International Journal of Mathematics tind its Applications

Convex and Weakly Convex Subsets of a Pseudo Ordered Set

Prashantha Rao ${ }^{1, *}$ and Shashirekha B Rai ${ }^{2}$
1 Department of Mathematics, Sahyadri College of Engineering and Management, Adyar, Mangalore, Karnataka, India.
2 Department of Mathematics, NMAMIT Nitte, Karkal, Karnataka, India.

Abstract

In this paper the notion of convex and weakly convex (w-convex) subsets of a pseudo ordered set is introduced and several characterizations are proved. It is proved that set of all convex subsets of a pseudo ordered set A forms a complete lattice. Notion of isomorphism of psosets is introduced and characterization for convex isomorphic psosets is obtained. It is proved that lattice of all w-convex subsets of a pseudo ordered set A denoted by $W C S(A)$ is lower semi modular. Also we have proved that for any two pseudo ordered sets A and A^{1}, w-convex homomorphism maps atoms of $W C S(A)$ to atoms of $W C S\left(A^{1}\right)$. Concept of path preserving mapping is introduced in a pseudo ordered set and it is proved that every mapping of a pseudo ordered set A to itself is path preserving if and only if A is a cycle.

MSC: $06 B 20,06 B 10$.

Keywords: Psoset, convex subset, w-convex subset, w-convex hull, lattice.
(C) JS Publication.

1. Introduction

A reflexive and antisymmetric binary relation \unlhd on a set A is called a pseudo-order on A and $\langle A, \unlhd\rangle$ is called a pseudo-ordered set or a psoset. For $a, b \in A$ if $a \unlhd b$ and $a \neq b$, then we write $a \triangleleft b$. For a subset B of A, the notions of a lower bound, an upper bound, the greatest lower bound (GLB or meet, denoted by $\wedge B$), the least upper bound (LUB or join, denoted by $\vee B$) are defined analogous to the corresponding notions in a poset [1]. It is shown in [3] that any psoset can be regarded as a digraph (possibly infinite) in which for any pair of distinct elements u and v there is no directed line between u and v or if there is a directed line from u to v, there is no directed line from v to u. Define a relation \sqsubseteq_{B} on a subset B of a psoset $\langle A, \unlhd\rangle$ by setting $b \sqsubseteq_{B} b^{1}$ for two elements b and b^{1} of B if and only if there is a directed path in B from b to b^{1} say $b=b_{0} \unlhd b_{1} \unlhd \cdots \unlhd b_{n}=b^{1}$ for some $n \geq 0$. The relation \beth_{B} is defined dually.
If for each pair of elements b and b^{1} of B at least one of the relations $b \sqsubseteq_{B} b^{1}$ or $b^{1} \sqsubseteq_{B} b$ holds, then B will be called a pseudo chain or a p-chain. If for each pair of elements b and b^{1} of B both the relations $b \sqsubseteq_{B} b^{1}$ and $b^{1} \sqsubseteq_{B} b$ hold, then B will be called a cycle. The empty set and a single element set in a psoset are cycles. A non-trivial cycle contains at least three elements. A psoset is said to be acyclic if it does not contain any non-trivial cycle.

[^0]
2. Convex Subsets of a Psoset

Definition 2.1. A subset S of a pseudo ordered set A is said to be a convex subset of A whenever $a, b \in S$ and $c \in A$ such that $a \unlhd c \unlhd b$ then $c \in S$.

Set of all convex subsets of a psoset A is denoted by $C S(A)$. Clearly the empty set ϕ and the psoset A are convex subsets. Any singleton is a convex subset of A. Obviously $\langle C S(A), \subseteq\rangle$ is a poset where \subseteq is the set inclusion relation defined on S. For $K_{1}, K_{2} \in C S(A)$, define $K_{1} \wedge K_{2}=K_{1} \cap K_{2}$ and $K_{1} \vee K_{2}=$ smallest convex subset of A containing $K_{1} \cup K_{2}$. Then $\langle C S(A), \subseteq\rangle$ is a complete lattice with smallest element ϕ and greatest element A. The lattice $\langle C S(A), \subseteq\rangle$ is atomistic. One element subsets of A are atoms of $C S(A)$ and each element of $C S(A)$ different from ϕ is a join of some atoms.

