

International Journal of Mathematics And its Applications

Implementing Wiener's Extensions in the Range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$ and $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $\gamma \leq \frac{1}{2}$ with Lattice Reduction

P. Anuradha Kameswari^{1,*} and S. B. T. Sundari Katakam¹

1 Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India.

Abstract: In this paper, Wiener Attack extensions on RSA are implemented with approximation via lattice reduction. The continued fraction based arguments of Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$ and $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $|\rho q - p| \leq \frac{N^{\gamma}}{16}$, $1 \leq \rho \leq 2$, $\gamma \leq \frac{1}{2}$, are implemented with the Lattice based arguments and the LLL algorithm is used for reducing a basis of a lattice.

MSC: 11T71, 94A60.

Keywords: Lattice reduction, LLL algorithm, quadratic form, Wiener Attack extensions. © JS Publication.

1. Introduction

Wiener's attack on RSA applies when the private exponent d is less than $N^{\frac{1}{4}}$. Whenever $d < \frac{N^{1/4}}{\sqrt{6}}$, the fraction $\frac{t}{d}$ is a convergent of $\frac{e}{N}$ and hence it is an approximation of $\frac{e}{N}$ and thus (d,t) may be obtained as a short vector by reducing the quadratic form $q(x,y) = M\left(\frac{\bar{e}}{N}x - y\right)^2 + \frac{1}{M}x^2$ for an appropriate choice of M [8]. Now we adapt these ideas to Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p - q = N^{\beta}$ and $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $\gamma \leq \frac{1}{2}$ with lattice reduction.

2. Implementing Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$ with Lattice Reduction

This section shows that for the bound of private exponent d in RSA, extended to N^{δ} , where $\frac{1}{4} \leq \delta < \frac{3}{4} - \beta$ and $\Delta = p - q = N^{\beta}$, $\beta \in (\frac{1}{4}, \frac{1}{2})$, the attack may be implemented with lattice reduction. We first recall an estimation for $\varphi(N)$ and show that with this estimation we may consider a quadratic form and using this quadratic form, (d, t) may be obtained as a short vector of the quadratic form for some appropriate M.

Lemma 2.1. Let N = pq where p, q are primes such that $q and <math>\Delta = p - q$. Then 0 .

Lemma 2.2. An estimation of $\varphi(N)$ when q is given by

$$N + 1 - \frac{3}{\sqrt{2}}N^{\frac{1}{2}} < \varphi(N) < N + 1 - 2N^{\frac{1}{2}}.$$

E-mail: panuradhakameswari@yahoo.in

This estimation plays an important role in the following theorem.

Theorem 2.3. Let $p - q = \Delta = N^{\beta}$ and $d = N^{\delta}$, where $q , <math>d < N^{\frac{3}{4} - \beta}$. Then

$$\left|\frac{e}{N+1-2N^{\frac{1}{2}}}-\frac{t}{d}\right|<\frac{1}{2d^2}$$

Hence by approximation theorem it follows that $\frac{t}{d}$ is a convergent of $\frac{e}{N+1-2N^{\frac{1}{2}}}$. Thus, $\frac{t}{d}$ is obtained from the list of convergent of $\frac{e}{N+1-2N^{\frac{1}{2}}}$ using continued fractions. Wiener's extension attack on RSA basically searches the convergent $\frac{t}{d}$ from the class of convergent of $\frac{e}{N+1-2N^{\frac{1}{2}}}$ that lead to (p,q,d) whenever $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$.

Theorem 2.4 (Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$). Let $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$ and for any convergent $\frac{t'}{d'}$ of $\frac{e}{N+1-2N^{\frac{1}{2}}}$, take $\varphi'(N) = \frac{ed'-1}{t'}$, $x' = \frac{N-\varphi'(N)+1}{2}$ and $y' = \sqrt{x'^2 - N}$. If $x', y' \in \mathbb{N}$, then the private key (q, p, d) = (x' - y', x' + y', d').

Therefore, the search of $\frac{t}{d}$ leading to solution (p,q,d) may be obtained from the class of convergent of $\frac{e}{N+1-2N^{\frac{1}{2}}}$. As convergent are approximations, the fraction $\frac{t}{d}$ is a rational approximation of $\frac{e}{N+1-2N^{\frac{1}{2}}}$. In the following theorem, we prove that (d,t) may be obtained as a short vector of quadratic form $q(x,y) = M(\bar{\alpha}x-y)^2 + \frac{1}{M}x^2$ for $\alpha = \frac{e}{N+1-2N^{\frac{1}{2}}}$.

