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Abstract: In this paper, Wiener Attack extensions on RSA are implemented with approximation via lattice reduction. The continued

fraction based arguments of Wiener Attack extensions in the range N
1
4 ≤ d < N

3
4
−β , p−q = Nβ and N

1
4 ≤ d < N( 1−γ

2
),

|ρq − p| ≤ Nγ

16
, 1 ≤ ρ ≤ 2, γ ≤ 1

2
, are implemented with the Lattice based arguments and the LLL algorithm is used for

reducing a basis of a lattice.
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1. Introduction

Wiener’s attack on RSA applies when the private exponent d is less than N
1
4 . Whenever d < N1/4

√
6

, the fraction t
d

is a

convergent of e
N

and hence it is an approximation of e
N

and thus (d, t) may be obtained as a short vector by reducing the

quadratic form q(x, y) = M
(
ē
N
x− y

)2
+ 1

M
x2 for an appropriate choice of M [8]. Now we adapt these ideas to Wiener

Attack extensions in the range N
1
4 ≤ d < N

3
4
−β , p− q = Nβ and N

1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
with lattice reduction.

2. Implementing Wiener’s Extension in the Range N
1
4 ≤ d < N

3
4
−β

with Lattice Reduction

This section shows that for the bound of private exponent d in RSA, extended toNδ, where 1
4
≤ δ < 3

4
−β and ∆ = p−q = Nβ ,

β ∈ ( 1
4
, 1

2
), the attack may be implemented with lattice reduction. We first recall an estimation for ϕ(N) and show that

with this estimation we may consider a quadratic form and using this quadratic form, (d, t) may be obtained as a short

vector of the quadratic form for some appropriate M .

Lemma 2.1. Let N = pq where p, q are primes such that q < p < 2q and ∆ = p− q. Then 0 < p+ q − 2N
1
2 < ∆2

4N
1
2

.

Lemma 2.2. An estimation of ϕ(N) when q < p < 2q is given by

N + 1− 3√
2
N

1
2 < ϕ(N) < N + 1− 2N

1
2 .
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This estimation plays an important role in the following theorem.

Theorem 2.3. Let p− q = ∆ = Nβ and d = Nδ, where q < p < 2q, d < N
3
4
−β . Then∣∣∣∣ e

N + 1− 2N
1
2

− t

d

∣∣∣∣ < 1

2d2
.

Hence by approximation theorem it follows that t
d

is a convergent of e

N+1−2N
1
2

. Thus, t
d

is obtained from the list of

convergent of e

N+1−2N
1
2

using continued fractions. Wiener’s extension attack on RSA basically searches the convergent t
d

from the class of convergent of e

N+1−2N
1
2

that lead to (p, q, d) whenever N
1
4 ≤ d < N

3
4
−β , p− q = Nβ .

Theorem 2.4 (Wiener’s extension in the range N
1
4 ≤ d < N

3
4
−β). Let N

1
4 ≤ d < N

3
4
−β, p − q = Nβ and for any

convergent t′

d′ of e

N+1−2N
1
2

, take ϕ′(N) = ed′−1
t′ , x′ = N−ϕ′(N)+1

2
and y′ =

√
x′2 −N . If x′, y′ ∈ N, then the private key

(q, p, d) = (x′ − y′, x′ + y′, d′).

Therefore, the search of t
d

leading to solution (p, q, d) may be obtained from the class of convergent of e

N+1−2N
1
2

. As

convergent are approximations, the fraction t
d

is a rational approximation of e

N+1−2N
1
2

. In the following theorem, we prove

that (d, t) may be obtained as a short vector of quadratic form q(x, y) = M (ᾱx− y)2 + 1
M
x2 for α = e

N+1−2N
1
2

.

Theorem 2.5. Let N = pq, for q < p < 2q, be the modulus for RSA with N
1
4 ≤ d < N

3
4
−β, p − q = Nβ, β ∈ ( 1

4
, 1

2
), e be

the public enciphering exponent and d be the deciphering exponent, then for t such that ed − 1 = ϕ(N)t and t
d

, (d, t) is a

short vector of a lattice Z2 equipped with a quadratic form

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

for an appropriate M .

