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Abstract: In this paper, Wiener Attack extensions on RSA are implemented with approximation via lattice reduction. The continued
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fraction based arguments of Wiener Attack extensions in the range N2 < d < NZ_’B, p—q=NPand N1 <d< N 27),

lpg —p| < %, 1<p<2,v< %, are implemented with the Lattice based arguments and the LLL algorithm is used for

reducing a basis of a lattice.
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1. Introduction

N1/4
V6
convergent of % and hence it is an approximation of % and thus (d,t) may be obtained as a short vector by reducing the

, the fraction % is a

Wiener’s attack on RSA applies when the private exponent d is less than N 1. Whenever d < v

L

Mz2 for an appropriate choice of M [8]. Now we adapt these ideas to Wiener

quadratic form q(z,y) = M (%m — y)2 +

1
Attack extensions in the range N1 <d< N%fﬁ, p—q= NP and N1 <d< N(Tw), v < % with lattice reduction.

2. Implementing Wiener’s Extension in the Range Ni <d < Ni P
with Lattice Reduction

This section shows that for the bound of private exponent d in RSA, extended to N°, where i <o < %—ﬂ and A = p—q = N?,
B € (i, %), the attack may be implemented with lattice reduction. We first recall an estimation for p(N) and show that
with this estimation we may consider a quadratic form and using this quadratic form, (d,¢) may be obtained as a short
vector of the quadratic form for some appropriate M.

A2

Lemma 2.1. Let N = pq where p,q are primes such that g <p <2q and A=p—q. Then 0 <p+q— INZ < T
AN2

Lemma 2.2. An estimation of ¢(N) when g < p < 2q is given by

3 1 1
N+4+1——N2<p(N)<N+1-2N2z2.
7 @(N)
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This estimation plays an important role in the following theorem.
Theorem 2.3. Let p—g=A = N? and d = N°, where ¢ < p < 2¢, d < Ni~#. Then

e t 1

—_——— — < .
N+1-2N2z d| 24

Hence by approximation theorem it follows that é is a convergent of ——<—+. Thus, % is obtained from the list of
N+1-2N?2
convergent of ¢ using continued fractions. Wiener’s extension attack on RSA basically searches the convergent 5
N+1-2N?2
from the class of convergent of —<%— that lead to (p, q,d) whenever Ni <d< N%*ﬁ, p—q=NP.
N+1-2N2

Theorem 2.4 (Wiener’s extension in the range N1 <d< N%fﬁ). Let N1 <d< Ngfﬂ, p—q = NP and for any

convergent % of —=—+, take ¢'(N) = 6'1;71, = % and y = Vx'2 — N. If 2’,y € N, then the private key

N+41-2N?2

(¢,p,d) = (¢' =y, 2"+, d).

Therefore, the search of 5 leading to solution (p,q,d) may be obtained from the class of convergent of ——. As
N+1—-2N 2
convergent are approximations, the fraction 3 is a rational approximation of ¢ . In the following theorem, we prove
N+1-2N?2

e

that (d,t) may be obtained as a short vector of quadratic form ¢(z,y) = M (az — y)* + 2’ for o = —¢—.
N+1-2N2

Theorem 2.5. Let N = pq, for q < p < 2q, be the modulus for RSA with Ni<d< Ngfﬁ, p—q=NP e (1,3), e be

2
the public enciphering exponent and d be the deciphering exponent, then for t such that ed — 1 = ¢(N)t and 5, (d,t) is a

short vector of a lattice Z* equipped with a quadratic form

_ 2
e 1 2
q(z,y) =M (733*3/) + =T
N+1-2Nz M
for an appropriate M.
Proof.  First note for each choice of M = 10' for some [, and —°—— decimal approximation of —<— to the
N+1-2N?2 N+1-2NZ

precision ﬁ we reduce the lattice Z* with a quadratic form g(z,y) in the variables x,y given as