Theorem 2.5. Let N = pq, for $q , be the modulus for RSA with <math>N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$, $\beta \in (\frac{1}{4}, \frac{1}{2})$, e be the public enciphering exponent and d be the deciphering exponent, then for t such that $ed - 1 = \varphi(N)t$ and $\frac{t}{d}$, (d,t) is a short vector of a lattice \mathbf{Z}^2 equipped with a quadratic form

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$$

for an appropriate M.

Proof. First note for each choice of $M = 10^l$ for some l, and $\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}$ decimal approximation of $\frac{e}{N+1-2N^{\frac{1}{2}}}$ to the precision $\frac{1}{M}$ we reduce the lattice \mathbf{Z}^2 with a quadratic form q(x,y) in the variables x, y given as

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$$

the 2-dimensional Gram-matrix for the above is given as

$$A = \begin{bmatrix} \left(\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}\right)^2 M + \frac{1}{M} - \left(\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}\right) M \\ - \left(\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}\right) M & M \end{bmatrix}$$

and note the corresponding lattice in R^2 is given by the basis as columns of matrix B given as

$$B = \begin{bmatrix} \frac{1}{\sqrt{M}} & 0\\ \\ -\\ \left(\frac{e}{N+1-2N^{\frac{1}{2}}}\right)\sqrt{M} & -\sqrt{M} \end{bmatrix}$$

which may be deduced by the results in *Lattices and Quadratic Forms* of [3]. Now applying LLL algorithm to B^T , we get reduced basis matrix B' and repeating the arguments as above we have a integer unimodular transformation matrix U

$$U = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

with (a, c) as short vector obtained for the choice of $M = 10^l$. Now note for any (v, u) such that $\frac{u}{v}$ is an approximation of $\frac{e}{N+1-2N^{\frac{1}{2}}}$, we have

$$q(v,u) = M \left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}v - u\right)^2 + \frac{1}{M}v^2$$

= $Mv^2 \left(\frac{\bar{e}}{N+1-2^{N^{\frac{1}{2}}}} - \frac{u}{v}\right)^2 + \frac{1}{M}v^2$
= $O\left(\frac{M}{v^2}\right) + O\left(\frac{v^2}{M}\right) + O(1)$

For any short vector (v, u) as q(u, v) = O(1), note for $M \approx d^2$ the above holds for $v \ni v \approx d$. Therefore, by Theorem 2.3 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N+1-2N^{\frac{1}{2}}}$, (d, t) is a short vector for the given quadratic form $q(x, y) = M\left(\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$, for $M \approx d^2$.

Note 1. The search of convergent $\frac{t}{d}$ leading to solution (p,q,d) may be obtained from the class of short vectors (d,t) of

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$$

for an appropriate choice of M.

In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be interpreted as Wiener's extension with lattice reduction.

Theorem 2.6 (Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$ with Lattice Reduction). Let N = pq, q be the modulus for RSA, <math>e be the public enciphering exponent, d be the deciphering exponent for $N^{\frac{1}{4}} < d < N^{\frac{3}{4}-\beta}$ and $p-q = \Delta = N^{\beta}$, then there is a M such that (d,t) is a short vector of the quadratic form,

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x-y\right)^2 + \frac{1}{M}x^2$$

where $\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}}$ is a decimal approximation of $\frac{e}{N+1-2N^{\frac{1}{2}}}$ to precision $\frac{1}{M}$.

Proof. By Theorem 2.3 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N+1-2N^{\frac{1}{2}}}$, we have by above theorem that (d, t) is a short vector for a quadratic form

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$$

for $M = 10^l$ for some appropriate l, such that $d \approx \sqrt{M}$. The search for this M is described in the following: Let

$$r = \begin{cases} \frac{d(N)}{2} & \text{if } d(N) \text{ is even,} \\ \\ \frac{d(N)+1}{2} & \text{if } d(N) \text{ is odd} \end{cases}$$

