

International Journal of Mathematics And its Applications

On Ideals and Multiplicative (Generalized) - (Φ, Φ) - Derivations

S. Lalitha^{1,2,*}, S. Sreenivasulu¹ and A. Mallikarjun Reddy^2

1 Department of Mathematics, GDC (M), S. K. University, Ananthapuramu, Andhra Pradesh, India.

2 Department of Mathematics, S. K. University, Ananthapuramu, Andhra Pradesh, India.

Abstract: Let *P* be a prime ring. *I* is a nonzero ideal of *P*. Φ is an automorphism on *P*. A mapping $M : P \to P$ is called Multiplicative (generalized) (Φ, Φ) -derivation if there exist a map $d : P \to P$ such that $M(a, b) = M(a)\Phi(b) + \Phi(a)d(b)$ holds for all $a, b \in P$. The objective of the present paper is to study the following identities (i). If M(ab) + M(a)M(b) = 0 for all $a, b \in I$ then $\Phi(I)[M(a), M(b)] = 0$ for all $a \in I$ (ii). Let M_1 and M_2 be two multiplicative (generalized)- (Φ, Φ) derivations on *P* associated with the maps d_1 and d_2 on *P* respectively. If $M_1(ab) = \Phi(b) \circ M_2(a)$ for all $a, b \in I$ then *R* is abelian or commutative or $\Phi(I) [\Phi(I), M_2(I)] = 0$ (iii). If $M_1(ab) = [\Phi(b), M_2(a)]$ for all $a, b \in I$ then either $\Phi(I) [\Phi(I), M_2(I)] = (0)$ or *R* is commutative.

MSC: 16W25, 16N60, 16U80.

Keywords: Primering, Ideal, Multiplicative (generalized) derivation, Multiplicative (generalized)- (Φ, Φ) -derivation.

1. Introduction

A ring P is prime if for any $a, b \in P$, aPb = (0) implies that either a = 0 or b = 0. $M(a, b) = M(a)\Phi(b) + \Phi(a)d(b)$ for all $a, b \in P$ is called Multiplicative (generalized) $-(\Phi, \Phi)$ -derivation, where $M : P \to P$ is a mapping and P is a prime ring. In 2014 [1] Dhara proved few identities connected to Multiplicative (generalized) $-(\sigma, \sigma)$ derivations where σ is an epimorphism. Furthermore accurately they demonstrated succeeding outcomes. Let R be a semi prime ring, I a nonzero left ideal of R and σ any epimorphism of R Suppose that F is a Multiplicative (generalized) $-(\sigma, \sigma)$ derivation associate with the map d. If F(xy) - F(x)F(y) = 0 holds for all $x, y \in I$ then $\sigma(I)d(I) = (0)$ and $\sigma(I)[F(x), \sigma(x)] = (0)$ for all $x \in I$. In 2020 [2] chirag Garg showed few results associated to Left ideals and Multiplicative (generalized) $-(\alpha, \beta)$ -derivations. Particularly, they proved the subsequent result. Let R be a prime ring and L be a non zero left ideal of R. Suppose that F is Multiplicative (generalized) $-(\alpha, \beta)$ -derivation on R associated with the map d on R. If F(xy) + F(x)F(y) = 0 for all $x, y \in L$ then either $\sigma(L)[F(x), \alpha(x)] = (0)$ or $\beta(L)[F(x), \beta(x)] = (0)$ for all $x \in L$. Considering exceeding results we initiate our theorems. We will frequently use the basic commutator and Skew-commutator identities

- (i). [xy, z] = x[y, z] + [x, z]y.
- (ii). [x, yz] = y[x, z] + [x, y]z.
- (iii). $x \circ yz = (x \circ y) y[x, z] = y(xoz) + [x, y]z$.
- (iv). $xy \circ z = x(yoz) [x, z]y = (x \circ z)y + x[y, z]$ for all $x, y \in P$.