_ 2
e 1 2
q(ﬂc,y)=M(7w*y> + =T
N+1-2N2 M

the 2-dimensional Gram-matrix for the above is given as

2
() et ()
N+1-2N2 N+1-2N 2

S Cerer I L M
N+1-2N2

and note the corresponding lattice in R? is given by the basis as columns of matrix B given as

A=

1
VM

(sotser )V —vE

I
N+1-2N 2

which may be deduced by the results in Lattices and Quadratic Forms of [3]. Now applying LLL algorithm to BT, we get

reduced basis matrix B’ and repeating the arguments as above we have a integer unimodular transformation matrix U
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with (a,c) as short vector obtained for the choice of M = 10'. Now note for any (v,u) such that % is an approximation of

€ we have

N+1-2N?2

_ 2

e 1 2

qlv,u)y =M (7v—u> + —v
N+1—2N3 M

2
= Mv? S +iv2
Nit1-on® v M

e (v—]\f) +0 (%) +o(1)

For any short vector (v, u) as q(u,v) = O(1), note for M = d* the above holds for v 3 v = d. Therefore, by Theorem 2.3

€

I
N+1-2N 2

2
q(z,y) =M (#x—y> + ﬁxQ, for M =~ d>. O

1
N+1-2N2

as the required t,d are such that 5 is an approximation to , (d,t) is a short vector for the given quadratic form

Note 1. The search of convergent 5 leading to solution (p,q,d) may be obtained from the class of short vectors (d,t) of

é S|
oo = (g ) e
for an appropriate choice of M.

In the following theorem, using lattice reduction we depicted the process of tracing the required (d,t) as short vector by
varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be
interpreted as Wiener’s extension with lattice reduction.

Theorem 2.6 (Wiener’s extension in the range N1 <d< Ni# with Lattice Reduction). Let N = pg, ¢ < p < 2q
be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent for Ni<d< Ni=8 and

p—q=A= NP, then there is a M such that (d,t) is a short vector of the quadratic form,

_ 2
e 1 5
q(x,y):M<7x—y> + =
N+1-2N3 M

where ——%—— is a decimal approximation of ———
N+1-2N?2 N+1-2N?2

< to precision ﬁ .

Proof. By Theorem 2.3 as the required ¢, d are such that 5 is an approximation to ——=——, we have by above theorem
N+1-2N?2

that (d,t) is a short vector for a quadratic form

2

_ 2
e
az,y :M(ix_zo + —a
(@) N+1-2N3 M

for M = 10" for some appropriate I, such that d ~ v/M. The search for this M is described in the following: Let

@ if d(N) is even,
r =

ANFLif G(N) is odd

2

where d(N) is the number of digits in N. Then for all s with r < s < d(N), note M, = 10° is such that N < M, < N.
Now note as d is such that N < d < N12 for B e (i, %) Considering the maximum upper bound for d at 8 = i, we have
Ni<d< N%, this implies Nz <d® < N. Therefore, d> and M, lie in the same range i.e., Nz < M,,d* < N. Now varying

s from 7 to d(N), note as M; gets close to d*, M, ~ d* i.e., s = d(d?) the short vector corresponding to such M; gives the

required (d,t). Note such M, can be reached with utmost @ variations for s. Further note for d > N%, as d does not
satisfy the hypothesis of theorem, note % of the required (d,¢) may not be a convergent of ——<=—, hence it may not be
N+1-2N?2

an approximation and hence we cannot obtain (d,t) as a short vector of the quadratic form for some M for d > N 3, O
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In the following theorem we describe the execution of the private key (p, ¢, d) using Wiener extension with Lattice Reduction:

Theorem 2.7. Let Ni <d< N%fﬁ, p—q= NP and let M = 10° for r < s < d(N), then for short vector (ds,ts) of the
quadratic form,

_ 2
e 1
q(z,y =M(7m—y) + —=x
) N+1—2N3 M

take @s(N) = ¢de=1 o — Nows(N)HL g Ys = Vxs?2 — N. If xs,ys € N, then (ds, ts) is the required short vector giving the

ts 2

private key (q,p,d) = (Ts — ys, Ts + Ys, ds).

