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Abstract: In this paper the notion of convex and weakly convex (w-convex) subsets of a pseudo ordered set is introduced and several
characterizations are proved. It is proved that set of all convex subsets of a pseudo ordered set A forms a complete
lattice. Notion of isomorphism of psosets is introduced and characterization for convex isomorphic psosets is obtained.
It is proved that lattice of all w-convex subsets of a pseudo ordered set A denoted by WCS(A) is lower semi modular.
Also we have proved that for any two pseudo ordered sets A and A', w-convex homomorphism maps atoms of WCS(A)
to atoms of WCS(A'). Concept of path preserving mapping is introduced in a pseudo ordered set and it is proved that
every mapping of a pseudo ordered set A to itself is path preserving if and only if A is a cycle.
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1. Introduction

A reflexive and antisymmetric binary relation < on a set A is called a pseudo-order on A and (A, <) is called a pseudo-ordered
set or a psoset.For a,b € A if a <b and a # b, then we write a < b. For a subset B of A, the notions of a lower bound, an
upper bound, the greatest lower bound (GLB or meet, denoted by AB), the least upper bound (LUB or join, denoted by
VB) are defined analogous to the corresponding notions in a poset [1]. It is shown in [3] that any psoset can be regarded
as a digraph (possibly infinite) in which for any pair of distinct elements u and v there is no directed line between u and
v or if there is a directed line from w to v, there is no directed line from v to u. Define a relation Cp on a subset B of a
psoset (A, <) by setting b Cp b'for two elements b and b'of B if and only if there is a directed path in B from b to b' say
b=1by<b; <J---<b, =b' for some n > 0. The relation Jp is defined dually.

If for each pair of elements b and b of B at least one of the relations b Cg b! or b! Cp b holds, then B will be called a
pseudo chain or a p-chain. If for each pair of elements b and b' of B both the relations b Cp b* and b! CTp b hold, then B
will be called a cycle. The empty set and a single element set in a psoset are cycles. A non-trivial cycle contains at least

three elements. A psoset is said to be acyclic if it does not contain any non-trivial cycle.
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2. Convex Subsets of a Psoset

Definition 2.1. A subset S of a pseudo ordered set A is said to be a conver subset of A whenever a,b € S and ¢ € A such

that a <c<b thenc€e S.

Set of all convex subsets of a psoset A is denoted by C'S(A). Clearly the empty set ¢ and the psoset A are convex subsets.
Any singleton is a convex subset of A. Obviously (C'S(A), C) is a poset where C is the set inclusion relation defined on S.
For K1,K2 € CS(A), define K1 A Ko = K1 N K2 and K7 V K2 = smallest convex subset of A containing K1 U K2. Then
(CS(A), C) is a complete lattice with smallest element ¢ and greatest element A. The lattice (C'S(A), C) is atomistic. One

element subsets of A are atoms of C'S(A) and each element of C'S(A) different from ¢ is a join of some atoms.

Example 2.2. Consider the psoset (A, <) represented in Figure 1. CS(A) = {¢,{a}, {b}, {c},{d},{a,b},{b,c,d}, A} and
(CS(A),C) is a lattice which is represented in Figure 2 Where P = ¢,Q = {a},R = {b},S ={c},T = {d},U = {a,b},V =
{b,c,d} and W = A.
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Figure 1: Figure 2:

Remark 2.3. (CS(A),C) of Figure 2 is a non modular lattice. But C'S(A) is both lower semimodular and upper semimod-

ular.

Definition 2.4. Let {X; :i € I} be an arbitrary collection of subsets of a pseudo ordered set A. The set of all Z € CS(A)
such that X; C Z for each i € I will be denoted by CSa(X;:i€1). If {X;:i €1} ={X,Y}, we denote CSa(X;:9€ 1) =
CSa(X,Y) and for X = {a} and Y = {b}, we denote it by CSa(a,b).

Definition 2.5. Let A be any psoset and M C A. Let CSa(M) = N{K; : i € I} where K; runs over all convex subsets of

A containing M.
We write CSa(a,b) for CSa({a,b}).

Definition 2.6. We say that two psosets A and A* are convex isomorphic if and only if (CS(A), C) and (CS(A"),C) are

isomorphic.