^{*} E-mail: lalitha.gdc@gmail.com (Research Scholar)

2. Main Results

Theorem 2.1. In a prime ring P and I is a nonzero ideal of P if M(ab) + M(a)M(b) = 0 for all $a, b \in I$, where M is a multiplicative (generalized) $-(\Phi, \Phi)$ derivation on P related with the map d on P then $\Phi(I)[M(a), M(b)] = 0$ for all $a \in I$.

Proof. From the hypothesis we have

- (1). M(ab) + M(a)M(b) = 0 for all $a, b \in I$. Restore bc in the place of b in (1).
- (2). M(abc) + M(a)M(bc) = 0 for all $a, b, c \in I$.
- (3). $M(ab)\Phi(c) + \Phi(ab)d(c) + M(a)\{M(b)\Phi(c) + \Phi(b)d(c)\} = 0$ for all $a, b, c \in I$.
- (4). $M(ab)\Phi(c) + \Phi(ab)d(c) + M(a)M(b)\Phi(c) + M(a)\Phi(b)d(c) = 0$ for all $a, b, c \in I$.
- (5). $\{M(ab) + M(a)M(b)\}\Phi(c) + \Phi(ab)d(c) + M(a)\Phi(b)d(c) = 0 \text{ for all } a, b, c \in I. \text{ Using (1) we have } \{M(ab) + M(a)M(b)\}\Phi(c) + \Phi(ab)d(c) + M(a)\Phi(b)d(c) = 0 \text{ for all } a, b, c \in I. \text{ Using (1) we have } \{M(ab) + M(a)M(b)\}\Phi(c) + \Phi(ab)d(c) + M(a)\Phi(b)d(c) = 0 \text{ for all } a, b, c \in I. \text{ Using (1) we have } \{M(ab) + M(a)M(b)\}\Phi(c) + \Phi(ab)d(c) + M(a)\Phi(b)d(c) = 0 \text{ for all } a, b, c \in I. \text{ Using (1) we have } \{M(a) + M(a)M(b)\}\Phi(c) + M(a)\Phi(b)d(c) = 0 \text{ for all } a, b, c \in I. \text{ Using (1) we have } \}$
- (6). $\Phi(ab)d(c) + M(a)\Phi(b)d(c) = 0$ for all $a, b, c \in I$. Substitute au in the place of a in (6).
- (7). $\Phi(aub)d(c) + M(au)\Phi(b)d(c) = 0$ for all $a, b, c, u \in I$.
- (8). $\Phi(aub)d(c) + \{M(a)\Phi(u) + \Phi(a)d(u)\}\Phi(b)d(c) = 0$ for all $a, b, c, u \in I$.
- (9). Φ(aub)d(c) + M(a)Φ(u)Φ(b)d(c) + Φ(a)d(u)Φ(b)d(c) = 0 for all a, b, c, u ∈ I. Another time substitute ub in the place of b in (6)
- (10). $\Phi(aub)d(c) + M(a)\Phi(ub)d(c) = 0$ for all $a, b, c, u \in I$.
- (11). $\Phi(aub)d(c) + M(a)\Phi(u)\Phi(b)d(c) = 0$ for all $a, b, c, u \in I$. Subtract (9) from (11),
- $(12). \ \Phi(aub)d(c) + M(a)\Phi(u)\Phi(b)d(c) + \Phi(a)d(u)\Phi(b)d(c) \Phi(aub)d(c) M(a)\Phi(u)\Phi(b)d(c) = 0 \text{ for all } a, b, c, u \in I.$
- (13). $M(a)\Phi(u)\Phi(b)d(c) + \Phi(a)d(u)\Phi(b)d(c) M(a)\Phi(u)\Phi(b)d(c) = 0 \text{ for all } a, b, c, u \in I.$
- (14). $\{M(a)\Phi(u) + \Phi(a)d(u) M(a)\Phi(u)\}\Phi(b)d(c) = 0$ for all $a, b, c, u \in I$.
- (15). $\{M(au) M(a)\Phi(u)\}\Phi(b)d(c) = 0$ for all $a, b, c, u \in I$. By the primness of P, we have,
- (16). $M(au) M(a)\Phi(u) = 0$ or
- (17). $\Phi(b)d(c) = 0.$

Case 1: If $M(au) - M(a)\Phi(u) = 0$ for all $a, u \in I$. In particular, for all $a, b \in I$, we have $M(ab) - M(a)\Phi(b) = 0$.