Proof. Suppose zs,ys € N for some s in range 1 < s < r, then by definition of ys in theorem, we have

N=a-y:
= (s +ys)(ws — ys)-
Since =5 + ys, s — ys € N, they are the factors of N, i.e., zs + ys,xs — ys are 1,p,q or N. Now as p < ¢ we have two cases:
(1). zs +ys =N,zs —ys =1,

(ii). zs +ys =p,Ts —Ys = q.

Note Case (i) is not possible, for as zs + ys = N and s — ys = 1, then % = xs,
N —ps(N)+1
and Ts = 7¢2( )+
N+1 N-—@(N)+1
2 2
eds — 1 -0
t

which is not possible. Therefore, Case (i) is not possible since e > 1. Thus, the only possible Case is (ii). Therefore and we

have zs + ys = p, *s — ys = q, whenever zs,ys € N. Now, we show that d = ds. By definition of x5 we have

N —ps(N)+1
2

Ts =
= ps(N) = N — 2z, +1
=N-(¢+p) +1
= @(N)

= ds =d modp(N)

Now note that the short vector (d,t) is either (ds,ts) or obtained as a short vector in the later iterations for some M = 10!,
for I > s. Then as M = d?, we have ds < d. Therefore as d < ¢(N), we have ds < d < ¢(N). Hence ds = d mod ¢(N) =

d=ds. O

An algorithm for the implementation of Wiener’s extension in the range N i <d< N 17 with lattice reduction is given in

the following;:
Algorithm:
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Step 1: Start
Step 2: Input e, N.

Step 3: Compute ——=—— to d(NN) decimals, where

1
N+1-2N?2
@ if d(N) is even,
r=
ANELif d(N) is odd.
Step 4: Set i =1r.
Step 5: Set M = 10°, € = ¢ corrected to ¢ decimal places.
N+1-2N2 N+1-2N2
Step 6: Set
1
—— 0
B=| V¥
—F M
N+1-2N?2

Apply LLL algorithm to BT and then obtain unimodular transformation matrix U = Bil(B')T7 where B’ is the resultant

obtained using LLL

Set t; = |c|,d; = |a|

Step 7: Compute p;(N) = Edtifl, T = Nﬁ%Q(N)H» yi = \/x; = N.

Step 8: If ;(N),x;,y; € N, then (q,p,d) = (x; — yi, z: + yi, d;), otherwise ¢ =i+ 1 and go to Step 5.

Example 2.8. Consider (e, N) = (948120312068323160758410969049, 1774710840319667979443236768633). Then the dec-
imal representation of (m) which is equal to 0.53423931974041775745656621940281027437235911349.... Now, as

d(N)

N has 30 digits and is even, choose M = 10~ 2 = 10'® and find the decimal expansion of (

m) corrected to 15

decimals. Thus, (m) = 0.534239319740418. Now construct the matrix B and apply LLL algorithm to BT :
25242656200601446943299/798242877864727758214047141574 382736530102/22655
T
l} =
O -798242877864727758214047141574/25242656200601446943299

Now, the LLL matrix, B’ is given by :

219871663642535196542050032278/399121438932363879107023570787 -92624145646797102878218498/571872376224625780500438845

420394048784967165357206138787/798242877864727758214047141574  949541211558837338213946734/571872376224625780500438845

Finally, the unimodular integral transformation matrix is given by:

17420644 16654113

l[ =
9306793 8897282
Thus, the convergent obtained is 5 = 197340260769434 = 197340260769434 and do not give integer values for ¢s(N),zs and ys. There-

fore, discarding this convergent, we update M to 10'® and consider 16 decimals of (m) Thus, (m) =
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0.5342393197404178. Now proceeding as above, note we obtain the same convergent, so we again discard this convergent

17 . . e e _
and next update M to 10'7 and consider 17 decimals of the (7%~ m). Thus, (551550 m) = 0.53423931974041776. Now
construct the matrix B and apply LLL algorithm to BT :
27272480621782245960612/8624315620763702785491703096421 4334864986046/25659
BT =
O -7982428778647277582140471415740/25242656200601446943299

