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Abstract: In this paper the notion of convex and weakly convex (w-convex) subsets of a pseudo ordered set is introduced and several

characterizations are proved. It is proved that set of all convex subsets of a pseudo ordered set A forms a complete

lattice. Notion of isomorphism of psosets is introduced and characterization for convex isomorphic psosets is obtained.
It is proved that lattice of all w-convex subsets of a pseudo ordered set A denoted by WCS(A) is lower semi modular.

Also we have proved that for any two pseudo ordered sets A and A1, w-convex homomorphism maps atoms of WCS(A)

to atoms of WCS(A1). Concept of path preserving mapping is introduced in a pseudo ordered set and it is proved that
every mapping of a pseudo ordered set A to itself is path preserving if and only if A is a cycle.
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1. Introduction

A reflexive and antisymmetric binary relation E on a set A is called a pseudo-order on A and 〈A,E〉 is called a pseudo-ordered

set or a psoset.For a, b ∈ A if a E b and a 6= b, then we write a C b. For a subset B of A, the notions of a lower bound, an

upper bound, the greatest lower bound (GLB or meet, denoted by ∧B), the least upper bound (LUB or join, denoted by

∨B) are defined analogous to the corresponding notions in a poset [1]. It is shown in [3] that any psoset can be regarded

as a digraph (possibly infinite) in which for any pair of distinct elements u and v there is no directed line between u and

v or if there is a directed line from u to v, there is no directed line from v to u. Define a relation vB on a subset B of a

psoset 〈A,E〉 by setting b vB b1for two elements b and b1of B if and only if there is a directed path in B from b to b1 say

b = b0 E b1 E · · ·E bn = b1 for some n ≥ 0. The relation wB is defined dually.

If for each pair of elements b and b1 of B at least one of the relations b vB b1 or b1 vB b holds, then B will be called a

pseudo chain or a p-chain. If for each pair of elements b and b1 of B both the relations b vB b1 and b1 vB b hold, then B

will be called a cycle. The empty set and a single element set in a psoset are cycles. A non-trivial cycle contains at least

three elements. A psoset is said to be acyclic if it does not contain any non-trivial cycle.
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2. Convex Subsets of a Psoset

Definition 2.1. A subset S of a pseudo ordered set A is said to be a convex subset of A whenever a, b ∈ S and c ∈ A such

that aE cE b then c ∈ S.

Set of all convex subsets of a psoset A is denoted by CS(A). Clearly the empty set φ and the psoset A are convex subsets.

Any singleton is a convex subset of A. Obviously 〈CS(A),⊆〉 is a poset where ⊆ is the set inclusion relation defined on S.

For K1,K2 ∈ CS(A), define K1 ∧K2 = K1 ∩K2 and K1 ∨K2 = smallest convex subset of A containing K1 ∪K2. Then

〈CS(A),⊆〉 is a complete lattice with smallest element φ and greatest element A. The lattice 〈CS(A),⊆〉 is atomistic. One

element subsets of A are atoms of CS(A) and each element of CS(A) different from φ is a join of some atoms.

Example 2.2. Consider the psoset 〈A,E〉 represented in Figure 1. CS(A) = {φ, {a}, {b}, {c}, {d}, {a, b}, {b, c, d}, A} and

〈CS(A),⊆〉 is a lattice which is represented in Figure 2 Where P = φ,Q = {a}, R = {b}, S = {c}, T = {d}, U = {a, b}, V =

{b, c, d} and W = A.

a

b c

d

Figure 1:

P

Q R S T

U V

W

Figure 2:

Remark 2.3. 〈CS(A),⊆〉 of Figure 2 is a non modular lattice. But CS(A) is both lower semimodular and upper semimod-

ular.

Definition 2.4. Let {Xi : i ∈ I} be an arbitrary collection of subsets of a pseudo ordered set A. The set of all Z ∈ CS(A)

such that Xi ⊂ Z for each i ∈ I will be denoted by CSA(Xi : i ∈ I). If {Xi : i ∈ I} = {X,Y }, we denote CSA(Xi : i ∈ I) =

CSA(X,Y ) and for X = {a} and Y = {b}, we denote it by CSA(a, b).

Definition 2.5. Let A be any psoset and M ⊆ A. Let CSA(M) = ∩{Ki : i ∈ I} where Ki runs over all convex subsets of

A containing M .

We write CSA(a, b) for CSA({a, b}).

Definition 2.6. We say that two psosets A and A1 are convex isomorphic if and only if 〈CS(A),⊆〉 and 〈CS(A1),⊆〉 are

isomorphic.