where d(N) is the number of digits in N. Then for all s with $r \leq s < d(N)$, note $M_s = 10^s$ is such that $N^{\frac{1}{2}} < M_s < N$. Now note as d is such that $N^{\frac{1}{4}} < d < N^{\frac{3}{4}-\beta}$ for $\beta \in (\frac{1}{4}, \frac{1}{2})$. Considering the maximum upper bound for d at $\beta = \frac{1}{4}$, we have $N^{\frac{1}{4}} < d < N^{\frac{1}{2}}$, this implies $N^{\frac{1}{2}} < d^2 < N$. Therefore, d^2 and M_s lie in the same range i.e., $N^{\frac{1}{2}} < M_s, d^2 < N$. Now varying s from r to d(N), note as M_s gets close to d^2 , $M_s \approx d^2$ i.e., $s \approx d(d^2)$ the short vector corresponding to such M_s gives the required (d, t). Note such M_s can be reached with utmost $\frac{d(N)}{2}$ variations for s. Further note for $d > N^{\frac{1}{2}}$, as d does not satisfy the hypothesis of theorem, note $\frac{t}{d}$ of the required (d, t) may not be a convergent of $\frac{e}{N+1-2N^{\frac{1}{2}}}$, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic form for some M for $d > N^{\frac{1}{2}}$. In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:

Theorem 2.7. Let $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$ and let $M = 10^s$ for $r \leq s \leq d(N)$, then for short vector (d_s, t_s) of the quadratic form,

$$q(x,y) = M\left(\frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}x - y\right)^2 + \frac{1}{M}x^2$$

take $\varphi_s(N) = \frac{ed_s - 1}{t_s}$, $x_s = \frac{N - \varphi_s(N) + 1}{2}$ and $y_s = \sqrt{x_s^2 - N}$. If $x_s, y_s \in \mathbb{N}$, then (d_s, t_s) is the required short vector giving the private key $(q, p, d) = (x_s - y_s, x_s + y_s, d_s)$.

Proof. Suppose $x_s, y_s \in \mathbb{N}$ for some s in range $1 \leq s \leq r$, then by definition of y_s in theorem, we have

$$N = x_s^2 - y_s^2$$
$$= (x_s + y_s)(x_s - y_s).$$

Since $x_s + y_s, x_s - y_s \in \mathbb{N}$, they are the factors of N, i.e., $x_s + y_s, x_s - y_s$ are 1, p, q or N. Now as p < q we have two cases:

- (i). $x_s + y_s = N, x_s y_s = 1,$
- (ii). $x_s + y_s = p, x_s y_s = q.$

Note Case (i) is not possible, for as $x_s + y_s = N$ and $x_s - y_s = 1$, then $\frac{N+1}{2} = x_s$,

and
$$x_{s} = \frac{N - \varphi_{s}(N) + 1}{2}$$
$$\Rightarrow \frac{N+1}{2} = \frac{N - \varphi_{s}(N) + 1}{2}$$
$$\Rightarrow \frac{ed_{s} - 1}{t} = 0$$
$$\Rightarrow ed_{s} = 1$$
$$\Rightarrow e = 1$$

which is not possible. Therefore, Case (i) is not possible since e > 1. Thus, the only possible Case is (ii). Therefore and we have $x_s + y_s = p$, $x_s - y_s = q$, whenever $x_s, y_s \in \mathbb{N}$. Now, we show that $d = d_s$. By definition of x_s we have

$$x_s = \frac{N - \varphi_s(N) + 1}{2}$$

$$\Rightarrow \varphi_s(N) = N - 2x_s + 1$$

$$= N - (q + p) + 1$$

$$= \varphi(N)$$

$$\Rightarrow d_s \equiv d \mod \varphi(N)$$

Now note that the short vector (d, t) is either (d_s, t_s) or obtained as a short vector in the later iterations for some $M = 10^l$, for l > s. Then as $M \approx d^2$, we have $d_s \leq d$. Therefore as $d < \varphi(N)$, we have $d_s \leq d < \varphi(N)$. Hence $d_s \equiv d \mod \varphi(N) \Rightarrow$ $d = d_s$.

An algorithm for the implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$ with lattice reduction is given in the following:

Algorithm:

Step 1: Start

Step 2: Input e, N.

Step 3: Compute $\frac{e}{N+1-2N^{\frac{1}{2}}}$ to d(N) decimals, where

$$r = \begin{cases} \frac{d(N)}{2} & \text{if } d(N) \text{ is even,} \\ \frac{d(N)+1}{2} & \text{if } d(N) \text{ is odd.} \end{cases}$$

Step 4: Set i = r.

