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Abstract: Let P be a prime ring. I is a nonzero ideal of P . Φ is an automorphism on P. A mapping M : P → P is called Multiplicative

(generalized) (Φ,Φ)-derivation if there exist a map d : P → P such that M(a, b) = M(a)Φ(b) + Φ(a)d(b) holds for all

a, b ∈ P . The objective of the present paper is to study the following identities (i). If M(ab) + M(a)M(b) = 0 for all
a, b ∈ I then Φ(I)[M(a),M(b)] = 0 for all a ∈ I (ii). Let M1 and M2 be two multiplicative (generalized)-(Φ,Φ) derivations

on P associated with the maps d1 and d2 on P respectively. If M1(ab) = Φ(b) ◦M2(a) for all a, b ∈ I then R is abelian or

commutative or Φ(I) [Φ(I),M2(I)] = 0 (iii). If M1(ab) = [Φ(b),M2(a)] for all a, b ∈ I then either Φ(I) [Φ(I),M2(I)] = (0)
or R is commutative.
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1. Introduction

A ring P is prime if for any a, b ∈ P , aPb = (0) implies that either a = 0 or b = 0. M(a, b) = M(a)Φ(b) + Φ(a)d(b)

for all a, b ∈ P is called Multiplicative (generalized) -(Φ,Φ)-derivation, where M : P → P is a mapping and P is a prime

ring. In 2014 [1] Dhara proved few identities connected to Multiplicative (generalized) −(σ, σ) derivations where σ is an

epimorphism. Furthermore accurately they demonstrated succeeding outcomes. Let R be a semi prime ring, I a nonzero

left ideal of R and σ any epimorphism of R Suppose that F is a Multiplicative (generalized) -(σ, σ) derivation associate with

the map d. If F (xy) − F (x)F (y) = 0 holds for all x, y ∈ I then σ(I)d(I) = (0) and σ(I)[F (x), σ(x)] = (0) for all x ∈ I.

In 2020 [2] chirag Garg showed few results associated to Left ideals and Multiplicative (generalized) -(α, β)-derivations.

Particularly, they proved the subsequent result. Let R be a prime ring and L be a non zero left ideal of R. Suppose that

F is Multiplicative (generalized) -(α, β)-derivation on R associated with the map d on R. If F (xy) + F (x)F (y) = 0 for all

x, y ∈ L then either σ(L)[F (x), α(x)] = (0) or β(L)[F (x), β(x)] = (0) for all x ∈ L. Considering exceeding results we initiate

our theorems We will frequently use the basic commutator and Skew-commutator identities

(i). [xy, z] = x[y, z] + [x, z]y.

(ii). [x, yz] = y[x, z] + [x, y]z.

(iii). x ◦ yz = (x ◦ y)− y[x, z] = y(xoz) + [x, y]z.

(iv). xy ◦ z = x(yoz)− [x, z]y = (x ◦ z)y + x[y, z] for all x, y ∈ P .
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2. Main Results

Theorem 2.1. In a prime ring P and I is a nonzero ideal of P if M(ab) + M(a)M(b) = 0 for all a, b ∈ I, where M is a

multiplicative (generalized) -(Φ,Φ) derivation on P related with the map d on P then Φ(I)[M(a),M(b)] = 0 for all a ∈ I.

Proof. From the hypothesis we have

(1). M(ab) +M(a)M(b) = 0 for all a, b ∈ I.

Restore bc in the place of b in (1).

(2). M(abc) +M(a)M(bc) = 0 for all a, b, c ∈ I.

(3). M(ab)Φ(c) + Φ(ab)d(c) +M(a){M(b)Φ(c) + Φ(b)d(c)} = 0 for all a, b, c ∈ I.

(4). M(ab)Φ(c) + Φ(ab)d(c) +M(a)M(b)Φ(c) +M(a)Φ(b)d(c) = 0 for all a, b, c ∈ I.

(5). {M(ab) +M(a)M(b)}Φ(c) + Φ(ab)d(c) +M(a)Φ(b)d(c) = 0 for all a, b, c ∈ I. Using (1) we have

(6). Φ(ab)d(c) +M(a)Φ(b)d(c) = 0 for all a, b, c ∈ I. Substitute au in the place of a in (6).

(7). Φ(aub)d(c) +M(au)Φ(b)d(c) = 0 for all a, b, c, u ∈ I.

(8). Φ(aub)d(c) + {M(a)Φ(u) + Φ(a)d(u)}Φ(b)d(c) = 0 for all a, b, c, u ∈ I.

(9). Φ(aub)d(c) +M(a)Φ(u)Φ(b)d(c) + Φ(a)d(u)Φ(b)d(c) = 0 for all a, b, c, u ∈ I. Another time substitute ub in the place of

b in (6)

(10). Φ(aub)d(c) +M(a)Φ(ub)d(c) = 0 for all a, b, c, u ∈ I.