Let F be a mapping from A into B and φ 6= C ⊆ A. Denote by F/C, the restriction of F onto the subset C. That is F/C =

F ∩ (C ×B). All one element subsets of A are atoms in the lattice 〈CS(A),⊆〉. If F is an isomorphism between 〈CS(A),⊆〉

and 〈CS(A1),⊆〉, then as every isomorphism of atomic lattices maps atoms onto atoms, we get F ({a}) = {a1} ∈ CS(A1)

where a1 ∈ A1.

Definition 2.7. Let F be an isomorphism of lattices 〈CS(A),⊆〉 and 〈CS(A1),⊆〉. Let f be a mapping from A to A1 such

that {f(a)} = F ({a}) for each a ∈ A. Then we say that the mapping f is associated with the isomorphism F .
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Denote f(S) = {f(x)|x ∈ S} for a subset S of A.

Lemma 2.8. F (S) = f(S) for any S ∈ CS(A).

Proof. If a ∈ S then {a} ⊆ S and F ({a}) = {f(a)} ⊆ F (S) as F is an isomorphism. Then f(a) ∈ F (S) and thus

f(S) ⊆ F (S).

Conversely, if a1 ∈ F (S) then {a1} ⊆ F (S) and F−1({a1}) = {f−1(a1)} ⊆ S as F−1 is also an isomorphism. Then

f−1(a1) ∈ S and a1 ∈ f(S) so that F (S) ⊆ f(S) proving that F (S) = f(S).

Theorem 2.9. Let f be associated with an isomorphism F of the lattices 〈CS(A),⊆〉 and 〈CS(A1),⊆〉. Then f(CSA(M)) =

CSA1(f(M)) for any subset M ⊆ A.

Proof. As M ⊆
⋂
CSA(M), we have f(M) ⊆ f(CSA(M)). Now, by lemma 2.8 f(

⋂
CSA(M)) = F (

⋂
CSA(M)) ∈ CS(A1)

and therefore CSA1(f(M)) ⊆ f(CSA(M)). On the other hand, let Z ∈ CS(A1) be such that f(M) ⊆ Z. Since F is surjective,

there exists W ∈ CS(A) with F (W ) = f(W ) = Z. It follows that M ⊆ W and therefore
⋂
CSA(M) ⊆ W , consequently

f(
⋂
CSA(M)) ⊆ Z and f(CSA(M)) ⊆ CSA1(f(M)).

Theorem 2.10. The following three conditions are equivalent for two psosets A and A1.

(i). The psosets A and A1 are convex isomorphic.

(ii). There exists a bijection f : A −→ A1 such that f(CSA(M)) = CSA1(f(M)) for M ⊆ A.

(iii). There exists a bijection f : A −→ A1 such that f(CSA((a, b))) = CSA1((f(a), f(b))) for each a, b ∈ A.

Proof. (i)⇒ (ii): follows from Theorem 2.9.

(ii)⇒ (iii): Follows directly.

(iii)⇒ (i): Let f be a bijection satisfying (iii). Denote by P (A) the power set of A and define a mapping F : P (A)→ P (A1)

such that F (S) = f(S) for each S ∈ P (A). Now, we prove that for any convex set S, its image F (S) is also convex. Clearly

f(a), f(b) ∈ f(S) = F (S) for each a, b ∈ S. If S ∈ CS(A) then CSA(a, b) ⊆ S for arbitrary a, b ∈ S and so by (iii), we have

CSA1(f(a), f(b)) = f(CSA(a, b)) ⊆ f(S) = F (S). This implies that the mapping F maps convex subsets of A onto convex

subsets of A1 and F is a bijection as f is a bijection. Therefore the restriction of the mapping F/CS(A) : CS(A) −→ CS(A1)

is also a bijection. Since S ⊆ T if and only if F (S) ⊆ F (T ) for each S, T ∈ CS(A), the mapping F/CS(A) is an isomorphism

of lattices 〈CS(A),⊆〉 and 〈CS(A1),⊆〉. Therefore psosets A and A1 are convex isomorphic.

3. w-convex Subsets of a Psoset

Definition 3.1. A subset S of a psoset A is said to be a w-convex subset (weakly convex subset) of A whenever a, b ∈ S and

c ∈ A such that a vA c vA b then c ∈ S.

Set of all w-convex subsets of a psoset A is denoted by WCS(A) and it forms a lattice with respect to the relation ⊆.

Remark 3.2.

(1). For H1, H2 ∈WCS(A), define H1∧H2 = H1∩H2 and H1∨H2 = the smallest w-convex subset of A containing H1∪H2.

(2). 〈WCS(A),⊆〉 is a complete lattice as ϕ is the least element and A is the greatest element of WCS(A).