Let F' be a mapping from A into B and ¢ # C C A. Denote by F/C, the restriction of F' onto the subset C. That is F/C =
FN(C x B). All one element subsets of A are atoms in the lattice (C'S(A), C). If F is an isomorphism between (C'S(A4), C)
and (C'S(A"), C), then as every isomorphism of atomic lattices maps atoms onto atoms, we get F({a}) = {a'} € CS(A")

where a! € AL

Definition 2.7. Let F be an isomorphism of lattices (CS(A),C) and (CS(A'),C). Let f be a mapping from A to A* such

that {f(a)} = F({a}) for each a € A. Then we say that the mapping f is associated with the isomorphism F.
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Denote f(S) = {f(x)|x € S} for a subset S of A.
Lemma 2.8. F(S) = f(S) for any S € CS(A).

Proof. 1If a € S then {a} C S and F({a}) = {f(a)} C F(S) as F is an isomorphism. Then f(a) € F(S) and thus
7(8) C F(S).

Conversely, if a* € F(S) then {a'} C F(S) and F~'({a'}) = {f '(a")} C S as F~' is also an isomorphism. Then
f(a') € S and a* € f(S) so that F(S) C f(S) proving that F(S) = f(S). O

Theorem 2.9. Let f be associated with an isomorphism F of the lattices (CS(A), C) and (CS(A'),C). Then f(CSa(M)) =
CSa1(f(M)) for any subset M C A.

Proof. As M C (N CSa(M), wehave f(M) C f(CSa(M)). Now, by lemma 2.8 f(NCSa(M)) = F(NCSa(M)) € CS(A")
and therefore CS41(f(M)) C f(CSa(M)). On the other hand, let Z € C'S(A') be such that f(M) C Z. Since F is surjective,
there exists W € C'S(A) with F(W) = f(W) = Z. It follows that M C W and therefore (| CSa(M) C W, consequently
f(NCSa(M)) € Z and f(CSa(M)) C CSa(f(M)). O

Theorem 2.10. The following three conditions are equivalent for two psosets A and A*.
(i). The psosets A and A' are convex isomorphic.
(i1). There exists a bijection f: A —s A such that f(CSa(M)) = CSa1(f(M)) for M C A.
(iii). There exists a bijection f: A — A' such that f(CSa((a,b))) = CSA1((f(a), (b)) for each a,b € A.

Proof. (i) = (i7): follows from Theorem 2.9.

(i1) = (4i1): Follows directly.

(ii1) = (i): Let f be a bijection satisfying (iii). Denote by P(A) the power set of A and define a mapping F : P(A) — P(A")
such that F'(S) = f(S) for each S € P(A). Now, we prove that for any convex set S, its image F'(S) is also convex. Clearly
f(a), f(b) € f(S) = F(S) for each a,b € S. If S € CS(A) then CSa(a,b) C S for arbitrary a,b € S and so by (iii), we have
CSa1(f(a), f(b)) = f(CSa(a,b)) C f(S) = F(S). This implies that the mapping F maps convex subsets of A onto convex
subsets of A* and F is a bijection as f is a bijection. Therefore the restriction of the mapping F/CS(A) : CS(A) — CS(AY)
is also a bijection. Since S C T if and only if F'(S) C F(T') for each S,T € CS(A), the mapping F/CS(A) is an isomorphism

of lattices (C'S(A),C) and (C'S(A'), C). Therefore psosets A and A" are convex isomorphic. O

3. w-convex Subsets of a Psoset

Definition 3.1. A subset S of a psoset A is said to be a w-convex subset (weakly convex subset) of A whenever a,b € S and

ce A suchthataCTacCabthenceS.

Set of all w-convex subsets of a psoset A is denoted by WCS(A) and it forms a lattice with respect to the relation C.
Remark 3.2.

(1). For Hy,Hy € WCS(A), define Hi AHy = HiNHz and H1V Ha = the smallest w-convez subset of A containing H1UHo.
(2). (WCS(A),C) is a complete lattice as ¢ is the least element and A is the greatest element of WCS(A).