Now, the LLL matrix, B’ is given by :

2829719853610307547623124167796/8624315620763702785491703096421 -271238245164079764474912938/647701315451232527118109041

-13673495092142570585715361164852/8624315620763702785491703096421 -221129753178901684114343038/215900438483744175706036347

Finally, the unimodular integral transformation matrix is given by:

103757333 —501366021

U =
55431247 —267849442
Now, required convergent is given by, % =| 752331247 |— 38431247 5nd we have

ed —1  (948120312068323160758410969049)(103757333) — 1

N) =
#s(N) ¢ 55431247
— 1774710840319665277283460346228
Ts = w — 1351079888211203

ys = V&2 — N = 225179981368524
Therefore as ps(N),xs and ys are integers we have the private key given as

(q,p,d) = (T5s — Ys, Ts + Ys, d)

= (1125899906842679, 1576259869579727, 103757333).

This process of varying M in the range Nz < Ms < N and applying LLL to obtain cth leading to private key is depicted

in the following table:
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3. Implementing Wiener’s Extension in the Range N1 < d < N(PTU,
v < % with Lattice Reduction

For ¢ < p < 2¢, the maximum difference between p and g is v/N. In this section, if |pg —p| < Y for 1<p<2, v < =, then

the RSA is insecure when d = N? and § < 5 - 3.

Lemma 3.1. Let |p — pq| < lg,where'ygé and 1 < p < 2. Then
1 N7
p+q7( p+—)\/ﬁ‘<—
| MRV

Theorem 3.2. Let [p — pq| < % with1 < p<2, v< % and d = N° and5<%—% then

1
2d?

e

t
(f+ )\FH - d

<

Hence by approximation theorem it follows that % is a convergent of Thus, 1 is obtained from the list

P s, e

of convergent of using continued fractions. This Wiener’s extension attack on RSA basically searches the

(f+ =) VN+1
convergent & ; from the class of convergent of —————=—<——— that lead to (p, ¢, d) whenever § < Lz
g g 7(ﬁ+ﬁ)\/ﬁ+l (p,q,d) 27 2
iener’ ion i i (15%) 1 3 (157) ;
Theorem 3.3 (Wiener’s extension in the range N2 <d < N2/, v < 3). Let N2 <d < N2/, v < 5 and for any

take ¢’ (N) = ed;fl, = N7“0,2<N)+1 andy’' =~/x2 — N. If 2’y € N, then the private

convergent ;—/, of, W

key (¢,p,d) = (z' =/, 2" + 4, d').

As

Theref th h of % leading to soluti d be obtained f the cl f tof ——&—~——.
erefore, the search of  leading to solution (p, ¢, d) may be obtained from the class of convergent o Nf(\/ﬁ+ﬁ)\/ﬁ+l

convergent are approximations, the fraction 3 is a rational approximation of . In the following theorem, we

(\f+ = )VN+1
prove that (d, t) may be obtained as a short vector of quadratic form ¢(z,y) = M (az — y)2 + Mﬁ for a = W
Theorem 3.4. Let N = pq, for ¢ < p < 2q be the modulus for RSA and N1 <d< NG ) v < %, e be the public
enciphering exponent and d be the deciphering exponent. Then for t such that ed — 1 = (N)t, (d,t) is a short vector of a

lattice Z2 equipped with o quadratic form

q(z,y) =M r—y| + 2

for an appropriate M.