Proof. First note for each choice of M = 10l for some l, and ē

N+1−2N
1
2

decimal approximation of e

N+1−2N
1
2

to the

precision 1
M

we reduce the lattice Z2 with a quadratic form q(x, y) in the variables x, y given as

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

the 2-dimensional Gram-matrix for the above is given as

A =



(
ē

N+1−2N
1
2

)2

M + 1
M
−
(

ē

N+1−2N
1
2

)
M

−
(

ē

N+1−2N
1
2

)
M M


.

and note the corresponding lattice in R2 is given by the basis as columns of matrix B given as

B =


1√
M

0

¯(
e

N+1−2N
1
2

)√
M −

√
M


which may be deduced by the results in Lattices and Quadratic Forms of [3]. Now applying LLL algorithm to BT , we get

reduced basis matrix B′ and repeating the arguments as above we have a integer unimodular transformation matrix U

U =

 a b

c d


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with (a, c) as short vector obtained for the choice of M = 10l. Now note for any (v, u) such that u
v

is an approximation of

e

N+1−2N
1
2

, we have

q(v, u) = M

(
ē

N + 1− 2N
1
2

v − u
)2

+
1

M
v2

= Mv2

(
ē

N + 1− 2N
1
2

− u

v

)2

+
1

M
v2

= O

(
M

v2

)
+O

(
v2

M

)
+O(1)

For any short vector (v, u) as q(u, v) = O(1), note for M ≈ d2 the above holds for v 3 v ≈ d. Therefore, by Theorem 2.3

as the required t, d are such that t
d

is an approximation to e

N+1−2N
1
2

, (d, t) is a short vector for the given quadratic form

q(x, y) = M

(
ē

N+1−2N
1
2
x− y

)2

+ 1
M
x2, for M ≈ d2.

Note 1. The search of convergent t
d

leading to solution (p, q, d) may be obtained from the class of short vectors (d, t) of

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

for an appropriate choice of M. 

In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by 

varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be 

interpreted as Wiener’s extension with lattice reduction.

Theorem 2.6 (Wiener’s extension in the range N
1
4 ≤ d < N

3
4
−β with Lattice Reduction). Let N = pq, q < p < 2q

be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent for N
1
4 < d < N

3
4
−β and

p− q = ∆ = Nβ, then there is a M such that (d, t) is a short vector of the quadratic form,

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

where ē

N+1−2N
1
2

is a decimal approximation of e

N+1−2N
1
2

to precision 1
M

.

Proof. By Theorem 2.3 as the required t, d are such that t
d

is an approximation to e

N+1−2N
1
2

, we have by above theorem

that (d, t) is a short vector for a quadratic form

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

for M = 10l for some appropriate l, such that d ≈
√
M . The search for this M is described in the following: Let

r =


d(N)

2
if d(N) is even,

d(N)+1
2

if d(N) is odd

where d(N) is the number of digits in N . Then for all s with r ≤ s < d(N), note Ms = 10s is such that N
1
2 < Ms < N .

Now note as d is such that N
1
4 < d < N

3
4
−β for β ∈ ( 1

4
, 1

2
). Considering the maximum upper bound for d at β = 1

4
, we have

N
1
4 < d < N

1
2 , this implies N

1
2 < d2 < N . Therefore, d2 and Ms lie in the same range i.e., N

1
2 < Ms, d

2 < N . Now varying

s from r to d(N), note as Ms gets close to d2, Ms ≈ d2 i.e., s ≈ d(d2) the short vector corresponding to such Ms gives the

required (d, t). Note such Ms can be reached with utmost d(N)
2

variations for s. Further note for d > N
1
2 , as d does not

satisfy the hypothesis of theorem, note t
d

of the required (d, t) may not be a convergent of e

N+1−2N
1
2

, hence it may not be

an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic form for some M for d > N
1
2 .
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Implementing Wiener’s Extensions in the Range N
1
4 ≤ d < N

3
4
−β and N

1
4 ≤ d < N(

1−γ
2

), γ ≤ 1
2 with Lattice Reduction

In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:

Theorem 2.7. Let N
1
4 ≤ d < N

3
4
−β, p − q = Nβ and let M = 10s for r ≤ s ≤ d(N), then for short vector (ds, ts) of the

quadratic form,

q(x, y) = M

(
ē

N + 1− 2N
1
2

x− y
)2

+
1

M
x2

take ϕs(N) = eds−1
ts

, xs = N−ϕs(N)+1
2

and ys =
√
xs2 −N . If xs, ys ∈ N, then (ds, ts) is the required short vector giving the

private key (q, p, d) = (xs − ys, xs + ys, ds).