Step 5: Set $M = 10^i$, $\frac{\overline{e}}{N+1-2N^{\frac{1}{2}}} = \frac{e}{N+1-2N^{\frac{1}{2}}}$ corrected to *i* decimal places. **Step 6:** Set

$$B = \begin{bmatrix} \frac{1}{\sqrt{M}} & 0\\ \frac{\overline{e}}{N+1-2N^{\frac{1}{2}}} & -\sqrt{M} \end{bmatrix}$$

Apply LLL algorithm to B^T and then obtain unimodular transformation matrix $U = B^{-1}(B')^T$, where B' is the resultant obtained using LLL

$$U = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Set $t_i = |c|, d_i = |a|$

Step 7: Compute $\varphi_i(N) = \frac{ed_i - 1}{t_i}, x_i = \frac{N - \varphi_i(N) + 1}{2}, y_i = \sqrt{x_i^2 - N}$. Step 8: If $\varphi_i(N), x_i, y_i \in N$, then $(q, p, d) = (x_i - y_i, x_i + y_i, d_i)$, otherwise i = i + 1 and go to Step 5.

Example 2.8. Consider (e, N) = (948120312068323160758410969049, 1774710840319667979443236768633). Then the decimal representation of $\left(\frac{e}{N+1-2\sqrt{N}}\right)$ which is equal to 0.53423931974041775745656621940281027437235911349... Now, as N has 30 digits and is even, choose $M = 10^{\frac{d(N)}{2}} = 10^{15}$ and find the decimal expansion of $\left(\frac{e}{N+1-2\sqrt{N}}\right)$ corrected to 15 decimals. Thus, $\left(\frac{\bar{e}}{N+1-2\sqrt{N}}\right) = 0.534239319740418$. Now construct the matrix B and apply LLL algorithm to B^T :

Now, the LLL matrix, B' is given by :

Finally, the unimodular integral transformation matrix is given by:

$$U = \begin{bmatrix} 17420644 & 16654113 \\ 9306793 & 8897282 \end{bmatrix}$$

Thus, the convergent obtained is $\frac{t}{d} = |\frac{9306793}{17420644}| = \frac{9306793}{17420644}$ and do not give integer values for $\varphi_s(N), x_s$ and y_s . Therefore, discarding this convergent, we update M to 10^{16} and consider 16 decimals of $\left(\frac{e}{N+1-2\sqrt{N}}\right)$. Thus, $\left(\frac{e}{N+1-2\sqrt{N}}\right)$

0.5342393197404178. Now proceeding as above, note we obtain the same convergent, so we again discard this convergent and next update M to 10^{17} and consider 17 decimals of the $\left(\frac{e}{N+1-2\sqrt{N}}\right)$. Thus, $\left(\frac{e}{N+1-2\sqrt{N}}\right) = 0.53423931974041776$. Now construct the matrix B and apply LLL algorithm to B^T :

$$B^{T} = \begin{bmatrix} 27272480621782245960612/8624315620763702785491703096421 & 4334864986046/25659 \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & &$$

Now, the LLL matrix, B^\prime is given by :

$$B' = \begin{bmatrix} 2829719853610307547623124167796/8624315620763702785491703096421 & -271238245164079764474912938/647701315451232527118109041 \\ & \\ -13673495092142570585715361164852/8624315620763702785491703096421 & -221129753178901684114343038/215900438483744175706036347 \end{bmatrix}$$

Finally, the unimodular integral transformation matrix is given by:

$$U = \begin{bmatrix} 103757333 & -501366021 \\ \\ 55431247 & -267849442 \end{bmatrix}$$

_

Now, required convergent is given by, $\frac{t}{d} = \left| \frac{-55431247}{103757333} \right| = \frac{55431247}{103757333}$ and we have

$$\begin{split} \varphi_s(N) &= \frac{ed-1}{t} = \frac{(948120312068323160758410969049)(103757333) - 1}{55431247} \\ &= 1774710840319665277283460346228 \\ x_s &= \frac{N-\varphi_s(N)+1}{2} = 1351079888211203 \\ y_s &= \sqrt{x_s^2 - N} = 225179981368524 \end{split}$$

Therefore as $\varphi_s(N), x_s$ and y_s are integers we have the private key given as

$$(q, p, d) = (x_s - y_s, x_s + y_s, d)$$

= (1125899906842679, 1576259869579727, 103757333).

