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1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many

topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified

forms of continuity, seperation axioms etc. by utiliaing generalized open sets (See [1–3]). One of the most well known

notions and also an inspiration source is the notion of α-open [5] sets introduced by Njastad in 1965. Quite recently, as

generalization of closed sets called sgα-closed sets were introduced and studied by the present authors in [6]. In [7] the

authors, introduced the notion of sgα-continuity and investigated its fundamental properties. In this paper, we investigate

some more properties of this type of continuity.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) represent topological spaces on which no separation axioms

are assumed unless otherwise mentioned. For a subset A of a space (X, τ), Cl(A), Int(A) and Ac denote the closure of A,

the interior of A and the complement of A in X, respectively.

Definition 2.1. A subset A of a space X is called semi-open [4] (respectively α-open [5]) if A ⊂ Cl(Int(A)) (respectively

A ⊂ Int(Cl(Int(A)))). The complement of α-open set is called α-closed.

The α-closure of a subset A of X, denoted by αCl(A) is defined to be the intersection of all α-closed sets containing A in

X.

Definition 2.2. A subset A of a space X is called sgα-closed [6] if αCl(A) ⊂ U whenever A ⊂ U and U is semiopen in X.

The complement of sgα-closed set is called sgα-open. The family of all sgα-open subsets of (X, τ) is denoted by sgαO(X).
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The family of all sgα-open (respectively sgα-closed) sets of X is denoted by sgα(τ) (respectively sgαC(X)). We set

sgαO(X,x) = {U |U ∈ sgα(τ) and x ∈ U}. In [6] shown that the set sgα(τ) forms a topology, which is finer than τ .

Definition 2.3. The intersection of all sgα-closed sets containing A is called the sgα-closure [6] of A and is denoted by

sgα-Cl(A). A set A is sgα-closed if and only if sgα-Cl(A) = A [6].

3. Properties of sgα-continuous Functions

Definition 3.1. A function f : (X, τ)→ (Y, σ) is called :

(1). sgα-continuous [7] at a point x ∈ X if for each open subset V in Y containing f(x), there exists a U ∈ sgα(X,x) such

that f(U) ⊂ V ;

(2). sgα-continuous [7] if it has this property at each point of X.

Theorem 3.2 ([7]). The following statements are equivalent for a function f : (X, τ)→ (Y, σ):

(1). f is sgα-continuous;

(2). f : (X, sgα(τ)) → (Y, σ) is continuous;

(3). for every open set V of Y , f−1(V ) is sgα-open in X;

(4). for every closed set V of Y , f−1(V ) is sgα-closed in X.

Lemma 3.3 ([6]). Let A ⊂ B ⊂ X, A be a sgα-open set in B and B an open subset of (X, τ), then A ∈ sgα(τ).

Theorem 3.4. Let f : (X, τ)→ (Y, σ) be a function and Λ = {Ui : i ∈ I} be a cover of X such that Ui ∈ sgα(τ) for each

i ∈ I. If f |Ui is continuous for each i ∈ I, then f is sgα-continuous.

Proof. Suppose that V is any open subset of (Y, σ). Since f |Ui is sgα-continuous for each i ∈ I, it follows that (f |Ui)
−1(V )

is open in Ui. We have f−1(V ) =
⋃
i∈I (f−1(V )∩Ui) =

⋃
i∈I(f |Ui)

−1(V ). Then by Lemma 3.3, we obtain f−1(V ) ∈ sgα(τ),

which means that f is sgα-continuous.

Theorem 3.5. Let f : (X, τ) → (Y, σ) be a function and x ∈ X. If there exists an open set U of X such that x ∈ U , and

the restriction of f to U is sgα-continuous at x, then f is sgα-continuous at x.

Proof. Suppose that F is an open subset of (Y, σ) containing f(x). Since f |U is sgα-continuous at x, there exists a

sgα-open set V of U containing x such that f(V ) = (f |U ) (V ) ⊂ F . Since U is open in X containing x, it follows from

Lemma 3.3 that V ∈ sgα(τ) containing x. Thus, f is sgα-continuous at x.