Proof. Suppose xs, ys ∈ N for some s in range 1 ≤ s ≤ r, then by definition of ys in theorem, we have

N = x2
s − y2

s

= (xs + ys)(xs − ys).

Since xs + ys, xs − ys ∈ N, they are the factors of N , i.e., xs + ys, xs − ys are 1, p, q or N . Now as p < q we have two cases:

(i). xs + ys = N, xs − ys = 1,

(ii). xs + ys = p, xs − ys = q.

Note Case (i) is not possible, for as xs + ys = N and xs − ys = 1, then N+1
2

= xs,

and xs =
N − ϕs(N) + 1

2

⇒ N + 1

2
=
N − ϕs(N) + 1

2

⇒ eds − 1

t
= 0

⇒ eds = 1

⇒ e = 1

which is not possible. Therefore, Case (i) is not possible since e > 1. Thus, the only possible Case is (ii). Therefore and we

have xs + ys = p, xs − ys = q, whenever xs, ys ∈ N. Now, we show that d = ds. By definition of xs we have

xs =
N − ϕs(N) + 1

2

⇒ ϕs(N) = N − 2xs + 1

= N − (q + p) + 1

= ϕ(N)

⇒ ds ≡ d modϕ(N)

Now note that the short vector (d, t) is either (ds, ts) or obtained as a short vector in the later iterations for some M = 10l,

for l > s. Then as M ≈ d2, we have ds ≤ d. Therefore as d < ϕ(N), we have ds ≤ d < ϕ(N). Hence ds ≡ d mod ϕ(N)⇒

d = ds.

An algorithm for the implementation of Wiener’s extension in the range N
1
4 ≤ d < N

3
4
−β with lattice reduction is given in

the following:

Algorithm:
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Step 1: Start

Step 2: Input e,N .

Step 3: Compute e

N+1−2N
1
2

to d(N) decimals, where

r =


d(N)

2
if d(N) is even,

d(N)+1
2

if d(N) is odd.

Step 4: Set i = r.

Step 5: Set M = 10i, ē

N+1−2N
1
2

= e

N+1−2N
1
2

corrected to i decimal places.

Step 6: Set

B =

 1√
M

0

ē

N+1−2N
1
2
−
√
M


Apply LLL algorithm to BT and then obtain unimodular transformation matrix U = B−1(B′)T , where B′ is the resultant

obtained using LLL

U =

 a b

c d


Set ti = |c|,di = |a|

Step 7: Compute ϕi(N) = edi−1
ti

, xi = N−ϕi(N)+1
2

, yi =
√
x2
i −N .

Step 8: If ϕi(N), xi, yi ∈ N , then (q, p, d) = (xi − yi, xi + yi, di), otherwise i = i+ 1 and go to Step 5.

Example 2.8. Consider (e,N) = (948120312068323160758410969049, 1774710840319667979443236768633). Then the dec-

imal representation of
(

e

N+1−2
√
N

)
which is equal to 0.53423931974041775745656621940281027437235911349 . . . . Now, as

N has 30 digits and is even, choose M = 10
d(N)

2 = 1015 and find the decimal expansion of
(

e

N+1−2
√
N

)
corrected to 15

decimals. Thus,
¯(
e

N+1−2
√
N

)
= 0.534239319740418. Now construct the matrix B and apply LLL algorithm to BT :

BT =



25242656200601446943299/798242877864727758214047141574 382736530102/22655

0 -798242877864727758214047141574/25242656200601446943299


Now, the LLL matrix, B′ is given by :

B′ =



219871663642535196542050032278/399121438932363879107023570787 -92624145646797102878218498/571872376224625780500438845

420394048784967165357206138787/798242877864727758214047141574 949541211558837338213946734/571872376224625780500438845


Finally, the unimodular integral transformation matrix is given by:

U =


17420644 16654113

9306793 8897282


Thus, the convergent obtained is t

d
=| 9306793

17420644
|= 9306793

17420644
and do not give integer values for ϕs(N), xs and ys. There-

fore, discarding this convergent, we update M to 1016 and consider 16 decimals of
(

e

N+1−2
√
N

)
. Thus,

¯(
e

N+1−2
√
N

)
=
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0.5342393197404178. Now proceeding as above, note we obtain the same convergent, so we again discard this convergent

and next update M to 1017 and consider 17 decimals of the
(

e

N+1−2
√
N

)
. Thus,

¯(
e

N+1−2
√
N

)
= 0.53423931974041776. Now

construct the matrix B and apply LLL algorithm to BT :

