087169010 / 72369491603917
\end{array}\right]
$$

Finally, the unimodular integral transformation matrix is given by:

$$
U=\left[\begin{array}{ll}
229 & -247 \\
140 & -151
\end{array}\right]
$$

Now, required convergent is given by, $\frac{t}{d}=\left|\frac{140}{229}\right|=\frac{140}{229}$ and we have:

$$
\begin{aligned}
\varphi_{s}(N) & =\frac{e d-1}{t} \\
& =\frac{(1242349)(229)-1}{140} \\
& =2032128, \\
x_{s} & =\frac{N-\varphi_{s}(N)+1}{2}=1513 \\
y_{s} & =\sqrt{x_{s}^{2}-N}=504 .
\end{aligned}
$$

Therefore as $\varphi_{s}(N), x_{s}$ and y_{s} are integers we have the private key given as $(q, p, d)=\left(x_{s}-y_{s}, x_{s}+y_{s}, d\right)=(1009,2017,229)$.
This process of varying M_{s} in the range $N^{\frac{1}{2}}<M_{s}<N$ and applying LLL to obtain $\frac{t_{s}}{d_{s}}$ leading to private key is depicted in the following table:

M	$\left(\frac{-}{e} \frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right) \sqrt{N}+1}\right)$	$\left\|\begin{array}{cc} \begin{array}{\|l\|l\|} \text { Unimodular } & \text { ma- } \\ \text { trix } & \text { using } \end{array} & \text { LLL } \\ \mathrm{U} & \end{array}\right\|$	$\frac{t_{s}}{d_{s}}=\left\|\frac{c}{a}\right\|$	$\varphi_{s}(N)=\frac{e d_{s}-1}{t_{s}}$	$x_{s}=\frac{N-\varphi_{s}(N)+1}{2}$	$y_{s}=\sqrt{x_{s}^{2}-N}$	$\begin{aligned} & (q, p, d)=\left(x_{s}-\right. \\ & \left.y_{s}, x_{s}+y_{s}, d_{s}\right) / \\ & \text { Set } M \text { to iterate } \end{aligned}$
$M=10^{4}$	0.6114	$\left\lvert\, \begin{aligned} & U \\ & {\left[\begin{array}{ll}-18 & 175 \\ -11 & 107\end{array}\right]}\end{aligned}\right.$	$\frac{11}{18}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	Set $M=10^{5}$
$M=10^{5}$	0.61135	$\left.\right\|^{U}\left[\begin{array}{ll}229 & -247 \\ 140 & -151\end{array}\right]=$	$\frac{140}{229}$	2032128	1513	504	(1009, 2017,229)

Table 2: Implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with Lattice Reduction.

4. Conclusion

The main idea of Wiener Attack that whenever $d<\frac{N^{1 / 4}}{\sqrt{6}}$, the fraction $\frac{t}{d}$ is a convergent of $\frac{e}{N}$ and hence it is interpreted as finding (d, t) as a short vector by reducing the quadratic form $q(x, y)=M\left(\frac{\bar{e}}{N} x-y\right)^{2}+\frac{1}{M} x^{2}$ for an appropriate choice of M in our paper [8]. In this paper, we adapt these ideas to Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d<N^{\frac{3}{4}-\beta}, p-q=N^{\beta}$ and $N^{\frac{1}{4}} \leq d<N^{\left(\frac{1-\gamma}{2}\right)}, \gamma \leq \frac{1}{2}$ with lattice reduction. The continued fraction based arguments of Wiener Attack extensions are implemented with the lattice based arguments and the $L L L$ algorithm is used for reducing a basis of a lattice. This method is implemented as $L L L$ comes close to solve $S V P$ in smaller dimensions.

References

[1] Tom M. Apostol, Introduction to Analytical Number Theory, Springer International student edition, Narosa Publishing House.
[2] David M. Burton, Elementary Number Theory, Second Edition, Universal Book Stall, New Delhi, (2002).
[3] H. Cohen, A course in Computational Algebraic Number Theory, Graduate Texts in Math. 138. Springer, (1996).
[4] S. C. Coutinho, The Mathematics of Ciphers, University Press.
[5] H. Davenport, The Higher Arithmetic, Cambridge University Press, Eighth edition, (2008).
[6] Jeffery Hoftstein, Jill Pipher and Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer, (2008).
[7] P. Anuradha Kameswari and L. Jyotsna, Extending Wiener's Extension to RSA-Like Cryptosystems over Elliptic Curves, British Journal of Mathematics and Computer Science, 14(1)(2016), 1-8.
[8] P. Anuradha Kameswari and S. B. T. Sundari Katakam, Implementing Wiener Attack with Lattice Reduction, Journal of Global Research in Mathematical Archives, 6(1)(2019), 7-14.
[9] Neal Koblitz, A course in Number Theory and cryptography, Graduate Texts in Mathematics, Second edition, Springer.
[10] A. K. Lenstra, H. W. Lenstra and L. Lovasz, Factoring Polynomials with Rational coefficients, Math. Ann., 261(1982), 515-534.
[11] Phong Q. Nguyen and Brigitte Vallee, The LLL Algorithm, Survey and Applications, Springer, (2010).
[12] Nigel P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical Society, (1998).
[13] Michael J. Wiener, Cryptanalysis of short RSA secret exponent, IEEE. Transaction on Information Theory, 36(3)(1990), 553-558.

[^0]: * E-mail: panuradhakameswari@yahoo.in