Definition 3.6. Let and let be a net in . We say that x is a -limit of and we write if for every-neighbourhood A of x in X

there exists a such that for all .

Theorem 3.7. ?sgα-continuous is identical with the union of the sgα-frontiers of the inverse images of sgα-open sets

containing f(x).

Proof. Suppose that f is not sgα-continuous at a point x of X. Then there exists an open set V of Y containing f(x)

such that f(U) is not a subset of V for every U ⊂ sgα(τ) containing x. Hence, we have U ∩ (X\f−1(V )) 6= ∅ for every

sgα-open set U containing x. It follows that x ∈ sgαCl(X\f−1(V )). We also have x ∈ f−1(V ) ⊂ sgαCl(f−1(V )). This
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means that x ∈ sgαFr(f−1(V )). Now, let f be sgα-continuous at x ∈ X and V an open subset of Y containing f(x). Then

x ∈ f−1(V ) is a sgα-open set of X. Thus, x ∈ sgα Int(f−1(V )) and therefore x /∈ sgαFr(f−1(V )) for every open set V

containing f(x).

Definition 3.8.

(1). A filter base Λ is said to be sgα-convergent to a point x in X if for any U ∈ sgα(τ) containing x, there exists B ∈ Λ

such that B ⊂ U .

(2). A filter base Λ is said to be convergent to a point x in X if for any open set U of X containing x, there exists B ∈ Λ

such that B ⊂ U .

Theorem 3.9. If a function f : (X, τ) → (Y, σ) is sgα-continuous, then for each point x ∈ X and each filter base Λ in X

sgα-converging to x, the filter base f(Λ) is convergent to f(x).

Proof. Let x ∈ X and Λ be any filter base in X sgα-converging to x. Since f is sgα-continuous, then for any open set V

of (Y, σ) containing f(x), there exists U ∈ sgαO(X,x) such that f(U) ⊂ V . Since Λ is sgα-converging to x, there exists a

B ∈ Λ such that B ⊂ U . This means that f(B) ⊂ V and hence the filter base f(Λ) is convergent to f(x).

Recall that for a function f : (X, τ)→ (Y, σ), the subset {(x, f(x)) : x ∈ X} ⊂ X×Y is called the graph of f and is denoted

by G(f).

Definition 3.10. A graph G(f) of a function f : (X, τ) → (Y, σ) is said to be contra sgα-closed if for each (x, y) ∈

(X × Y )\G(f), there exists U ∈ sgαO(X,x) and a closed set V of Y containing y such that (U × V ) ∩ G(f) = ∅.

Lemma 3.11. A graph G(f) of a function f : (X, τ) → (Y, σ) is contra sgα-closed in X × Y if and only if for each

(x, y) ∈ (X×Y ) \ G(f), there exist U ∈ sgα(τ) containing x and a closed set V of Y containing y such that f(U)∩V = ∅.

Theorem 3.12. If f : (X, τ)→ (Y, σ) is a sgα-continuous function and (Y, σ) is a T1-space, then G(f) is contra sgα-closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x). Since Y is T1, there exists an open set V in Y such that f(x) ∈ V

and y /∈ V . Since f is sgα-continuous, there exists U ∈ sgαO(X,x) such that f(U) ⊂ V . Therefore, f(U) ∩ (Y \V ) = ∅

and Y \V is a closed subset of Y containing y. This shows that G(f) is contra sgα-closed.

Let {Xα : α ∈ Λ} and {Yα : α ∈ Λ} be two families of topological spaces with the same index set Λ. The product space of

{Xα : α ∈ Λ} is denoted by Π {Xα:α ∈ Λ} (or simply ΠXα). Let fα: Xα → Yα be a function for each α ∈ Λ. The product

function f : ΠXα → ΠYα is defined by f({xα}) = {fα(xα)} for each {xα} ∈ ΠXα.

Theorem 3.13. If a function f : X → ΠYα is sgα-continuous, then Pα ◦ f : X → Yα is sgα-continuous for each α ∈ Λ,

where Pα is the projection of ΠYα onto Yα.