Example 3.3. A psoset (A, <) where A = {a,b,c,d} and the lattice of all its w-conver subsetsare shown in Figure 3.
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Figure 3:

Definition 3.4. Let S be a subset of a psoset A. The w-convex hull of S denoted by wch(S) is defined to be the smallest

w-convex subset of A containing S.

Theorem 3.5. Let S be a subset of a psoset A. Then wch(S) = {q € Alp1 Ca q Ca p2 for some p1,p2 € S} where p1,p2

need not be distinct.

Proof. Let Q ={q € Alp1 Ca q E4 p> for some p1,p2 € S}. Clearly Q is a subset of any w-convex subset of A containing
S. Then @ C wch(S). Let us prove that Q itself is a w-convex subset of A. Let ¢1, g2 € Q such that g1 Ca 7 4 g2 for some
r € A. Now ¢1 € Q implies there exist some p1,p2 € S such that p1 T4 g1 Ca pa. Also g2 € Q implies there exist pi,ps € S

such that p} CaqgCa p%. Then pr Caqu CarCageCa p% which implies r € Q. Therefore @ = wch(S). O
Corollary 3.6. For any element a in a cycle C, wch({a}) = C.

A lattice L is said to be lower semi modular if x V y covers x and y imply x and y cover x A y.

Theorem 3.7. Lattice of all w-convex subsets of a psoset A is lower semi modular.

Proof. Let S1,S2 € WCS(A), lattice of all w-convex subsets of a psoset A. Let P = S1V Sz and Q = S1 A S2. Let P
cover both S; and Ss. It suffices to prove that S; covers Q. Suppose there exists a w-convex subset S' of A such that
Q C S'C Sy Let so € S' — Q. Then so € S1 and so ¢ So. Let s1 € S1 — S1. Then s; € S1, s1 ¢ Sy and s1 # so. Now
S2 C SoU{so} C P, as P is the smallest w-convex subset of A containing S1 U S2. But P covers Sz imply S2 U {so} is not
a w-convex subset of A. Therefore there exists a path between so and an element ko € Sz which does not lie completely in
S2 U {so}. Assume the path in the form ko C 4 so. (similar argument holds if the path is of the form so T4 ko).

Let X = {s € St — Q|k Ca s for some k € So}. X is non empty as sp € X and So C So U X. Further as s1 ¢ X (in fact
s1 ¢ Sl)7 we have SoUX C P. As P covers S, SaUX ¢ WCS(A). Therefore there exists a path m T4 n between two
elements m,n of So U X which is not contained in S U X. This implies m C4 ¢t C4 n but ¢t ¢ S2 U X. We can assume that
t € P as S2 U X is not a w-convex subset of P. In the following cases either we get a contradiction to the w-convexity of Sa
or S' itself is not w-convex, proving S; covers Q.

Case (1): Let m,n € S5. This is a contradiction to the w-convexity of Ss.

Case (2): Let m € X and n € S2. Asm € X, m ¢ Sa. By the definition of X there exists a k € Sz such that k T4 m.
Thus k C4 m and m E4 ¢t 4 n imply k T4 t £ 4 n, which contradicts the w-convexity of Ss.

Case (3): Let m,n € X. As m € X, there exists a path k T4 m for some k € S2. But we have a path m C4 ¢ which
implies there is a path k T4 t. But t ¢ X, ie t ¢ S' — Q. Since t ¢ So, it can not be in Q. Sot ¢ S*. But m,n € X C S*
shows that S is not a w-convex subset of A.

Case (4): Let m € Sz and n € X. As we have a path from m Cat,t ¢ X = S' — Q and since t ¢ S imply ¢ ¢ S*. Now P
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covers Sz and t ¢ Sz, we must have wch(S2 U {t}) = P. Thus every element of P is in Sy or else lies on some path between
t and an element of S2. In particular consider some sg € X, we have ko 4 so and t Ca n. If Kk E4 so Ca t where k € Ss,
then we have sp Ca t £ 4 n which proves that S' is not w-convex. On the other hand if ¢ Cas0Cakthen ko Ca so Ca k,

contradicting the w-convexity of Ss. O
Theorem 3.8. If S covers S* in WCS(A) and p,q belong to S — S* then weh({p}) = wch({q}).