Proof.  First note for each choice of M = 10 for some I, and decimal approximation of

(f+ =) VN+1 —(f+ =) VN+1
to the precision ﬁ we reduce the lattice Z* with a quadratic form ¢(z,y) in the variables x,y given as and
2
(z,y) =M € + i:1:2
q 7y - M

—(\/ﬁ+ﬁ)\/ﬁ+1m

the 2-dimensional Gram-matrix for the above is given as

ol

2
1 e
%)WJA) M+ 5 (Nf(ﬁJr%)\/NJrl) M

(Nf(\/EJr

ol

I (N—(m% N

>r+1)M _
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and note the corresponding lattice in R? is given by the basis as columns of matrix B given as

1
VM
B=

ol

() VAT

which may be deduced by the results in Lattices and Quadratic Forms of [4]. Now applying LLL algorithm to BT we get

reduced basis matrix B’ and repeating the arguments as above we have a integer unimodular transformation matrix U

with (a,c) as short vector obtained for the choice of M = 10'. Now note for any (v, u) such that = is an approximation of

€
> we have

qlv,u) =M N_(\/’ %)\F-Fl - +M”2
= _u 2 L2
= (\f %)\/»+1 v M
:O(iﬁ'>+0<ﬁ2> +oq)

For any short vector (v, u) as ¢(u,v) = O(1), note for M = d? the above holds for v 3 v ~ d. Therefore by Theorem 3.2 as

the required ¢, d are such that £ 4 is an approximation to and (d, t) is a short vector for the given quadratic

P (r ;e

2

_ _ 1.2 ~ d2
form gq(z,y) = M( (f+ )WH y) + g7z, for M ~ d*. O
Note 2. The search of convergent 5 leading to solution (p,q,d) may be obtained from the class of short vectors

e ’ 1 5
q(z,y) =M (f—i— )f+1 -y |+

for an appropriate choice of M.
In the following theorem, using lattice reduction we depicted the process of tracing the required (d,t) as short vector by
varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be

interpreted as Wiener Attack extension via lattice reduction.

Theorem 3.5 (Wiener’s Extension in the Range N1 <d< N(FTW), v < % with Lattice Reduction). Let N = pq, ¢ < p < 2q
be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent such that Ni <d< N(FTW), v <

%, lp — pq| < %7 1 < p <2,, then there is a M such that (d,t) is a short vector of a quadratic form,

2

1
qlz,y) =M - z—y| +-—2°

N (ot ) VN 41 M

is a decimal approzximation of to precision ﬁ

N- (At ) VN+1 Nf(\/,ﬂ%)\/ﬁﬂ

‘m\
-
§
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e

A

Proof. By Theorem 3.2 as the required ¢, d are such that 5 is an approximation to , we have by above

theorem that (d,t) is a short vector for a quadratic form

e 1

N—(\/ﬁ+ﬁ)\/ﬁ+1m_y Tt

Q(wa y) =M

for M = 10" for some appropriate I, such that d ~ v/M. The search for this M is described below:
Let

@ if d(N) is even,
T’ =
ANFLf G(N) is odd

2

where d(N) is the number of digits in N. Then for all s with r < s < d(N), note M, = 10° is such that Nz < M, < N.

1
Now note as d is such that N1 <d< N<TV>, lpg — p| < %’ 1<p<2, v< %, considering the maximum upper bound

for d at v ~ 0, we have Ni<d< N%7 this implies Nz < d? < N. Therefore, d?> and M, lie in the same range i.e.,

N? < M, d? < N. Now varying s from r to d(N), note as M; gets close to d*, M, ~ d* i.e., s = d(d?), the short vector

d(N)
2

corresponding to such M; gives the required (d,t). Note such M, can be reached with utmost variations for s. Further

note for d > N%7 as d does not satisfy the hypothesis of theorem, note 5 of the required (d,t) may not be a convergent of

W, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic

form for some M for d > N2, O
In the following theorem we describe the execution of the private key (p, ¢, d) using Wiener extension with Lattice Reduction:

Theorem 3.6. Let |p — pq| < ]Y—; with 1 < p<2, v< %, d=N° and § < % — 2 and let M = 10° for r < s < d(N), then

for short vector (ds, ts) of the quadratic form,

e 1 5

q(z,y) =M r—y| +
N-(vp+ ) VN+1

M

take ps(N) = edfs_l ,Ts = N_“’SQ(NH'I and ys = Vxs2 — N. If zs,ys € N, then (ds,ts) is the required short vector giving the

private key (Q7p7 d) = (:ES —Ys, Ts + Ys, ds)
Proof. The proof is same as the proof of Theorem 3.5. O

An algorithm for the implementation of Wiener’s extension in the range N1 <d< N<PTW),7 < % with lattice reduction is
given in the following:

Algorithm:

Step 1: Start

Step 2: Input e, N.