Proof. Let Vα be any open set of Yα. Then, P−1
α (Vα) is open in ΠYα and hence (Pα ◦ f)−1 (Vα) = f−1(P−1

α (Vα)) is

sgα-open in X. Therefore, Pα ◦ f is sgα-continuous.

Theorem 3.14. If a function f : ΠXα → ΠYα is sgα-continuous, then fα: Xα → Yα is sgα-continuous for each α ∈ Λ.

Proof. Let Vα be any open set of Yα. Then P−1
α (Vα) is open in ΠYα and f−1(P−1

α (Vα)) = f−1
α (Vα) × Π{Xα: α ∈ Λ

\ {α}}. Since f is sgα-continuous, f−1(P−1
α (Vα)) is sgα-open in ΠXα. Since the projection Pα of ΠXα onto Xα is open

continuous, f−1
α (Vα) is sgα-open in Xα and hence fα is sgα-continuous.
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Now, we recall the following definitions.

Definition 3.15. A space (X, τ) is said to be

(1). sgα-compact [7] if every sgα-open cover of X has a finite subcover;

(2). sgα-compact relative to X if every cover of A by sgα-open sets of X has a finite subcover.

Theorem 3.16. If a function f : (X, τ) → (Y, σ) is sgα-continuous and A is sgα-compact relative to X, then f(A) is

compact in Y .

Proof. Let {Hα : α ∈ I} be any cover of f(A) by open sets of the subspace f(A). For each α ∈ I, there exists a open

set Aα of Y such that Hα = Kα ∩ f(A). For each x ∈ A, there exists αx ∈ I such that f(x) ∈ Aαx and there exists Ux ∈

sgα(τ) containing x such that f(Ux) ⊂ Aαx . Since the family {Ux : x ∈ K} is a cover of A by sgα-open sets of K, there

exists a finite subset A0 of A such that A ⊂ {Ux : x ∈ A0}. Therefore, we obtain f(A) ⊂
⋃
{f(Ux) : x ∈ A0} which is a

subset of
⋃
{Aαx : x ∈ A0}. Thus, f(A) =

⋃
{Aαx : x ∈ A0} and hence f(A) is compact.

Definition 3.17. A space (X, τ) is said to be:

(1). coutably sgα-compact if every sgα-open countably cover of X has a finite subcover;

(2). sgα-Lindelof if every sgα-open cover of X has a countable subcover;

(3). sgα-closed compact if every sgα-closed cover of X has a finite subcover;

(4). countably sgα-closed compact if every countably cover of X by sgα-closed sets has a finite subcover.

Theorem 3.18. Let f : (X, τ)→ (Y, σ) be a sgα-continuous surjective function. Then the following statements hold:

(1). If X is sgα-Lindelof, then Y is Lindelof;

(2). If X is countably sgα-compact, then Y is countably compact.

Proof.

(1). Let {Vα : α ∈ I} be an open cover of Y . Since f is sgα-continuous, then {f−1(Vα) : α ∈ I} is a sgα-open cover of

X. Since X is sgα-Lindelof, there exists a countable subset I0 of I such that X =
⋃
{f−1(Vα) : α ∈ I0}. Thus, Y =⋃

{Vα : α ∈ I0} and hence Y is Lindelof.

(2). Similar to (1).

Theorem 3.19. Let f : (X, τ)→ (Y, σ) be a sgα-continuous surjective function. Then the following statements hold:

(1). If X is sgα-closed compact, then Y is compact;

(2). If X is sgα-closed Lindelof, then Y is Lindelof;

(3). If X is countably sgα-closed compact, then Y is countably compact.

Proof. The proof is similar to Theorem 3.18.
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4. Separation Axioms

Definition 4.1. A space (X, τ) is said to be:

(1). sgα-T1 [11] if for each pair of distinct points x and y of X, there exist sgα-open sets U and V containing x and y,

respectively such that y /∈ U and x /∈ V .