This process of varying M_s in the range $N^{\frac{1}{2}} < M_s < N$ and applying LLL to obtain $\frac{t_s}{d_s}$ leading to private key is depicted in the following table:

$(q, p, d) = (x_s - y_s, x_s + y_s, d_s)/\text{Set } M$ to iterate	Set $M = 10^{16}$	Set $M = 10^{17}$	(1125899906842679, 1576259869579727, 103757333)
$y_s = \sqrt{x_s^2 - N}$	∉ N	¢N	3225179981368524
$\frac{x_s}{N-\varphi_s(N)+1} = \frac{2}{2}$	¢ N	¢ N	. 135107988821120:
$\varphi_s(N) = \frac{ed_s - 1}{t_s}$	¢ N	¢ N	1774710840319665277283460 346228
$\frac{t_s}{d_s} = \left \frac{c}{a} \right $	$\frac{9306793}{17420644}$	$\frac{9306793}{17420644}$	$= \frac{55431247}{103757333}$
Jnimodular matrix using LLL $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	$J = \begin{bmatrix} 17420644 & 16654113 \\ 9306793 & 8897282 \end{bmatrix}$	$J = \begin{bmatrix} 17420644 & 103757333 \\ 9306793 & 55431247 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 103757333 \\ 55431247 \\ -267849442 \end{bmatrix} =$
$\bar{\alpha} = \frac{\bar{e}}{N+1-2N^{\frac{1}{2}}}$	0.534239319740418	0.5342393197404178	0.53423931974041776
M	$M = 10^{15}$	$M = 10^{16}$	$M = 10^{17}$

'n.	
ctic	
npe	
° Re	
tice	
Lat	
ith	
β	
43	
\sim	
p	
N	
ange	
e ra	
ı th	
n ii	
nsio	
xteı	
's e	
ner	
Wie	
of	
ion	
ıtat	
meı	
ıple	
In	
e 1:	
labl	
E	

3. Implementing Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $\gamma \leq \frac{1}{2}$ with Lattice Reduction

For q , the maximum difference between <math>p and q is \sqrt{N} . In this section, if $|\rho q - p| \le \frac{N^{\gamma}}{16}$ for $1 \le \rho \le 2$, $\gamma \le \frac{1}{2}$, then the RSA is insecure when $d = N^{\delta}$ and $\delta < \frac{1}{2} - \frac{\gamma}{2}$.

Lemma 3.1. Let $|p - \rho q| \leq \frac{N^{\gamma}}{16}$, where $\gamma \leq \frac{1}{2}$ and $1 \leq \rho \leq 2$. Then

$$\left| p + q - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}} \right) \sqrt{N} \right| < \frac{N^{\gamma}}{8}$$

Theorem 3.2. Let $|p - \rho q| \leq \frac{N^{\gamma}}{16}$ with $1 \leq \rho \leq 2, \ \gamma \leq \frac{1}{2}$ and $d = N^{\delta}$ and $\delta < \frac{1}{2} - \frac{\gamma}{2}$ then

$$\left|\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1} - \frac{t}{d}\right| \le \frac{1}{2d^2}$$

Hence by approximation theorem it follows that $\frac{t}{d}$ is a convergent of $\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}$. Thus, $\frac{t}{d}$ is obtained from the list of convergent of $\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}$ using continued fractions. This Wiener's extension attack on RSA basically searches the convergent $\frac{t}{d}$ from the class of convergent of $\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}$ that lead to (p, q, d) whenever $\delta < \frac{1}{2} - \frac{\gamma}{2}$.

Theorem 3.3 (Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$). Let $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$ and for any convergent $\frac{t'}{d'}$ of, $\frac{e}{N-(\sqrt{\rho}+\frac{1}{\sqrt{\rho}})\sqrt{N+1}}$ take $\varphi'(N) = \frac{ed'-1}{t'}, x' = \frac{N-\varphi'(N)+1}{2}$ and $y' = \sqrt{x'^2 - N}$. If $x', y' \in \mathbb{N}$, then the private key (q, p, d) = (x' - y', x' + y', d').

Therefore, the search of $\frac{t}{d}$ leading to solution (p, q, d) may be obtained from the class of convergent of $\frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1}$. As convergent are approximations, the fraction $\frac{t}{d}$ is a rational approximation of $\frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1}$. In the following theorem, we prove that (d, t) may be obtained as a short vector of quadratic form $q(x, y) = M (\bar{\alpha}x - y)^2 + \frac{1}{M}x^2$ for $\alpha = \frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1}$. **Theorem 3.4.** Let N = pq, for $q be the modulus for RSA and <math>N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$, e be the public enciphering exponent and d be the deciphering exponent. Then for t such that $ed - 1 = \varphi(N)t$, (d, t) is a short vector of a lattice \mathbb{Z}^2 equipped with a quadratic form

$$q(x,y) = M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

for an appropriate M.