BT =



27272480621782245960612/8624315620763702785491703096421 4334864986046/25659

0 -7982428778647277582140471415740/25242656200601446943299


Now, the LLL matrix, B′ is given by :

B′ =



2829719853610307547623124167796/8624315620763702785491703096421 -271238245164079764474912938/647701315451232527118109041

-13673495092142570585715361164852/8624315620763702785491703096421 -221129753178901684114343038/215900438483744175706036347


Finally, the unimodular integral transformation matrix is given by:

U =


103757333 −501366021

55431247 −267849442


Now, required convergent is given by, t

d
=| −55431247

103757333
|= 55431247

103757333
and we have

ϕs(N) =
ed− 1

t
=

(948120312068323160758410969049)(103757333)− 1

55431247

= 1774710840319665277283460346228

xs =
N − ϕs(N) + 1

2
= 1351079888211203

ys =
√
x2
s −N = 225179981368524

Therefore as ϕs(N), xs and ys are integers we have the private key given as

(q, p, d) = (xs − ys, xs + ys, d)

= (1125899906842679, 1576259869579727, 103757333).

This process of varying Ms in the range N
1
2 < Ms < N and applying LLL to obtain ts

ds
leading to private key is depicted

in the following table:
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M
ᾱ

=
ē

N
+

1
−

2
N

1 2

U
n
im

o
d
u
la

r
m

a
t
r
ix

u
s
in

g
L

L
L

U
=

 a
b

c
d

 

t s d
s

=
|
c a
|
ϕ
s
(N

)
=

e
d
s
−

1
t s

x
s

=
N
−
ϕ
s
(N

)+
1

2

y
s

=
√
x
s
2
−
N

(q
,p
,d

)
=

(x
s
−
y
s
,x
s

+
y
s
,d
s
)/

S
et
M

to
it

er
a
te

M
=

1
0

1
5

0
.5

3
4
2
3
9
3
1
9
7
4
0
4
1
8

U
=

[ 1
7
4
2
0
6
4
4

1
6
6
5
4
1
1
3

9
3
0
6
7
9
3

8
8
9
7
2
8
2

]
9
3
0
6
7
9
3

1
7
4
2
0
6
4
4

/∈
N

/∈
N

/∈
N

S
et
M

=
1
0

1
6

M
=

1
0

1
6

0
.5

3
4
2
3
9
3
1
9
7
4
0
4
1
7
8

U
=

[ 1
7
4
2
0
6
4
4

1
0
3
7
5
7
3
3
3

9
3
0
6
7
9
3

5
5
4
3
1
2
4
7

]
9
3
0
6
7
9
3

1
7
4
2
0
6
4
4

/∈
N

/∈
N

/∈
N

S
et
M

=
1
0

1
7

M
=

1
0

1
7

0
.5

3
4
2
3
9
3
1
9
7
4
0
4
1
7
7
6
U

=
[ 1

0
3
7
5
7
3
3
3
−

5
0
1
3
6
6
0
2
1

5
5
4
3
1
2
4
7
−

2
6
7
8
4
9
4
4
2

]
5
5
4
3
1
2
4
7

1
0
3
7
5
7
3
3
3

1
7
7
4
7
1
0
8
4
0
3
1
9
6
6
5
2
7
7
2
8
3
4
6
0
-

3
4
6
2
2
8

1
3
5
1
0
7
9
8
8
8
2
1
1
2
0
3

2
2
5
1
7
9
9
8
1
3
6
8
5
2
4

(1
1
2
5
8
9
9
9
0
6
8
4
2
6
7
9
,

1
5
7
6
2
5
9
8
6
9
5
7
9
7
2
7
,

1
0
3
7
5
7
3
3
3
)

T
a
b
le

1
:

Im
p
le

m
en

ta
ti

o
n

o
f

W
ie

n
er

’s
ex

te
n
si

o
n

in
th

e
ra

n
g
e
N

1 4
≤
d
<
N

3 4
−
β

w
it

h
L

a
tt

ic
e

R
ed

u
ct

io
n
.
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3. Implementing Wiener’s Extension in the Range N
1
4 ≤ d < N ( 1−γ

2
),

γ ≤ 1
2 with Lattice Reduction

For q < p < 2q, the maximum difference between p and q is
√
N . In this section, if |ρq− p| ≤ Nγ

16
for 1 ≤ ρ ≤ 2, γ ≤ 1

2
, then

the RSA is insecure when d = Nδ and δ < 1
2
− γ

2
.