- (18). $M(ab) = M(a)\Phi(b)$ for all $a, b \in I$. From (1), we have M(ab) = -M(a)M(b). Replace bc in the place of b,
- (19). M(abc) = -M(ab)M(c) = -M(a)M(bc) for all $a, b, c \in I$. Above equation can be written as M(ab)M(c) = M(a)M(bc). Using (18),
- (20). $M(a)\Phi(b)M(c) = M(a)M(b)\Phi(c)$.

(21). $M(a)\{\Phi(b)M(c) - M(b)\Phi(c)\} = 0$. Replace a by $apu, p \in P, u \in I$

$$M(apu)\{\Phi(b)M(c) - M(b)\Phi(c)\} = 0 \text{ Using (19)}$$
$$M(a)M(pu)\{\Phi(b)M(c) - M(b)\Phi(c)\} = 0$$
$$M(a)M(p)\Phi(u)\{\Phi(b)M(c) - M(b)\Phi(c)\} = 0$$
$$M(a)M(p)\Phi(u)\Phi(b)M(c) + M(a)M(p)\Phi(u)M(b)\Phi(c) = 0$$

- (22). $M(a)M(p)\Phi(u)M(b)\Phi(c) M(a)M(p)\Phi(u)\Phi(b)M(c) = 0$. Replace b by c
- (23). $M(a)M(p)\Phi(u)M(c)\Phi(c) M(a)M(p)\Phi(u)\Phi(c)M(c) = 0.$
- (24). $M(a)M(p)\Phi(u)[M(c),\Phi(c)] = 0.$
- (25). $\Phi(u)[M(c), \Phi(c)] = 0$. In particular $\Phi(I)[M(a), \Phi(a)] = 0$.

Case 2: Now when $\Phi(b)d(c) = 0$. We get $M(ab) = M(a)\Phi(b)$ for all $a, b \in I$. And proceeding in the similar way as before time we obtain $\Phi(I)[M(a), \Phi(a)] = 0$ for all $a \in I$. Therefore the proof of the theorem is completed.

Theorem 2.2. Φ is an automorphism on P. In a prime ring P, let I be a nonzero ideal of P. M_1 and M_2 be two multiplicative (generalized)- (Φ, Φ) derivations on P associated with the maps d_1 and d_2 on P respectively. If $M_1(ab) = \Phi(b) \circ M_2(a)$ for all $a, b \in I$ then R is abelian or commutative or $\Phi(I) [\Phi(I), M_2(I)] = 0$.