Proof. First note for each choice of $M = 10^l$ for some l, $\frac{\overline{e}}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N+1}}$ and decimal approximation of $\frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N+1}}$ to the precision $\frac{1}{M}$ we reduce the lattice \mathbf{Z}^2 with a quadratic form q(x, y) in the variables x, y given as and

$$q(x,y) = M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

the 2-dimensional Gram-matrix for the above is given as

$$A = \begin{bmatrix} \left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\right)^2 M + \frac{1}{M} - \left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\right) M \\\\ - \left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\right) M \end{bmatrix} M$$

and note the corresponding lattice in \mathbb{R}^2 is given by the basis as columns of matrix \mathbb{B} given as

$$B = \begin{bmatrix} \frac{1}{\sqrt{M}} & 0\\\\ \left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\right)\sqrt{M} & -\sqrt{M} \end{bmatrix}$$

which may be deduced by the results in *Lattices and Quadratic Forms* of [4]. Now applying LLL algorithm to B^T , we get reduced basis matrix B' and repeating the arguments as above we have a integer unimodular transformation matrix U

$$U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

with (a, c) as short vector obtained for the choice of $M = 10^l$. Now note for any (v, u) such that $\frac{u}{v}$ is an approximation of $\frac{e}{N}$, we have

$$\begin{aligned} q(v,u) &= M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}v - u\right)^2 + \frac{1}{M}v^2 \\ &= Mv^2\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1} - \frac{u}{v}\right)^2 + \frac{1}{M}v^2 \\ &= O(\frac{M}{v^2}) + O(\frac{v^2}{M}) + O(1) \end{aligned}$$

For any short vector (v, u) as q(u, v) = O(1), note for $M \approx d^2$ the above holds for $v \ni v \approx d$. Therefore by Theorem 3.2 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}$ and (d, t) is a short vector for the given quadratic form $q(x, y) = M\left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$, for $M \approx d^2$.

Note 2. The search of convergent $\frac{t}{d}$ leading to solution (p,q,d) may be obtained from the class of short vectors

$$q(x,y) = M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

for an appropriate choice of M.

In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be interpreted as Wiener Attack extension via lattice reduction.

Theorem 3.5 (Wiener's Extension in the Range $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$ with Lattice Reduction). Let N = pq, q be the modulus for RSA, <math>e be the public enciphering exponent, d be the deciphering exponent such that $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$, $|p - \rho q| \leq \frac{N^{\gamma}}{16}, 1 \leq \rho \leq 2$, then there is a M such that (d, t) is a short vector of a quadratic form,

$$q(x,y) = M\left(\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

 $\frac{\overline{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1} \text{ is a decimal approximation of } \frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1} \text{ to precision } \frac{1}{M}.$

Proof. By Theorem 3.2 as the required t, d are such that $\frac{t}{d}$ is an approximation to $\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}$, we have by above theorem that (d, t) is a short vector for a quadratic form

$$q(x,y) = M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

for $M = 10^l$ for some appropriate l, such that $d \approx \sqrt{M}$. The search for this M is described below: Let

$$r = \begin{cases} \frac{d(N)}{2} & \text{if } d(N) \text{ is even,} \\ \frac{d(N)+1}{2} & \text{if } d(N) \text{ is odd} \end{cases}$$

where d(N) is the number of digits in N. Then for all s with $r \leq s < d(N)$, note $M_s = 10^s$ is such that $N^{\frac{1}{2}} < M_s < N$. Now note as d is such that $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $|\rho q - p| \leq \frac{N^{\gamma}}{16}$, $1 \leq \rho \leq 2$, $\gamma \leq \frac{1}{2}$, considering the maximum upper bound for d at $\gamma \approx 0$, we have $N^{\frac{1}{4}} < d < N^{\frac{1}{2}}$, this implies $N^{\frac{1}{2}} < d^2 < N$. Therefore, d^2 and M_s lie in the same range i.e., $N^{\frac{1}{2}} < M_s, d^2 < N$. Now varying s from r to d(N), note as M_s gets close to d^2 , $M_s \approx d^2$ i.e., $s \approx d(d^2)$, the short vector corresponding to such M_s gives the required (d, t). Note such M_s can be reached with utmost $\frac{d(N)}{2}$ variations for s. Further note for $d > N^{\frac{1}{2}}$, as d does not satisfy the hypothesis of theorem, note $\frac{t}{d}$ of the required (d, t) may not be a convergent of $\frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N+1}}$, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic form for some M for $d > N^{\frac{1}{2}}$.