Lemma 3.1. Let |p− ρq| ≤ Nγ

16
, where γ ≤ 1

2
and 1 ≤ ρ ≤ 2. Then

∣∣∣∣p+ q −
(
√
ρ+

1
√
ρ

)√
N

∣∣∣∣ < Nγ

8
.

Theorem 3.2. Let |p− ρq| ≤ Nγ

16
with 1 ≤ ρ ≤ 2, γ ≤ 1

2
and d = Nδ and δ < 1

2
− γ

2
then∣∣∣∣∣∣ e

N −
(√

ρ+ 1√
ρ

)√
N + 1

− t

d

∣∣∣∣∣∣ ≤ 1

2d2

Hence by approximation theorem it follows that t
d

is a convergent of e

N−
(√

ρ+ 1√
ρ

)√
N+1

. Thus, t
d

is obtained from the list

of convergent of e

N−
(√

ρ+ 1√
ρ

)√
N+1

using continued fractions. This Wiener’s extension attack on RSA basically searches the

convergent t
d

from the class of convergent of e

N−
(√

ρ+ 1√
ρ

)√
N+1

that lead to (p, q, d) whenever δ < 1
2
− γ

2
.

Theorem 3.3 (Wiener’s extension in the range N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
). Let N

1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
and for any

convergent t′

d′ of, e

N−
(√

ρ+ 1√
ρ

)√
N+1

take ϕ′(N) = ed′−1
t′ , x′ = N−ϕ′(N)+1

2
and y′ =

√
x′2 −N . If x′, y′ ∈ N, then the private

key (q, p, d) = (x′ − y′, x′ + y′, d′).

Therefore, the search of t
d

leading to solution (p, q, d) may be obtained from the class of convergent of e

N−
(√

ρ+ 1√
ρ

)√
N+1

. As

convergent are approximations, the fraction t
d

is a rational approximation of e

N−
(√

ρ+ 1√
ρ

)√
N+1

. In the following theorem, we

prove that (d, t) may be obtained as a short vector of quadratic form q(x, y) = M (ᾱx− y)2+ 1
M
x2 for α = e

N−
(√

ρ+ 1√
ρ

)√
N+1

.

Theorem 3.4. Let N = pq, for q < p < 2q be the modulus for RSA and N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
, e be the public

enciphering exponent and d be the deciphering exponent. Then for t such that ed − 1 = ϕ(N)t, (d, t) is a short vector of a

lattice Z2 equipped with a quadratic form

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

for an appropriate M .

Proof. First note for each choice of M = 10l for some l, ē

N−
(√

ρ+ 1√
ρ

)√
N+1

and decimal approximation of e

N−
(√

ρ+ 1√
ρ

)√
N+1

to the precision 1
M

we reduce the lattice Z2 with a quadratic form q(x, y) in the variables x, y given as and

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

the 2-dimensional Gram-matrix for the above is given as

A =



(
ē

N−
(√

ρ+ 1√
ρ

)√
N+1

)2

M + 1
M
−
(

ē

N−
(√

ρ+ 1√
ρ

)√
N+1

)
M

−
(

ē

N−
(√

ρ+ 1√
ρ

)√
N+1

)
M M


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and note the corresponding lattice in R2 is given by the basis as columns of matrix B given as

B =


1√
M

0

(
ē

N−
(√

ρ+ 1√
ρ

)√
N+1

)√
M −

√
M



which may be deduced by the results in Lattices and Quadratic Forms of [4]. Now applying LLL algorithm to BT , we get

reduced basis matrix B′ and repeating the arguments as above we have a integer unimodular transformation matrix U

U =

 a b

c d


with (a, c) as short vector obtained for the choice of M = 10l. Now note for any (v, u) such that u

v
is an approximation of

e
N

, we have

q(v, u) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

v − u

2

+
1

M
v2

= Mv2

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

− u

v

2

+
1

M
v2

= O(
M

v2
) +O(

v2

M
) +O(1)

For any short vector (v, u) as q(u, v) = O(1), note for M ≈ d2 the above holds for v 3 v ≈ d. Therefore by Theorem 3.2 as

the required t, d are such that t
d

is an approximation to e

N−
(√

ρ+ 1√
ρ

)√
N+1

and (d, t) is a short vector for the given quadratic

form q(x, y) = M

(
ē

N−
(√

ρ+ 1√
ρ

)√
N+1

x− y
)2

+ 1
M
x2, for M ≈ d2.