Example 2.2. Consider the psoset $\langle A, \unlhd\rangle$ represented in Figure 1. $C S(A)=\{\phi,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{b, c, d\}, A\}$ and $\langle C S(A), \subseteq\rangle$ is a lattice which is represented in Figure 2 Where $P=\phi, Q=\{a\}, R=\{b\}, S=\{c\}, T=\{d\}, U=\{a, b\}, V=$ $\{b, c, d\}$ and $W=A$.

Figure 1:

Figure 2:

Remark 2.3. $\langle C S(A), \subseteq\rangle$ of Figure 2 is a non modular lattice. But $C S(A)$ is both lower semimodular and upper semimodular.

Definition 2.4. Let $\left\{X_{i}: i \in I\right\}$ be an arbitrary collection of subsets of a pseudo ordered set A. The set of all $Z \in C S(A)$ such that $X_{i} \subset Z$ for each $i \in I$ will be denoted by $C S_{A}\left(X_{i}: i \in I\right)$. If $\left\{X_{i}: i \in I\right\}=\{X, Y\}$, we denote $C S_{A}\left(X_{i}: i \in I\right)=$ $C S_{A}(X, Y)$ and for $X=\{a\}$ and $Y=\{b\}$, we denote it by $C S_{A}(a, b)$.

Definition 2.5. Let A be any psoset and $M \subseteq A$. Let $C S_{A}(M)=\cap\left\{K_{i}: i \in I\right\}$ where K_{i} runs over all convex subsets of A containing M.

We write $C S_{A}(a, b)$ for $C S_{A}(\{a, b\})$.
Definition 2.6. We say that two psosets A and A^{1} are convex isomorphic if and only if $\langle C S(A), \subseteq\rangle$ and $\left\langle C S\left(A^{1}\right), \subseteq\right\rangle$ are isomorphic.

Let F be a mapping from A into B and $\phi \neq C \subseteq A$. Denote by F / C, the restriction of F onto the subset C. That is $F / C=$ $F \cap(C \times B)$. All one element subsets of A are atoms in the lattice $\langle C S(A), \subseteq\rangle$. If F is an isomorphism between $\langle C S(A), \subseteq\rangle$ and $\left\langle C S\left(A^{1}\right), \subseteq\right\rangle$, then as every isomorphism of atomic lattices maps atoms onto atoms, we get $F(\{a\})=\left\{a^{1}\right\} \in C S\left(A^{1}\right)$ where $a^{1} \in A^{1}$.

Definition 2.7. Let F be an isomorphism of lattices $\langle C S(A), \subseteq\rangle$ and $\left\langle C S\left(A^{1}\right), \subseteq\right\rangle$. Let f be a mapping from A to A^{1} such that $\{f(a)\}=F(\{a\})$ for each $a \in A$. Then we say that the mapping f is associated with the isomorphism F.

Denote $f(S)=\{f(x) \mid x \in S\}$ for a subset S of A.

Lemma 2.8. $F(S)=f(S)$ for any $S \in C S(A)$.
Proof. If $a \in S$ then $\{a\} \subseteq S$ and $F(\{a\})=\{f(a)\} \subseteq F(S)$ as F is an isomorphism. Then $f(a) \in F(S)$ and thus $f(S) \subseteq F(S)$.

Conversely, if $a^{1} \in F(S)$ then $\left\{a^{1}\right\} \subseteq F(S)$ and $F^{-1}\left(\left\{a^{1}\right\}\right)=\left\{f^{-1}\left(a^{1}\right)\right\} \subseteq S$ as F^{-1} is also an isomorphism. Then $f^{-1}\left(a^{1}\right) \in S$ and $a^{1} \in f(S)$ so that $F(S) \subseteq f(S)$ proving that $F(S)=f(S)$.

Theorem 2.9. Let f be associated with an isomorphism F of the lattices $\langle C S(A), \subseteq\rangle$ and $\left\langle C S\left(A^{1}\right), \subseteq\right\rangle$. Then $f\left(C S_{A}(M)\right)=$ $C S_{A^{1}}(f(M))$ for any subset $M \subseteq A$.