Proof. As S covers S, wch(S* U {p}) = wch(S* U {q}) = S. Then p lies in a path from g to r where r € S* and q lies in
a path from p to s where s € S*. If there exist paths p Ca g and ¢ T4 p then the proof is done. But if both paths have the

same direction say p Ca ¢, we have paths p Ca r and s Ca p with r, s € S', contradicting the w-convexity of S*. (I
Definition 3.9. Let (A, <) and <A1, §11> be any two psosets. A mapping f : A —s Al is called

(1). order preserving if for a,b € A, a b implies f(a) <* f(b).

(2). path preserving if for a,b € A, a Ca b implies f(a) a1 f(b).

Remark 3.10. Any order preserving mapping f is path preserving. The converse is not true. For example, in the psoset
A of Figure 4, define a mapping f : A — A by f(a) = b, f(b) = a, f(c) = c. Clearly f is path preserving but not order

preserving.

Figure 4:

Theorem 3.11. Every mapping of a psoset A to itself is path preserving if and only if A is a cycle.

Proof. If A is a cycle, then for any two elements a,b of A, both @ £4 b and b E4 a hold. Therefore every mapping of A
to itself is path preserving. Conversely, let us assume that A is not a cycle. Then there exists at least one pair of elements
say (a, b) in A such that a C4 b holds but b C4 a does not hold. Define f: A — A by f(b) = a and f(c) = b for all ¢ # b.

Then f is not path preserving as a T4 b but f(a) Ca f(b) does not hold. O
One can easily prove the following theorem.

Theorem 3.12. Let f: A — A' be path preserving. If S is a w-convex subset in A then f(S) is a w-convex subset in A’
Definition 3.13. Let (A, <) and <A1, §1> be any two psosets. A mapping f : A — Al is called a homomorphism if

(1). f is order preserving.

(2). a' Q' b' in A" implies there exists a € f~'(a') and b € f~1(b") such that a <b.

Theorem 3.14. Let f: A — A" be a homomorphism. If S* is a w-convez subset of A" then f~*(S") is a w-convex subset

of A.
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Proof. Let a,bc f~*(S") such that a Ca ¢ Ca b for some c € A. If ¢ ¢ f~(S") then f(c) ¢ S*. Now f(a) Ca1 f(c) Car

f(b) and f(c) ¢ S*, a contradiction to the w-convexity of S*. Hence ¢ € f~*(S') and f~*(S') is w-convex. O

Remark 3.15. If f : A — A' is a homomorphism between two psosets A and A' and if S is a w-convex subset of A
then f(S) need not be a w-convex subset of A*. For, in Figure 5 define a map f : A — A' by f(a) = w, f(b) =y, f(c) =

z, f(d) = z. Clearly f is a homomorphism. Observe that {b} is w-convez in A where as f({b}) = {y} is not w-convez in A*.

a X
Psoset A Psoset A

Figure 5:

Definition 3.16. A homomorphism between two psosets A and A is called a w-convex homomorphism if it takes w-convex

subsets of A onto w-convex subsets of A*.

An element a of a lattice L is said to be an atom if for any b € L,0 < b < a imply either b = 0 or b = a where 0 is the least

element of L.

Remark 3.17.

(1). A cycle in a psoset A is always an atom of WCS(A)

(2). w-convex hull of a single element in a psoset A is an atom in WCS(A).

Theorem 3.18. Let f : A — A' be a w-convex homomorphism. If S is an atom in WCS(A) then f(S) is an atom in
WCS(AY). Conversely if S* is an atom in WCS(AY) then there exists an atom S in WCS(A) such that f(S) = S*.

Proof. If f(S) is not an atom in WCS(A') then there exists a w-convex subset S* in WCS(A') such that ¢ ¢ S* C £(S).
But then ¢ C f71(S*) NS C S, where f~1(S*) N S is also a w-convex subset of A, contradicting the fact that S is an atom.
Conversely, let S* be an atom in WCS(A') and S C f~(S*) be an atom in WCS(A). Then ¢ C f(S) C S* and since S*
is an atom in WCS(A'), we have f(S) = S*. O

Corollary 3.19. Any w-convexr homomorphism maps acyclic psosets into acyclic psosets.
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