Note 2. The search of convergent t
d

leading to solution (p, q, d) may be obtained from the class of short vectors

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

for an appropriate choice of M. 

In the following theorem, using lattice reduction we depicted the process of tracing the required (d, t) as short vector by 

varying M with respect to restrictions to d that are even beyond the Wiener Attack bound for d. This process can be 

interpreted as Wiener Attack extension via lattice reduction.

Theorem 3.5 (Wiener’s Extension in the Range N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
with Lattice Reduction). Let N = pq, q < p < 2q

be the modulus for RSA, e be the public enciphering exponent, d be the deciphering exponent such that N
1
4 ≤ d < N ( 1−γ

2
), γ ≤

1
2

, |p− ρq| ≤ Nγ

16
, 1 ≤ ρ ≤ 2,, then there is a M such that (d, t) is a short vector of a quadratic form,

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

ē

N−
(√

ρ+ 1√
ρ

)√
N+1

is a decimal approximation of e

N−
(√

ρ+ 1√
ρ

)√
N+1

to precision 1
M

.
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1
4 ≤ d < N

3
4
−β and N

1
4 ≤ d < N(

1−γ
2

), γ ≤ 1
2 with Lattice Reduction

Proof. By Theorem 3.2 as the required t, d are such that t
d

is an approximation to e

N−
(√

ρ+ 1√
ρ

)√
N+1

, we have by above

theorem that (d, t) is a short vector for a quadratic form

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

for M = 10l for some appropriate l, such that d ≈
√
M . The search for this M is described below:

Let

r =


d(N)

2
if d(N) is even,

d(N)+1
2

if d(N) is odd

where d(N) is the number of digits in N . Then for all s with r ≤ s < d(N), note Ms = 10s is such that N
1
2 < Ms < N .

Now note as d is such that N
1
4 ≤ d < N ( 1−γ

2
), |ρq − p| ≤ Nγ

16
, 1 ≤ ρ ≤ 2, γ ≤ 1

2
, considering the maximum upper bound

for d at γ ≈ 0, we have N
1
4 < d < N

1
2 , this implies N

1
2 < d2 < N . Therefore, d2 and Ms lie in the same range i.e.,

N
1
2 < Ms, d

2 < N . Now varying s from r to d(N), note as Ms gets close to d2, Ms ≈ d2 i.e., s ≈ d(d2), the short vector

corresponding to such Ms gives the required (d, t). Note such Ms can be reached with utmost d(N)
2

variations for s. Further

note for d > N
1
2 , as d does not satisfy the hypothesis of theorem, note t

d
of the required (d, t) may not be a convergent of

e

N−
(√

ρ+ 1√
ρ

)√
N+1

, hence it may not be an approximation and hence we cannot obtain (d, t) as a short vector of the quadratic

form for some M for d > N
1
2 .

In the following theorem we describe the execution of the private key (p, q, d) using Wiener extension with Lattice Reduction:

Theorem 3.6. Let |p− ρq| ≤ Nγ

16
with 1 ≤ ρ ≤ 2, γ ≤ 1

2
, d = Nδ and δ < 1

2
− γ

2
and let M = 10s for r ≤ s ≤ d(N), then

for short vector (ds, ts) of the quadratic form,

q(x, y) = M

 ē

N −
(√

ρ+ 1√
ρ

)√
N + 1

x− y

2

+
1

M
x2

take ϕs(N) = eds−1
ts

, xs = N−ϕs(N)+1
2

and ys =
√
xs2 −N . If xs, ys ∈ N, then (ds, ts) is the required short vector giving the

private key (q, p, d) = (xs − ys, xs + ys, ds).

Proof. The proof is same as the proof of Theorem 3.5.

An algorithm for the implementation of Wiener’s extension in the range N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
with lattice reduction is

given in the following:

Algorithm:

Step 1: Start

Step 2: Input e,N .

Step 3: Compute e

N−
(√

ρ+ 1√
ρ

)√
N+1

to d(N) decimals, where

r =


d(N)

2
if d(N) is even,

d(N)+1
2

if d(N) is odd.

Step 4: Set i = r.