Proof. As $M \subseteq \bigcap C S_{A}(M)$, we have $f(M) \subseteq f\left(C S_{A}(M)\right)$. Now, by lemma $2.8 f\left(\cap C S_{A}(M)\right)=F\left(\cap C S_{A}(M)\right) \in C S\left(A^{1}\right)$ and therefore $C S_{A^{1}}(f(M)) \subseteq f\left(C S_{A}(M)\right)$. On the other hand, let $Z \in C S\left(A^{1}\right)$ be such that $f(M) \subseteq Z$. Since F is surjective, there exists $W \in C S(A)$ with $F(W)=f(W)=Z$. It follows that $M \subseteq W$ and therefore $\cap C S_{A}(M) \subseteq W$, consequently $f\left(\bigcap C S_{A}(M)\right) \subseteq Z$ and $f\left(C S_{A}(M)\right) \subseteq C S_{A^{1}}(f(M))$.

Theorem 2.10. The following three conditions are equivalent for two psosets A and A^{1}.
(i). The psosets A and A^{1} are convex isomorphic.
(ii). There exists a bijection $f: A \longrightarrow A^{1}$ such that $f\left(C S_{A}(M)\right)=C S_{A^{1}}(f(M))$ for $M \subseteq A$.
(iii). There exists a bijection $f: A \longrightarrow A^{1}$ such that $f\left(C S_{A}((a, b))\right)=C S_{A^{1}}((f(a), f(b)))$ for each $a, b \in A$.

Proof. $\quad(i) \Rightarrow(i i)$: follows from Theorem 2.9.
$(i i) \Rightarrow(i i i)$: Follows directly.
$(i i i) \Rightarrow(i)$: Let f be a bijection satisfying (iii). Denote by $P(A)$ the power set of A and define a mapping $F: P(A) \rightarrow P\left(A^{1}\right)$ such that $F(S)=f(S)$ for each $S \in P(A)$. Now, we prove that for any convex set S, its image $F(S)$ is also convex. Clearly $f(a), f(b) \in f(S)=F(S)$ for each $a, b \in S$. If $S \in C S(A)$ then $C S_{A}(a, b) \subseteq S$ for arbitrary $a, b \in S$ and so by (iii), we have $C S_{A^{1}}(f(a), f(b))=f\left(C S_{A}(a, b)\right) \subseteq f(S)=F(S)$. This implies that the mapping F maps convex subsets of A onto convex subsets of A^{1} and F is a bijection as f is a bijection. Therefore the restriction of the mapping $F / C S(A): C S(A) \longrightarrow C S\left(A^{1}\right)$ is also a bijection. Since $S \subseteq T$ if and only if $F(S) \subseteq F(T)$ for each $S, T \in C S(A)$, the mapping $F / C S(A)$ is an isomorphism of lattices $\langle C S(A), \subseteq\rangle$ and $\left\langle C S\left(A^{1}\right), \subseteq\right\rangle$. Therefore psosets A and A^{1} are convex isomorphic.

3. w-convex Subsets of a Psoset

Definition 3.1. A subset S of a psoset A is said to be a w-convex subset (weakly convex subset) of A whenever $a, b \in S$ and $c \in A$ such that $a \sqsubseteq_{A} c \sqsubseteq_{A} b$ then $c \in S$.

Set of all w-convex subsets of a psoset A is denoted by $W C S(A)$ and it forms a lattice with respect to the relation \subseteq.

Remark 3.2.

(1). For $H_{1}, H_{2} \in W C S(A)$, define $H_{1} \wedge H_{2}=H_{1} \cap H_{2}$ and $H_{1} \vee H_{2}=$ the smallest w-convex subset of A containing $H_{1} \cup H_{2}$.
(2). $\langle W C S(A), \subseteq\rangle$ is a complete lattice as φ is the least element and A is the greatest element of $W C S(A)$.

Example 3.3. A psoset $\langle A, \unlhd\rangle$ where $A=\{a, b, c, d\}$ and the lattice of all its w-convex subsetsare shown in Figure 3.

Figure 3:

Definition 3.4. Let S be a subset of a psoset A. The w-convex hull of S denoted by wh (S) is defined to be the smallest w-convex subset of A containing S.

Theorem 3.5. Let S be a subset of a psoset A. Then $w c h(S)=\left\{q \in A \mid p_{1} \sqsubseteq_{A} q \sqsubseteq_{A} p_{2}\right.$ for some $\left.p_{1}, p_{2} \in S\right\}$ where p_{1}, p_{2} need not be distinct.