In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:

Theorem 3.6. Let $|p - \rho q| \leq \frac{N^{\gamma}}{16}$ with $1 \leq \rho \leq 2$, $\gamma \leq \frac{1}{2}$, $d = N^{\delta}$ and $\delta < \frac{1}{2} - \frac{\gamma}{2}$ and let $M = 10^s$ for $r \leq s \leq d(N)$, then for short vector (d_s, t_s) of the quadratic form,

$$q(x,y) = M\left(\frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}x - y\right)^2 + \frac{1}{M}x^2$$

take $\varphi_s(N) = \frac{ed_s - 1}{t_s}, x_s = \frac{N - \varphi_s(N) + 1}{2}$ and $y_s = \sqrt{x_s^2 - N}$. If $x_s, y_s \in \mathbb{N}$, then (d_s, t_s) is the required short vector giving the private key $(q, p, d) = (x_s - y_s, x_s + y_s, d_s)$.

Proof. The proof is same as the proof of Theorem 3.5.

An algorithm for the implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$ with lattice reduction is given in the following:

Algorithm:

Step 1: Start

Step 2: Input e, N.

Step 3: Compute $\frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1}$ to d(N) decimals, where

$$r = \begin{cases} \frac{d(N)}{2} & \text{if } d(N) \text{ is even,} \\ \frac{d(N)+1}{2} & \text{if } d(N) \text{ is odd.} \end{cases}$$

Step 4: Set i = r.

Step 5: Set $M = 10^i$, $\frac{\overline{e}}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1} = \frac{e}{N - (\sqrt{\rho} + \frac{1}{\sqrt{\rho}})\sqrt{N} + 1}$ corrected to *i* decimal places.

Step 6: Set

$$B = \begin{bmatrix} \frac{1}{\sqrt{M}} & 0\\ \\ \\ \\ \frac{\bar{e}}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\sqrt{M} & -\sqrt{M} \end{bmatrix}$$

Apply LLL algorithm to B^T and then obtain unimodular transformation matrix $U = B^{-1}(B')^T$, where B' is the resultant obtained using LLL

$$U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Set $t_i = |c|, d_i = |a|$

Step 7: Compute $\varphi_i(N) = \frac{ed_i - 1}{t_i}, x_i = \frac{N - \varphi_i(N) + 1}{2}, y_i = \sqrt{x_i^2 - N}.$

Step 8: If $\varphi_i(N)$, $x_i, y_i \in N$, then $(q, p, d) = (x_i - y_i, x_i + y_i, d_i)$, otherwise i = i + 1 and go to Step 5.

Example 3.7. Consider (e, N) = (1242349, 2035153). Then the decimal representation of $\left(\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right)\sqrt{N}+1}\right)$ which is equal to 0.611353789122353.... Now, as N has 7 digits and is odd, choose $M = 10^{\frac{d(N)+1}{2}} = 10^4$ and find the decimal expansion of $\left(\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right)\sqrt{N}+1}\right)$ corrected to 4 decimals. Thus, $\frac{\overline{e}}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right)\sqrt{N}+1} = \frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right)\sqrt{N}+1} = 0.6114$. Choosing $M = 10^4$, we didn't get the desired convergent. Hence update M as $M = 10^5$ and find the next convergent by considering 5 decimals of $\left(\frac{e}{N-\left(\sqrt{\rho}+\frac{1}{\sqrt{\rho}}\right)\sqrt{N}+1}\right)$, $\overline{\alpha} = 0.61135$. Now construct the matrix B and apply LLL algorithm to B^T :

$$B^{T} = \begin{bmatrix} 9815920/3104066453 & 1633031337/8447041 \\ \\ 0 & -2709261463/8567437 \end{bmatrix}$$

Now, the LLL matrix, B' is given by :

$$B' = \begin{bmatrix} 2247845680/3104066453 & -19452456259019/72369491603917 \\ \\ -2424532240/3104066453 & -78954087169010/72369491603917 \end{bmatrix}$$

Finally, the unimodular integral transformation matrix is given by:

$$U = \begin{bmatrix} 229 & -247 \\ 140 & -151 \end{bmatrix}$$

Now, required convergent is given by, $\frac{t}{d} = \mid \frac{140}{229} \mid = \frac{140}{229}$ and we have:

$$\begin{split} \varphi_s(N) &= \frac{ed-1}{t} \\ &= \frac{(1242349)(229)-1}{140} \\ &= 2032128, \\ x_s &= \frac{N-\varphi_s(N)+1}{2} = 1513 \\ y_s &= \sqrt{x_s^2 - N} = 504. \end{split}$$