(2). sgα-T2 [11] if for each pair of distinct points x and y in X, there exist disjoint sgα-open sets U and V in X such that

x ∈ U and y ∈ V .

Recall, that a subset Bx of a topological space (X, τ) is said to be a sgα-neighbourhood of a point x ∈ X [11] if there exists

a sgα-open set U such that x ∈ U ⊂ Bx.

Theorem 4.2. If an injective function f : (X, τ)→ (Y, σ) is sgα-continuous and Y is a T1-space, then X is a sgα-T1-space.

Proof. Suppose that Y is T1. For any distict points x and y in X, there exist open sets V and W such that f(x) ∈ V ,

f(y) /∈ V , f(x) /∈ W and f(y) ∈ W . Since f is sgα-continuous, f−1(V ) and f−1(W ) are sgα-open subsets of (X, τ) such

that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ). This shows that X is sgα-T1.

Theorem 4.3. If f : (X, τ)→ (Y, σ) is a sgα-continuous injective function and (Y, σ) is a T2-space, then (X, τ) is sgα-T2-

space.

Proof. For any pair of distinct points x and y in X, there exist disjoint open sets U and V in Y such that f(x) ∈ U and

f(y) ∈ V . Since f is sgα-continuous, f−1(U) and f−1(V ) are sgα-open in X containing x and y, respectively. Therefore,

f−1(U) ∩ f−1(V ) = ∅ because U ∩ V = ∅. This shows that X is sgα-T2.

Lemma 4.4 ([6]). The intersection of an open and sgα-open subset of (X, τ) is sgα-open in (X, τ).

Theorem 4.5. If f : (X, τ)→ (Y, σ) is a continuous function and g : (X, τ)→ (Y, σ) is a sgα-continuous function and Y

is a T2-space, then the set E = {x ∈ X : f(x) = g(x)} is sgα-closed set in X.

Proof. If x ∈ Ec, then it follows that f(x) 6= g(x). Since Y is T2, there exist disjoint open sets V and W of Y such that

f(x) ∈ V and g(x) ∈ W . Since f is continuous and g is sgα-continuous, then f−1(V ) is open and g−1(W ) is sgα-open in X

with x ∈ f−1(V ) and x ∈ g−1(W ). Put A = f−1(V ) ∩ g−1(W ). By Lemma 4.4, A is sgα-open in X. Therefore, f(A)∩g(A)

= ∅ and it follows that x /∈ sgα-Cl(E). This shows that E is sgα-closed in X.

Definition 4.6. A graph G(f) of a function f : (X, τ) → (Y, σ) is said to be strongly sgα-closed if for each (x, y) ∈

(X × Y )\G(f), there exist U ∈ sgαO(X,x) and an open set V of Y containing y such that (U × V ) ∩ G(f) = ∅.

Lemma 4.7. A graph G(f) of a function f : (X, τ) → (Y, σ) is strongly sgα-closed in X × Y if and only if for each

(x, y) ∈ (X × Y ) \ G(f), there exist U ∈ sgαO(X,x) and an open set V of Y containing y such that f(U) ∩ V = ∅.

Theorem 4.8. If f : (X, τ) → (Y, σ) is sgα-continuous and (Y, σ) is Hausdorff, then G(f) is strongly sgα-closed in X ×

Y .

Proof. Let (x, y) ∈ (X×Y ) \ G(f). Then f(x) 6= y. Since Y is Hausdorff, there exist open sets V and W in Y containing

f(x) and y, respectively, such that V ∩ W = ∅. Since f is sgα-continuous, there exists U ∈ sgαO(X,x) such that f(U) ⊂

V . Therefore, f(U) ∩ W = ∅ and then by Lemma 4.7, G(f) is strongly sgα-closed in X × Y .

Theorem 4.9. If f : (X, τ)→ (Y, σ) is an injective with the strongly sgα-closed graph, then (X, τ) is sgα-T1.
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Proof. Suppose that x and y are two distinct points of X. Then f(x) 6= f(y). Hence there exist a sgα-open set U and

an open set V containing x and f(y), respectively, such that f(U) ∩ V = ∅. Hence y /∈ U . This implies that (X, τ) is

sgα-T1.