(11). Φ(aub)d(c) +M(a)Φ(u)Φ(b)d(c) = 0 for all a, b, c, u ∈ I. Subtract (9) from (11),

(12). Φ(aub)d(c) +M(a)Φ(u)Φ(b)d(c) + Φ(a)d(u)Φ(b)d(c)− Φ(aub)d(c)−M(a)Φ(u)Φ(b)d(c) = 0 for all a, b, c, u ∈ I.

(13). M(a)Φ(u)Φ(b)d(c) + Φ(a)d(u)Φ(b)d(c)−M(a)Φ(u)Φ(b)d(c) = 0 for all a, b, c, u ∈ I.

(14). {M(a)Φ(u) + Φ(a)d(u)−M(a)Φ(u)}Φ(b)d(c) = 0 for all a, b, c, u ∈ I.

(15). {M(au)−M(a)Φ(u)}Φ(b)d(c) = 0 for all a, b, c, u ∈ I. By the primness of P , we have,

(16). M(au)−M(a)Φ(u) = 0 or

(17). Φ(b)d(c) = 0.

Case 1: If M(au)−M(a)Φ(u) = 0 for all a, u ∈ I. In particular, for all a, b ∈ I, we have M(ab)−M(a)Φ(b) = 0.

(18). M(ab) = M(a)Φ(b) for all a, b ∈ I. From (1), we have M(ab) = −M(a)M(b). Replace bc in the place of b,

(19). M(abc) = −M(ab)M(c) = −M(a)M(bc) for all a, b, c ∈ I. Above equation can be written as M(ab)M(c) = M(a)M(bc).

Using (18),

(20). M(a)Φ(b)M(c) = M(a)M(b)Φ(c).
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(21). M(a){Φ(b)M(c)−M(b)Φ(c)} = 0. Replace a by apu, p ∈ P , u ∈ I

M(apu){Φ(b)M(c)−M(b)Φ(c)} = 0 Using (19)

M(a)M(pu){Φ(b)M(c)−M(b)Φ(c)} = 0

M(a)M(p)Φ(u){Φ(b)M(c)−M(b)Φ(c)} = 0

M(a)M(p)Φ(u)Φ(b)M(c) +M(a)M(p)Φ(u)M(b)Φ(c) = 0

(22). M(a)M(p)Φ(u)M(b)Φ(c)−M(a)M(p)Φ(u)Φ(b)M(c) = 0. Replace b by c

(23). M(a)M(p)Φ(u)M(c)Φ(c)−M(a)M(p)Φ(u)Φ(c)M(c) = 0.

(24). M(a)M(p)Φ(u)[M(c),Φ(c)] = 0.

(25). Φ(u)[M(c),Φ(c)] = 0. In particular Φ(I)[M(a),Φ(a)] = 0.

Case 2: Now when Φ(b)d(c) = 0. We get M(ab) = M(a)Φ(b) for all a, b ∈ I. And proceeding in the similar way as

before time we obtain Φ(I)[M(a),Φ(a)] = 0 for all a ∈ I. Therefore the proof of the theorem is completed.

Theorem 2.2. Φ is an automorphism on P. In a prime ring P, let I be a nonzero ideal of P . M1 and M2 be two multiplicative

(generalized)-(Φ,Φ) derivations on P associated with the maps d1 and d2 on P respectively. If M1(ab) = Φ(b) ◦M2(a) for

all a, b ∈ I then R is abelian or commutative or Φ(I) [Φ(I),M2(I)] = 0.

Proof. From the hypothesis

(26). M1(ab) = Φ(b) ◦M2(a). For all a, b ∈ I, substitute bc in the place of b in (26)

(27). M1(abc) = Φ(bc) ◦M2(a).

(28). M1(ab)Φ(c) + Φ(ab)d(c) = Φ(b)Φ(c) ◦M2(a).

(29). M1(ab)Φ(c) + Φ(ab)d(c) = (Φ(b) ◦M2(a)) Φ(c) + Φ(b) [Φ(c),M2(a)] using(26)

(30). M1(ab)Φ(c) + Φ(ab)d(c) = M1(ab)Φ(c) + Φ(b)[Φ(c),M2(a)].

(31). Φ(ab)d(c) = Φ(b)[Φ(c),M2(a)]. For all a, b, c ∈ I, substitute ub in the place of b in (31). We obtain

(32). Φ(aub)d(c) = Φ(ub) [Φ(c),M2(a)].

(33). Φ(a)Φ(u)Φ(b)d(c) = Φ(u)Φ(b) [Φ(c),M2(a)]. For all a, b, c, u ∈ I. Left multiply (31) with Φ(u)

(34). Φ(u)Φ(a)Φ(b)d(c) = Φ(u)Φ(b) [Φ(c),M2(a)]. Subtract (33) from (34) we have

(35). Φ(a)Φ(u)Φ(b)d(c)− Φ(u)Φ(a)Φ(b)d(c) = 0.