Step 3: Compute Wﬁ)m to d(N) decimals, where

@ if d(N) is even,
r =

ANIELif d(N) s odd.

Step 4: Set i =r.

Step 5: Set M = 107, e = ¢ corrected to 7 decimal places.

N-(vot+Z5)VN+1  N-(vot+25 ) VN+1
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Step 6: Set
1
VM
e /M VM
N (V5 YN+
Apply LLL algorithm to BT and then obtain unimodular transformation matrix U = Bil(B')T7 where B’ is the resultant
obtained using LLL

Set t; = |c|,d; = |a|
Step 7: Compute ¢;(N) = edti:l, w = HmedMEL = /2?7 — N

Step 8: If vi(N), zi,y; € N, then (¢,p,d) = (z; — yi, Ti + yi, d;), otherwise ¢ = ¢ + 1 and go to Step 5.

Example 3.7. Consider (e, N) = (1242349,2035153). Then the decimal representation of <W) which
is equal to 0.611353789122353.... Now, as N has 7 digits and is odd, choose M = 10d(N2)+1 = 10* and find the decimal

corrected to 4 decimals. Thus,

e e - e = 0.6114. Choosi
ﬁ+ﬁ)¢ﬁ+l) N-(vrt L) VN+1  N= (vt L) VR oosmng

M = 10*, we didn’t get the desired convergent. Hence update M as M = 10° and find the next convergent by considering 5

decimals Of (W),

expansion of (N_( e
a = 0.61135. Now construct the matriz B and apply LLL algorithm to BT :

9815920/3104066453  1633031337/8447041
BT =
0 —2709261463 /8567437

Now, the LLL matriz, B’ is given by :

2247845680/3104066453 —19452456259019/72369491603917
B =
—2424532240/3104066453 —78954087169010/72369491603917

Finally, the unimodular integral transformation matriz is given by:

229 —247
140 —151
Now, required convergent is given by, % =| % |= % and we have:
ed—1
pa(N) = —

_(1242349)(229) — 1

N 140

= 2032128,

T = N—Qosf(]\/)-l-l — 1513

Therefore as ps(N),zs and ys are integers we have the private key given as (q,p,d) = (s —ys, s +ys, d) = (1009, 2017, 229).

This process of varying M, in the range Nz < My < N and applying LLL to obtain Z—i leading to private key is depicted

in the following table:
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M ( : ) Unimodular  ma- % =| ﬁ [|ps(N) = % Ts = 4N—¢52(N)+1 ys =Vas? — N|(g,p,d) = (zs —
N’(‘/ﬂﬁ>mﬂ {JX using  LLL| T ° Ys, Ts + Ys,ds)/
Set M to iterate
M =104 0.6114 U = o ¢N ¢N ¢N Set M = 10°
—18 175
—11 107}
M = 10° 0.61135 U =| 32 2032128 1513 504 (1009, 2017,229)
229 —247
140 —151}

1
Table 2: Implementation of Wiener’s extension in the range Ni <d< N<Tw>, v < % with Lattice Reduction.

4. Conclusion

The main idea of Wiener Attack that whenever d < %, the fraction 3 is a convergent of & and hence it is interpreted as

finding (d, t) as a short vector by reducing the quadratic form ¢(z,y) = M (%z - y)2 + ﬁzz for an appropriate choice of M
in our paper [8]. In this paper, we adapt these ideas to Wiener Attack extensions in the range N 1 <d< N 18 ,p—g=N?*
and N1 <d<N (FTW), v < % with lattice reduction. The continued fraction based arguments of Wiener Attack extensions

are implemented with the lattice based arguments and the LLL algorithm is used for reducing a basis of a lattice. This

method is implemented as LLL comes close to solve SV P in smaller dimensions.
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