Example 3.3. A psoset 〈A,E〉 where A = {a, b, c, d} and the lattice of all its w-convex subsetsare shown in Figure 3.
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A

Figure 3:

Definition 3.4. Let S be a subset of a psoset A. The w-convex hull of S denoted by wch(S) is defined to be the smallest

w-convex subset of A containing S.

Theorem 3.5. Let S be a subset of a psoset A. Then wch(S) = {q ∈ A|p1 vA q vA p2 for some p1, p2 ∈ S} where p1, p2

need not be distinct.

Proof. Let Q = {q ∈ A|p1 vA q vA p2 for some p1, p2 ∈ S}. Clearly Q is a subset of any w-convex subset of A containing

S. Then Q ⊆ wch(S). Let us prove that Q itself is a w-convex subset of A. Let q1, q2 ∈ Q such that q1 vA r vA q2 for some

r ∈ A. Now q1 ∈ Q implies there exist some p1, p2 ∈ S such that p1 vA q1 vA p2. Also q2 ∈ Q implies there exist p11, p
1
2 ∈ S

such that p11 vA q2 vA p12. Then p1 vA q1 vA r vA q2 vA p12 which implies r ∈ Q. Therefore Q = wch(S).

Corollary 3.6. For any element a in a cycle C, wch({a}) = C.

A lattice L is said to be lower semi modular if x ∨ y covers x and y imply x and y cover x ∧ y.

Theorem 3.7. Lattice of all w-convex subsets of a psoset A is lower semi modular.

Proof. Let S1, S2 ∈ WCS(A), lattice of all w-convex subsets of a psoset A. Let P = S1 ∨ S2 and Q = S1 ∧ S2. Let P

cover both S1 and S2. It suffices to prove that S1 covers Q. Suppose there exists a w-convex subset S1 of A such that

Q ⊆ S1 ⊆ S1. Let s0 ∈ S1 − Q. Then s0 ∈ S1 and s0 /∈ S2. Let s1 ∈ S1 − S1. Then s1 ∈ S1, s1 /∈ S2 and s1 6= s0. Now

S2 ⊂ S2 ∪ {s0} ⊂ P , as P is the smallest w-convex subset of A containing S1 ∪ S2. But P covers S2 imply S2 ∪ {s0} is not

a w-convex subset of A. Therefore there exists a path between s0 and an element k0 ∈ S2 which does not lie completely in

S2 ∪ {s0}. Assume the path in the form k0 vA s0. (similar argument holds if the path is of the form s0 vA k0).

Let X = {s ∈ S1 − Q|k vA s for some k ∈ S2}. X is non empty as s0 ∈ X and S2 ⊂ S2 ∪X. Further as s1 /∈ X (in fact

s1 /∈ S1), we have S2 ∪X ⊂ P . As P covers S2, S2 ∪X /∈ WCS(A). Therefore there exists a path m vA n between two

elements m,n of S2 ∪X which is not contained in S2 ∪X. This implies m vA t vA n but t /∈ S2 ∪X. We can assume that

t ∈ P as S2 ∪X is not a w-convex subset of P . In the following cases either we get a contradiction to the w-convexity of S2

or S1 itself is not w-convex, proving S1 covers Q.

Case (1): Let m,n ∈ S2. This is a contradiction to the w-convexity of S2.

Case (2): Let m ∈ X and n ∈ S2. As m ∈ X, m /∈ S2. By the definition of X there exists a k ∈ S2 such that k vA m.

Thus k vA m and m vA t vA n imply k vA t vA n, which contradicts the w-convexity of S2.

Case (3): Let m,n ∈ X. As m ∈ X, there exists a path k vA m for some k ∈ S2. But we have a path m vA t which

implies there is a path k vA t. But t /∈ X, ie t /∈ S1 −Q. Since t /∈ S2, it can not be in Q. So t /∈ S1. But m,n ∈ X ⊆ S1

shows that S1 is not a w-convex subset of A.

Case (4): Let m ∈ S2 and n ∈ X. As we have a path from m vA t, t /∈ X = S1 −Q and since t /∈ S2 imply t /∈ S1. Now P
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covers S2 and t /∈ S2, we must have wch(S2 ∪ {t}) = P . Thus every element of P is in S2 or else lies on some path between

t and an element of S2. In particular consider some s0 ∈ X, we have k0 vA s0 and t vA n. If k vA s0 vA t where k ∈ S2,

then we have s0 vA t vA n which proves that S1 is not w-convex. On the other hand if t vA s0 vA k then k0 vA s0 vA k,

contradicting the w-convexity of S2.