(36). [Φ(a),Φ(u)]Φ(b)d(c) = 0. For all a, b, c, u ∈ I, substitute pb in the place of b in (36)

(37). [Φ(a),Φ(u)]Φ(pb)d(c) = 0, where p ∈ P , b ∈ I, pb ∈ I. Using primeness of R, we have either

Φ(b)d(c) = 0 (38)
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or

[Φ(a),Φ(u)] = 0. (39)

Case 1: If Φ(b)d(c) = 0, from (31), Φ(a)Φ(b)d(c) = Φ(b) [Φ(c),M2(a)].

(40). Φ(b) [Φ(c),M2(a)] = 0. Therefore Φ(I) [Φ(I),M2(I)] = 0 for all a, b, c ∈ I.

Case 2: If [Φ(a),Φ(u)] = 0 for all a, u ∈ I. In particular [Φ(a),Φ(b)] = 0 for all a,b ∈ I.

(41). Φ(a)Φ(b)− Φ(b)Φ(a) = 0. Substitute pb in the place of b in (41), where p ∈ P

(42). Φ(a)Φ(pb)− Φ(pb)Φ(a) = 0.

(43). Φ(a)Φ(p)Φ(b)− Φ(p)Φ(b)Φ(a) = 0. Left multiply (41) with Φ(p).

(44). Φ(p)Φ(a)Φ(b)− Φ(p)Φ(b)Φ(a) = 0. Subtract (43) from (44), we have Φ(a)Φ(p)Φ(b)− Φ(p)Φ(a)Φ(b) = 0.

(45). [Φ(a)Φ(p)]Φ(b) = 0. Since I is nonzero and primness of R forces that

Φ(a)Φ(p)− Φ(p)Φ(a) = 0

[Φ(a), p]Φ,Φ = 0 for all a ∈ I, p ∈ P

Applying Lemma 2 [12], let R be a prime ring, I be a left ideal of R. If [x, r] = 0 for all x ∈ I, r ∈ R, then R is commutative.

Hence R is commutative. Therefore the proof of the theorem is completed.

Theorem 2.3. In a prime ring P, I a nonzero ideal of R. Let M 1,M2 be two Multiplicative (generalized) -(Φ,Φ) derivations

on R associated with the maps d1 and d2 on P (respectively). If M1(ab) = [Φ(b),M2(a)] for all a, b ∈ I, then either

Φ(I) [Φ(I),M2(I)] = (0) or R is commutative.

Proof. From the hypothesis

(46). M1(ab) = [Φ(b),M2(a)] for all a, b ∈ I. Substitute be in the place of b

(47). M1(abc) = [Φ(bc),M2(a)].

(48). M1(ab)Φ(c) + Φ(ab)d(c) = [Φ(b)Φ(c),M2(a)].

(49). M1(ab)Φ(c) + Φ(ab)d(c) = Φ(b) [Φ(c),M2(a)] + [Φ(b),M2(a)] Φ(c). Using (46)

(50). M1(ab)Φ(c) + Φ(ab)d(c) = Φ(b) [Φ(c),M2(a)] +M1(ab)Φ(c). We have

(51). Φ(ab)d(c) = Φ(b) [Φ(c),M2(a)] for all a, b, c ∈ I

Equation (51) is same as (31) in Theorem 3.2 we go-ahead in the same way as in Theorem 3.2. And we obtain the required

result.

At present we windup this segment with an example, which exhibit that the primness of the ring in our results is essential.

Example 2.4. Consider the ring P =


 u v

0 w

 /u, v, w ∈ Z

, where Z is the set of integers Let I =


 u v

0 0

 /u, v ∈ Z

 be a left ideal. Let Φ : P → P defined as Φ

 u v

0 w

 =

 u −v

0 w

 be an autoorphism Define
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a mapping d1 : P → P on M1 as d1

 u v

0 w

 =

 0 v/2

0 0

 and M1

 u v

0 w

 =

 u −v/2

0 0

 respectively. Again

define mapping d2 on M2 as d2

 u v

0 w

 =

 0 v/2

0 0

 and M1

 u v

0 w

 =

 u/2 0

0 0

. We observe that M1,M2

are multiplicative (generalized) -(Φ,Φ) -derivations on P related to the maps d1 and d2 on P . We can substantiate that

M1(ab) +M1(a)M1(b) = 0,M1(ab) = Φ(b) ◦M2(a) for all a, b ∈ I. We realize that

 0 1

0 0

P

 1 0

0 0

 = (0) but

 0 1

0 0


and

 1 0

0 0

 are nonzero elements of P. It implies that P is not prime ring. In this illustration we also observe that R is

not commutative.

Φ(I) [Φ(I),M2(I)] 6= (0)

Φ(I) [M1(a),Φ(a)] 6= 0 for a ∈ I

Φ(I) [M1(a),Φ(a)] 6= 0 for some a ∈ I
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