Proof. Let $Q=\left\{q \in A \mid p_{1} \sqsubseteq_{A} q \sqsubseteq_{A} p_{2}\right.$ for some $\left.p_{1}, p_{2} \in S\right\}$. Clearly Q is a subset of any w-convex subset of A containing S. Then $Q \subseteq w c h(S)$. Let us prove that Q itself is a w-convex subset of A. Let $q_{1}, q_{2} \in Q$ such that $q_{1} \sqsubseteq_{A} r \sqsubseteq_{A} q_{2}$ for some $r \in A$. Now $q_{1} \in Q$ implies there exist some $p_{1}, p_{2} \in S$ such that $p_{1} \sqsubseteq_{A} q_{1} \sqsubseteq_{A} p_{2}$. Also $q_{2} \in Q$ implies there exist $p_{1}^{1}, p_{2}^{1} \in S$ such that $p_{1}^{1} \sqsubseteq_{A} q_{2} \sqsubseteq_{A} p_{2}^{1}$. Then $p_{1} \sqsubseteq_{A} q_{1} \sqsubseteq_{A} r \sqsubseteq_{A} q_{2} \sqsubseteq_{A} p_{2}^{1}$ which implies $r \in Q$. Therefore $Q=w c h(S)$.

Corollary 3.6. For any element a in a cycle C, $w \operatorname{ch}(\{a\})=C$.

A lattice L is said to be lower semi modular if $x \vee y$ covers x and y imply x and y cover $x \wedge y$.
Theorem 3.7. Lattice of all w-convex subsets of a psoset A is lower semi modular.
Proof. Let $S_{1}, S_{2} \in W C S(A)$, lattice of all w-convex subsets of a psoset A. Let $P=S_{1} \vee S_{2}$ and $Q=S_{1} \wedge S_{2}$. Let P cover both S_{1} and S_{2}. It suffices to prove that S_{1} covers Q. Suppose there exists a w-convex subset S^{1} of A such that $Q \subseteq S^{1} \subseteq S_{1}$. Let $s_{0} \in S^{1}-Q$. Then $s_{0} \in S_{1}$ and $s_{0} \notin S_{2}$. Let $s_{1} \in S_{1}-S^{1}$. Then $s_{1} \in S_{1}, s_{1} \notin S_{2}$ and $s_{1} \neq s_{0}$. Now $S_{2} \subset S_{2} \cup\left\{s_{0}\right\} \subset P$, as P is the smallest w-convex subset of A containing $S_{1} \cup S_{2}$. But P covers S_{2} imply $S_{2} \cup\left\{s_{0}\right\}$ is not a w-convex subset of A. Therefore there exists a path between s_{0} and an element $k_{0} \in S_{2}$ which does not lie completely in $S_{2} \cup\left\{s_{0}\right\}$. Assume the path in the form $k_{0} \sqsubseteq_{A} s_{0}$. (similar argument holds if the path is of the form $s_{0} \sqsubseteq \sqsubseteq_{A} k_{0}$).

Let $X=\left\{s \in S^{1}-Q \mid k \sqsubseteq_{A} s\right.$ for some $\left.k \in S_{2}\right\} . X$ is non empty as $s_{0} \in X$ and $S_{2} \subset S_{2} \cup X$. Further as $s_{1} \notin X$ (in fact $s_{1} \notin S^{1}$), we have $S_{2} \cup X \subset P$. As P covers $S_{2}, S_{2} \cup X \notin W C S(A)$. Therefore there exists a path $m \sqsubseteq_{A} n$ between two elements m, n of $S_{2} \cup X$ which is not contained in $S_{2} \cup X$. This implies $m \sqsubseteq_{A} t \sqsubseteq_{A} n$ but $t \notin S_{2} \cup X$. We can assume that $t \in P$ as $S_{2} \cup X$ is not a w-convex subset of P. In the following cases either we get a contradiction to the w-convexity of S_{2} or S^{1} itself is not w-convex, proving S_{1} covers Q.