Therefore as $\varphi_s(N), x_s$ and y_s are integers we have the private key given as $(q, p, d) = (x_s - y_s, x_s + y_s, d) = (1009, 2017, 229)$. This process of varying M_s in the range $N^{\frac{1}{2}} < M_s < N$ and applying LLL to obtain $\frac{t_s}{d_s}$ leading to private key is depicted in the following table:

M	$\left(\frac{e}{N - \left(\sqrt{\rho} + \frac{1}{\sqrt{\rho}}\right)\sqrt{N} + 1}\right)$	Unimodular trix using U	ma- LLL	$\frac{t_s}{d_s} = \mid \frac{c}{a} \mid$	$\varphi_s(N) = \frac{ed_s - 1}{t_s}$	$x_s = \frac{N - \varphi_s(N) + 1}{2}$	$y_s = \sqrt{x_s^2 - N}$	$(q, p, d) = (x_s - y_s, x_s + y_s, d_s)/$ Set M to iterate
$M = 10^4$	0.6114	$\begin{bmatrix} U \\ -18 & 175 \\ -11 & 107 \end{bmatrix}$	=	$\frac{11}{18}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	$\notin \mathbb{N}$	Set $M = 10^5$
$M = 10^5$	0.61135	$\begin{bmatrix} U \\ 229 & -247 \\ 140 & -151 \end{bmatrix}$	[]	$\frac{140}{229}$	2032128	1513	504	(1009, 2017,229)

Table 2: Implementation of Wiener's extension in the range $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}, \gamma \leq \frac{1}{2}$ with Lattice Reduction.

4. Conclusion

The main idea of Wiener Attack that whenever $d < \frac{N^{1/4}}{\sqrt{6}}$, the fraction $\frac{t}{d}$ is a convergent of $\frac{e}{N}$ and hence it is interpreted as finding (d, t) as a short vector by reducing the quadratic form $q(x, y) = M\left(\frac{\overline{e}}{N}x - y\right)^2 + \frac{1}{M}x^2$ for an appropriate choice of M in our paper [8]. In this paper, we adapt these ideas to Wiener Attack extensions in the range $N^{\frac{1}{4}} \leq d < N^{\frac{3}{4}-\beta}$, $p-q = N^{\beta}$ and $N^{\frac{1}{4}} \leq d < N^{(\frac{1-\gamma}{2})}$, $\gamma \leq \frac{1}{2}$ with lattice reduction. The continued fraction based arguments of Wiener Attack extensions are implemented with the lattice based arguments and the *LLL* algorithm is used for reducing a basis of a lattice. This method is implemented as *LLL* comes close to solve *SVP* in smaller dimensions.

References

- Tom M. Apostol, Introduction to Analytical Number Theory, Springer International student edition, Narosa Publishing House.
- [2] David M. Burton, *Elementary Number Theory*, Second Edition, Universal Book Stall, New Delhi, (2002).
- [3] H. Cohen, A course in Computational Algebraic Number Theory, Graduate Texts in Math. 138. Springer, (1996).
- [4] S. C. Coutinho, The Mathematics of Ciphers, University Press.
- [5] H. Davenport, The Higher Arithmetic, Cambridge University Press, Eighth edition, (2008).
- [6] Jeffery Hoftstein, Jill Pipher and Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer, (2008).
- [7] P. Anuradha Kameswari and L. Jyotsna, Extending Wiener's Extension to RSA-Like Cryptosystems over Elliptic Curves, British Journal of Mathematics and Computer Science, 14(1)(2016), 1-8.
- [8] P. Anuradha Kameswari and S. B. T. Sundari Katakam, Implementing Wiener Attack with Lattice Reduction, Journal of Global Research in Mathematical Archives, 6(1)(2019), 7-14.
- [9] Neal Koblitz, A course in Number Theory and cryptography, Graduate Texts in Mathematics, Second edition, Springer.
- [10] A. K. Lenstra, H. W. Lenstra and L. Lovasz, Factoring Polynomials with Rational coefficients, Math. Ann., 261(1982), 515-534.
- [11] Phong Q. Nguyen and Brigitte Vallee, The LLL Algorithm, Survey and Applications, Springer, (2010).
- [12] Nigel P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical Society, (1998).
- [13] Michael J. Wiener, Cryptanalysis of short RSA secret exponent, IEEE. Transaction on Information Theory, 36(3)(1990), 553-558.