Step 5: Set M = 10i, ē

N−
(√

ρ+ 1√
ρ

)√
N+1

= e

N−
(√

ρ+ 1√
ρ

)√
N+1

corrected to i decimal places.
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Step 6: Set

B =


1√
M

0

ē

N−
(√

ρ+ 1√
ρ

)√
N+1

√
M −

√
M


Apply LLL algorithm to BT and then obtain unimodular transformation matrix U = B−1(B′)T , where B′ is the resultant

obtained using LLL

U =

 a b

c d


Set ti = |c|,di = |a|

Step 7: Compute ϕi(N) = edi−1
ti

, xi = N−ϕi(N)+1
2

,yi =
√
x2
i −N .

Step 8: If ϕi(N), xi, yi ∈ N , then (q, p, d) = (xi − yi, xi + yi, di), otherwise i = i+ 1 and go to Step 5.

Example 3.7. Consider (e,N) = (1242349, 2035153). Then the decimal representation of

(
e

N−
(√

ρ+ 1√
ρ

)√
N+1

)
which

is equal to 0.611353789122353 . . . . Now, as N has 7 digits and is odd, choose M = 10
d(N)+1

2 = 104 and find the decimal

expansion of

(
e

N−
(√

ρ+ 1√
ρ

)√
N+1

)
corrected to 4 decimals. Thus, ē

N−
(√

ρ+ 1√
ρ

)√
N+1

= e

N−
(√

ρ+ 1√
ρ

)√
N+1

= 0.6114. Choosing

M = 104, we didn’t get the desired convergent. Hence update M as M = 105 and find the next convergent by considering 5

decimals of
¯(
e

N−
(√

ρ+ 1√
ρ

)√
N+1

)
, ᾱ = 0.61135. Now construct the matrix B and apply LLL algorithm to BT :

BT =


9815920/3104066453 1633031337/8447041

0 −2709261463/8567437


Now, the LLL matrix, B′ is given by :

B′ =


2247845680/3104066453 −19452456259019/72369491603917

−2424532240/3104066453 −78954087169010/72369491603917


Finally, the unimodular integral transformation matrix is given by:

U =

 229 −247

140 −151


Now, required convergent is given by, t

d
=| 140

229
|= 140

229
and we have:

ϕs(N) =
ed− 1

t

=
(1242349)(229)− 1

140

= 2032128,

xs =
N − ϕs(N) + 1

2
= 1513

ys =
√
x2
s −N = 504.

Therefore as ϕs(N), xs and ys are integers we have the private key given as (q, p, d) = (xs−ys, xs+ys, d) = (1009, 2017, 229).

This process of varying Ms in the range N
1
2 < Ms < N and applying LLL to obtain ts

ds
leading to private key is depicted

in the following table:
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1
4 ≤ d < N

3
4
−β and N

1
4 ≤ d < N(

1−γ
2

), γ ≤ 1
2 with Lattice Reduction

M

¯ e

N−
(
√
ρ+ 1√

ρ

)√
N+1

 Unimodular ma-
trix using LLL
U

ts
ds

=| c
a
| ϕs(N) = eds−1

ts
xs =

N−ϕs(N)+1
2

ys =
√
xs2 −N (q, p, d) = (xs −

ys, xs + ys, ds)/
Set M to iterate

M = 104 0.6114 U =[
−18 175

−11 107

] 11
18

/∈ N /∈ N /∈ N Set M = 105

M = 105 0.61135 U =[
229 −247

140 −151

] 140
229

2032128 1513 504 (1009, 2017,229)

Table 2: Implementation of Wiener’s extension in the range N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
with Lattice Reduction.

4. Conclusion

The main idea of Wiener Attack that whenever d < N1/4
√

6
, the fraction t

d
is a convergent of e

N
and hence it is interpreted as

finding (d, t) as a short vector by reducing the quadratic form q(x, y) = M
(
ē
N
x− y

)2
+ 1
M
x2 for an appropriate choice of M

in our paper [8]. In this paper, we adapt these ideas to Wiener Attack extensions in the range N
1
4 ≤ d < N

3
4
−β , p− q = Nβ

and N
1
4 ≤ d < N ( 1−γ

2
), γ ≤ 1

2
with lattice reduction. The continued fraction based arguments of Wiener Attack extensions

are implemented with the lattice based arguments and the LLL algorithm is used for reducing a basis of a lattice. This

method is implemented as LLL comes close to solve SV P in smaller dimensions.
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