Proof. From the hypothesis

- (26). $M_1(ab) = \Phi(b) \circ M_2(a)$. For all $a, b \in I$, substitute bc in the place of b in (26)
- (27). $M_1(abc) = \Phi(bc) \circ M_2(a).$
- (28). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = \Phi(b)\Phi(c) \circ M_2(a).$
- (29). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = (\Phi(b) \circ M_2(a))\Phi(c) + \Phi(b)[\Phi(c), M_2(a)]$ using(26)
- (30). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = M_1(ab)\Phi(c) + \Phi(b)[\Phi(c), M_2(a)].$
- (31). $\Phi(ab)d(c) = \Phi(b)[\Phi(c), M_2(a)]$. For all $a, b, c \in I$, substitute ub in the place of b in (31). We obtain
- (32). $\Phi(aub)d(c) = \Phi(ub) [\Phi(c), M_2(a)].$
- (33). $\Phi(a)\Phi(u)\Phi(b)d(c) = \Phi(u)\Phi(b) [\Phi(c), M_2(a)]$. For all $a, b, c, u \in I$. Left multiply (31) with $\Phi(u)$
- (34). $\Phi(u)\Phi(a)\Phi(b)d(c) = \Phi(u)\Phi(b) [\Phi(c), M_2(a)]$. Subtract (33) from (34) we have
- (35). $\Phi(a)\Phi(u)\Phi(b)d(c) \Phi(u)\Phi(a)\Phi(b)d(c) = 0.$
- (36). $[\Phi(a), \Phi(u)]\Phi(b)d(c) = 0$. For all $a, b, c, u \in I$, substitute pb in the place of b in (36)
- (37). $[\Phi(a), \Phi(u)]\Phi(pb)d(c) = 0$, where $p \in P$, $b \in I$, $pb \in I$. Using primeness of R, we have either

or

$$[\Phi(a), \Phi(u)] = 0. \tag{39}$$

Case 1: If $\Phi(b)d(c) = 0$, from (31), $\Phi(a)\Phi(b)d(c) = \Phi(b) [\Phi(c), M_2(a)]$.

- (40). $\Phi(b) [\Phi(c), M_2(a)] = 0$. Therefore $\Phi(I) [\Phi(I), M_2(I)] = 0$ for all $a, b, c \in I$. **Case 2:** If $[\Phi(a), \Phi(u)] = 0$ for all $a, u \in I$. In particular $[\Phi(a), \Phi(b)] = 0$ for all $a, b \in I$.
- (41). $\Phi(a)\Phi(b) \Phi(b)\Phi(a) = 0$. Substitute *pb* in the place of b in (41), where $p \in P$
- (42). $\Phi(a)\Phi(pb) \Phi(pb)\Phi(a) = 0.$
- (43). $\Phi(a)\Phi(p)\Phi(b) \Phi(p)\Phi(b)\Phi(a) = 0$. Left multiply (41) with $\Phi(p)$.
- (44). $\Phi(p)\Phi(a)\Phi(b) \Phi(p)\Phi(b)\Phi(a) = 0$. Subtract (43) from (44), we have $\Phi(a)\Phi(p)\Phi(b) \Phi(p)\Phi(a)\Phi(b) = 0$.
- (45). $[\Phi(a)\Phi(p)]\Phi(b) = 0$. Since I is nonzero and primness of R forces that

Applying Lemma 2 [12], let R be a prime ring, I be a left ideal of R. If [x, r] = 0 for all $x \in I$, $r \in R$, then R is commutative. Hence R is commutative. Therefore the proof of the theorem is completed.

Theorem 2.3. In a prime ring P, I a nonzero ideal of R. Let M_1, M_2 be two Multiplicative (generalized) $-(\Phi, \Phi)$ derivations on R associated with the maps d_1 and d_2 on P (respectively). If $M_1(ab) = [\Phi(b), M_2(a)]$ for all $a, b \in I$, then either $\Phi(I) [\Phi(I), M_2(I)] = (0)$ or R is commutative.

- *Proof.* From the hypothesis
- (46). $M_1(ab) = [\Phi(b), M_2(a)]$ for all $a, b \in I$. Substitute be in the place of b
- (47). $M_1(abc) = [\Phi(bc), M_2(a)].$
- (48). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = [\Phi(b)\Phi(c), M_2(a)].$
- (49). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = \Phi(b) [\Phi(c), M_2(a)] + [\Phi(b), M_2(a)] \Phi(c)$. Using (46)
- (50). $M_1(ab)\Phi(c) + \Phi(ab)d(c) = \Phi(b) [\Phi(c), M_2(a)] + M_1(ab)\Phi(c)$. We have
- (51). $\Phi(ab)d(c) = \Phi(b) [\Phi(c), M_2(a)]$ for all $a, b, c \in I$

Equation (51) is same as (31) in Theorem 3.2 we go-ahead in the same way as in Theorem 3.2. And we obtain the required result. \Box

At present we windup this segment with an example, which exhibit that the primness of the ring in our results is essential.