Case (1): Let $m, n \in S_{2}$. This is a contradiction to the w-convexity of S_{2}.
Case (2): Let $m \in X$ and $n \in S_{2}$. As $m \in X, m \notin S_{2}$. By the definition of X there exists a $k \in S_{2}$ such that $k \sqsubseteq_{A} m$. Thus $k \sqsubseteq_{A} m$ and $m \sqsubseteq_{A} t \sqsubseteq_{A} n$ imply $k \sqsubseteq_{A} t \sqsubseteq_{A} n$, which contradicts the w-convexity of S_{2}.
Case (3): Let $m, n \in X$. As $m \in X$, there exists a path $k \sqsubseteq_{A} m$ for some $k \in S_{2}$. But we have a path $m \sqsubseteq_{A} t$ which implies there is a path $k \sqsubseteq_{A} t$. But $t \notin X$, ie $t \notin S^{1}-Q$. Since $t \notin S_{2}$, it can not be in Q. So $t \notin S^{1}$. But $m, n \in X \subseteq S^{1}$ shows that S^{1} is not a w-convex subset of A.
Case (4): Let $m \in S_{2}$ and $n \in X$. As we have a path from $m \sqsubseteq_{A} t, t \notin X=S^{1}-Q$ and since $t \notin S_{2}$ imply $t \notin S^{1}$. Now P
covers S_{2} and $t \notin S_{2}$, we must have $w \operatorname{ch}\left(S_{2} \cup\{t\}\right)=P$. Thus every element of P is in S_{2} or else lies on some path between t and an element of S_{2}. In particular consider some $s_{0} \in X$, we have $k_{0} \sqsubseteq_{A} s_{0}$ and $t \sqsubseteq_{A} n$. If $k \sqsubseteq_{A} s_{0} \sqsubseteq_{A} t$ where $k \in S_{2}$, then we have $s_{0} \sqsubseteq_{A} t \sqsubseteq_{A} n$ which proves that S^{1} is not w-convex. On the other hand if $t \sqsubseteq_{A} s_{0} \sqsubseteq_{A} k$ then $k_{0} \sqsubseteq_{A} s_{0} \sqsubseteq_{A} k$, contradicting the w-convexity of S_{2}.

Theorem 3.8. If S covers S^{1} in $W C S(A)$ and p, q belong to $S-S^{1}$ then $w \operatorname{ch}(\{p\})=w c h(\{q\})$.
Proof. As S covers S^{1}, wch $\left(S^{1} \cup\{p\}\right)=w c h\left(S^{1} \cup\{q\}\right)=S$. Then p lies in a path from q to r where $r \in S^{1}$ and q lies in a path from p to s where $s \in S^{1}$. If there exist paths $p \sqsubseteq_{A} q$ and $q \sqsubseteq_{A} p$ then the proof is done. But if both paths have the same direction say $p \sqsubseteq_{A} q$, we have paths $p \sqsubseteq_{A} r$ and $s \sqsubseteq_{A} p$ with $r, s \in S^{1}$, contradicting the w-convexity of S^{1}.

Definition 3.9. Let $\langle A, \unlhd\rangle$ and $\left\langle A^{1}, \unlhd^{1}\right\rangle$ be any two psosets. A mapping $f: A \longrightarrow A^{1}$ is called
(1). order preserving if for $a, b \in A, a \unlhd b$ implies $f(a) \unlhd^{1} f(b)$.
(2). path preserving if for $a, b \in A, a \sqsubseteq_{A} b$ implies $f(a) \sqsubseteq_{A^{1}} f(b)$.

Remark 3.10. Any order preserving mapping f is path preserving. The converse is not true. For example, in the psoset A of Figure 4, define a mapping $f: A \longrightarrow A$ by $f(a)=b, f(b)=a, f(c)=c$. Clearly f is path preserving but not order preserving.

Figure 4:

Theorem 3.11. Every mapping of a psoset A to itself is path preserving if and only if A is a cycle.
Proof. If A is a cycle, then for any two elements a, b of A, both $a \sqsubseteq_{A} b$ and $b \sqsubseteq_{A} a$ hold. Therefore every mapping of A to itself is path preserving. Conversely, let us assume that A is not a cycle. Then there exists at least one pair of elements say (a, b) in A such that $a \sqsubseteq_{A} b$ holds but $b \sqsubseteq_{A} a$ does not hold. Define $f: A \longrightarrow A$ by $f(b)=a$ and $f(c)=b$ for all $c \neq b$. Then f is not path preserving as $a \sqsubseteq_{A} b$ but $f(a) \sqsubseteq_{A} f(b)$ does not hold.

One can easily prove the following theorem.