Theorem 3.8. If S covers S1 in WCS(A) and p, q belong to S − S1 then wch({p}) = wch({q}).

Proof. As S covers S1, wch(S1 ∪ {p}) = wch(S1 ∪ {q}) = S. Then p lies in a path from q to r where r ∈ S1 and q lies in

a path from p to s where s ∈ S1. If there exist paths p vA q and q vA p then the proof is done. But if both paths have the

same direction say p vA q, we have paths p vA r and s vA p with r, s ∈ S1, contradicting the w-convexity of S1.

Definition 3.9. Let 〈A,E〉 and
〈
A1,E1

〉
be any two psosets. A mapping f : A −→ A1 is called

(1). order preserving if for a, b ∈ A, aE b implies f(a) E1 f(b).

(2). path preserving if for a, b ∈ A, a vA b implies f(a) vA1 f(b).

Remark 3.10. Any order preserving mapping f is path preserving. The converse is not true. For example, in the psoset

A of Figure 4, define a mapping f : A −→ A by f(a) = b, f(b) = a, f(c) = c. Clearly f is path preserving but not order

preserving.

a b

c

Figure 4:

Theorem 3.11. Every mapping of a psoset A to itself is path preserving if and only if A is a cycle.

Proof. If A is a cycle, then for any two elements a, b of A, both a vA b and b vA a hold. Therefore every mapping of A

to itself is path preserving. Conversely, let us assume that A is not a cycle. Then there exists at least one pair of elements

say (a, b) in A such that a vA b holds but b vA a does not hold. Define f : A −→ A by f(b) = a and f(c) = b for all c 6= b.

Then f is not path preserving as a vA b but f(a) vA f(b) does not hold.

One can easily prove the following theorem.

Theorem 3.12. Let f : A −→ A1 be path preserving. If S is a w-convex subset in A then f(S) is a w-convex subset in A1.

Definition 3.13. Let 〈A,E〉 and
〈
A1,E1

〉
be any two psosets. A mapping f : A→ A1 is called a homomorphism if

(1). f is order preserving.

(2). a1 E1 b1 in A1 implies there exists a ∈ f−1(a1) and b ∈ f−1(b1) such that aE b.

Theorem 3.14. Let f : A→ A1 be a homomorphism. If S1 is a w-convex subset of A1 then f−1(S1) is a w-convex subset

of A.
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Proof. Let a, b ∈ f−1(S1) such that a vA c vA b for some c ∈ A. If c /∈ f−1(S1) then f(c) /∈ S1. Now f(a) vA1 f(c) vA1

f(b) and f(c) /∈ S1, a contradiction to the w-convexity of S1. Hence c ∈ f−1(S1) and f−1(S1) is w-convex.

Remark 3.15. If f : A −→ A1 is a homomorphism between two psosets A and A1 and if S is a w-convex subset of A

then f(S) need not be a w-convex subset of A1. For, in Figure 5 define a map f : A −→ A1 by f(a) = w, f(b) = y, f(c) =

x, f(d) = z. Clearly f is a homomorphism. Observe that {b} is w-convex in A where as f({b}) = {y} is not w-convex in A1.

a

b c

d

Psoset A
x

y z

w

Psoset A´

Figure 5:

Definition 3.16. A homomorphism between two psosets A and A1 is called a w-convex homomorphism if it takes w-convex

subsets of A onto w-convex subsets of A1.

An element a of a lattice L is said to be an atom if for any b ∈ L, 0 ≤ b ≤ a imply either b = 0 or b = a where 0 is the least

element of L.

Remark 3.17.

(1). A cycle in a psoset A is always an atom of WCS(A)

(2). w-convex hull of a single element in a psoset A is an atom in WCS(A).

Theorem 3.18. Let f : A → A1 be a w-convex homomorphism. If S is an atom in WCS(A) then f(S) is an atom in

WCS(A1). Conversely if S1 is an atom in WCS(A1) then there exists an atom S in WCS(A) such that f(S) = S1.

Proof. If f(S) is not an atom in WCS(A1) then there exists a w-convex subset S1 in WCS(A1) such that ϕ ⊂ S1 ⊂ f(S).

But then ϕ ⊂ f−1(S1) ∩ S ⊂ S, where f−1(S1)∩S is also a w-convex subset of A, contradicting the fact that S is an atom.

Conversely, let S1 be an atom in WCS(A1) and S ⊆ f−1(S1) be an atom in WCS(A). Then ϕ ⊆ f(S) ⊆ S1 and since S1

is an atom in WCS(A1), we have f(S) = S1.

Corollary 3.19. Any w-convex homomorphism maps acyclic psosets into acyclic psosets.
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