Example 2.4. Consider the ring
$$P = \left\{ \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} / u, v, w \in Z \right\}$$
, where Z is the set of integers Let $I = \left\{ \begin{pmatrix} u & v \\ 0 & 0 \end{pmatrix} / u, v \in Z \right\}$ be a left ideal. Let $\Phi : P \to P$ defined as $\Phi \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} u & -v \\ 0 & w \end{pmatrix}$ be an autoorphism Define

a mapping
$$d_1 : P \to P$$
 on M_1 as $d_1 \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} 0 & v/2 \\ 0 & 0 \end{pmatrix}$ and $M_1 \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} u & -v/2 \\ 0 & 0 \end{pmatrix}$ respectively. Again define mapping d_2 on M_2 as $d_2 \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} 0 & v/2 \\ 0 & 0 \end{pmatrix}$ and $M_1 \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} u/2 & 0 \\ 0 & 0 \end{pmatrix}$. We observe that M_1, M_2 are multiplicative (generalized) $-(\Phi, \Phi)$ -derivations on P related to the maps d_1 and d_2 on P. We can substantiate that $M_1(ab) + M_1(a)M_1(b) = 0, M_1(ab) = \Phi(b) \circ M_2(a)$ for all $a, b \in I$. We realize that $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} P \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = (0)$ but $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ are nonzero elements of P. It implies that P is not prime ring. In this illustration we also observe that R is not commutative.

$$\begin{split} \Phi(I) \left[\Phi(I), M_2(I) \right] &\neq (0) \\ \Phi(I) \left[M_1(a), \Phi(a) \right] &\neq 0 \text{ for } a \in I \\ \Phi(I) \left[M_1(a), \Phi(a) \right] &\neq 0 \text{ for some } a \in I \end{split}$$

References

- [1] Basudeb Dhara, Sukhendu Kar and Deepankar Das, A multiplicative (generalized)- (σ, σ) -derivation acting as (anti) homomorphism in semiprime rings, Palestine Journal of Mathematics, 3(2)(2014), 240-246.
- [2] Hidetoshi Marubayashi, Mohammad Ashraf, Nadeem-ur Rehman and Shakir Ali, On generalized (α, β) derivations in prime rings, Algebra Colloquium, 17(1)(2010), 865-874.
- [3] S. Khan, On semi prime rings with multiplicative (generalized)-derivations, Contributions to Algebra and Geometry, 57(1)(2016), 119-128.
- [4] S. Ali, B. Dhara, N. A. Dar and A. N. Khan, On Lie ideals with multiplicative (Generalized)-derivations in prime and semi prime rings, Contributions to Algebra and Geometry, 56(2015), 325-337.
- [5] B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semi prime rings, Aequationes Math., 86(1-2)(2013), 65-79.
- [6] O. Golbasi and E. Koc, Generalized derivations of Lie ideals in prime rings, Turk. J. Math., 35(2011), 23-28.
- [7] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44(2002), 43-49.
- [8] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math., 42(2002), 3-8.
- [9] E. Albas, Generalized derivations on ideals of prime rings, Miskolc Mathematical Notes, 14(1)(2013), 3-9.
- [10] H. Goldmann and P. Semrl, Multiplicative derivations on C(X), Monatsh. Math., 121(1996), 189-197.
- [11] H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar., 66(1995), 337-343.
- [12] Mohammad Ashraf, Asma Ali and Shakir Ali, Some Commutativity Theorems for Rings with Generalized Derivations, Southeast Asian Bulletin of Mathematics, 31(3)(2007), 415-421.