Theorem 3.12. Let $f: A \longrightarrow A^{1}$ be path preserving. If S is a w-convex subset in A then $f(S)$ is a w-convex subset in A^{1}.
Definition 3.13. Let $\langle A, \unlhd\rangle$ and $\left\langle A^{1}, \unlhd^{1}\right\rangle$ be any two psosets. A mapping $f: A \rightarrow A^{1}$ is called a homomorphism if
(1). f is order preserving.
(2). $a^{1} \unlhd^{1} b^{1}$ in A^{1} implies there exists $a \in f^{-1}\left(a^{1}\right)$ and $b \in f^{-1}\left(b^{1}\right)$ such that $a \unlhd b$.

Theorem 3.14. Let $f: A \rightarrow A^{1}$ be a homomorphism. If S^{1} is a w-convex subset of A^{1} then $f^{-1}\left(S^{1}\right)$ is a w-convex subset of A.

Proof. Let $a, b \in f^{-1}\left(S^{1}\right)$ such that $a \sqsubseteq_{A} c \sqsubseteq_{A} b$ for some $c \in A$. If $c \notin f^{-1}\left(S^{1}\right)$ then $f(c) \notin S^{1}$. Now $f(a) \sqsubseteq_{A^{1}} f(c) \sqsubseteq_{A^{1}}$ $f(b)$ and $f(c) \notin S^{1}$, a contradiction to the w-convexity of S^{1}. Hence $c \in f^{-1}\left(S^{1}\right)$ and $f^{-1}\left(S^{1}\right)$ is w-convex.

Remark 3.15. If $f: A \longrightarrow A^{1}$ is a homomorphism between two psosets A and A^{1} and if S is a w-convex subset of A then $f(S)$ need not be a w-convex subset of A^{1}. For, in Figure 5 define a map $f: A \longrightarrow A^{1}$ by $f(a)=w, f(b)=y, f(c)=$ $x, f(d)=z$. Clearly f is a homomorphism. Observe that $\{b\}$ is w-convex in A where as $f(\{b\})=\{y\}$ is not w-convex in A^{1}.

Figure 5:

Definition 3.16. A homomorphism between two psosets A and A^{1} is called a w-convex homomorphism if it takes w-convex subsets of A onto w-convex subsets of A^{1}.

An element a of a lattice L is said to be an atom if for any $b \in L, 0 \leq b \leq a$ imply either $b=0$ or $b=a$ where 0 is the least element of L.

Remark 3.17.

(1). A cycle in a psoset A is always an atom of $W C S(A)$
(2). w-convex hull of a single element in a psoset A is an atom in $W C S(A)$.

Theorem 3.18. Let $f: A \rightarrow A^{1}$ be a w-convex homomorphism. If S is an atom in $W C S(A)$ then $f(S)$ is an atom in $W C S\left(A^{1}\right)$. Conversely if S^{1} is an atom in $W C S\left(A^{1}\right)$ then there exists an atom S in $W C S(A)$ such that $f(S)=S^{1}$.

Proof. If $f(S)$ is not an atom in $W C S\left(A^{1}\right)$ then there exists a w-convex subset S^{1} in $W C S\left(A^{1}\right)$ such that $\varphi \subset S^{1} \subset f(S)$. But then $\varphi \subset f^{-1}\left(S^{1}\right) \cap S \subset S$, where $f^{-1}\left(S^{1}\right) \cap S$ is also a w-convex subset of A, contradicting the fact that S is an atom. Conversely, let S^{1} be an atom in $W C S\left(A^{1}\right)$ and $S \subseteq f^{-1}\left(S^{1}\right)$ be an atom in $W C S(A)$. Then $\varphi \subseteq f(S) \subseteq S^{1}$ and since S^{1} is an atom in $W C S\left(A^{1}\right)$, we have $f(S)=S^{1}$.

Corollary 3.19. Any w-convex homomorphism maps acyclic psosets into acyclic psosets.

References

[^1]
[^0]: * E-mail: prashanthvcet@gmail.com

[^1]: [1] G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser Verlag, (2003).
 [2] John L. Pfaltz, Convexity in Directed Graphs, Journal of Combinatorial Theory, 10(1971), 143-162.
 [3] S. Parameshwara Bhatta and H. Shashirekha, A characterization of completeness for trellises, Algebra Universalis, 44(2000), 218-233.
 [4] H. L. Skala, Trellis theoy, Algebra Univeralis, 1(1971), 218-233.