Theorem 4.10. If f : (X, τ)→ (Y, σ) is a surjective function with the strongly sgα-closed graph, then (Y, σ) is T1.

Proof. Let y1 and y2 be two distinct points of Y . Since f is surjective, there exists a point x in X such that f(x) = y2.

Hence (x, y1) /∈ G(f). Then by Lemma 4.7, there exist a sgα-open set U and an open set V containing x and y1, respectively,

such that f(U) ∩ V = ∅. Hence y2 /∈ V . This means that (Y, σ) is T1.

Definition 4.11. A function f : (X, τ) → (Y, σ) has a ultra sgα-closed graph if and only if for each (x, y) ∈ (X × Y ) \

G(f), there exist U ∈ sgαO(X,x), V ∈ sgαO(Y, y) such that (U × sgα-Cl(V )) ∩ G(f) = ∅.

Lemma 4.12. A function f : (X, τ)→ (Y, σ) has a ultra sgα-closed graph if and only if for each (x, y) ∈ (X × Y ) \ G(f),

there exist U ∈ sgαO(X,x), V ∈ sgαO(Y, y) such that f(U) ∩ sgα-Cl(V ) = ∅.

Proof. Follows from Definition 4.11.

Definition 4.13. A function f : (X, τ)→ (Y, σ) is said to be sgα-irresolute if f−1(V ) ∈ sgα(τ) for each V ∈ sgα(σ).

Theorem 4.14. If f : (X, τ)→ (Y, σ) is a sgα-irresolute function and (Y, σ) is a sgα-T2 space, then G(f) is ultra sgα-closed.

Proof. Similar proof of Theorem 3.12.

Theorem 4.15. If f : (X, τ) → (Y, σ) is surjective and has a ultra sgα-closed graph G(f), then (Y, σ) is both sgα-T2 and

sgα-T1 space.

Proof. Let y1, y2 (y1 6= y2) ∈ Y . The surjectivity of f gives a x1 ∈ X such that f(x1) = y1. Now (x1, x2) ∈ (X × Y )

\ G(f). The ultra sgα-closedness of G(f) provides U ∈ sgαO(X,x1), V ∈ sgαO(Y, y2) such that f(U) ∩ sgα-Cl(V ) = ∅.

Whence one infers that y1 /∈ sgα-Cl(V ). This means that there exists W ∈ sgαO(Y, y1) such that W ∩ V = ∅. So, Y is

sgα-T2 and hence sgα-T1.

Theorem 4.16. A space (X, τ) is sgα-T2 if and only if the identity function i : X → X has a ultra sgα-closed graph.

Proof. Necessity. Let (X, τ) be sgα-T2. Since the identity function i : X → X is sgα-irresolute, it follows from Theorem

4.14 that G(i) is ultra sgα-closed. Sufficiency: Let G(i) be ultra sgα-closed. Then the surjectivity of i and ultra sgα-

closedness of G(i) together imply, by Theorem 4.15, that X is sgα-T2.

Theorem 4.17. If f : (X, τ)→ (Y, σ) is an injection and G(f) is ultra sgα-closed, then (X, τ) is a sgα-T1 space.

Proof. Since f is injective, for any pair of distinct point x1, x2 ∈ X, f(x1) 6= f(x2). Then (x1, f(x2)) ∈ (X × Y ) \

G(f). Since G(f) is ultra sgα-closed there exist U ∈ sgαO(X,x1), V ∈ sgαO(Y, f(x2)) such that f(U) ∩ sgα-Cl(V ) = ∅.

Therefore x2 /∈ U . Similarly we can obtain a set W ∈ sgαO(X,x2) such that x1 /∈ W . Hence (X, τ) is sgα-T1.

Theorem 4.18. If f : (X, τ) → (Y, σ) is a bijective function with ultra sgα-closed graph, then both (X, τ) and (Y, σ) are

sgα-T1 space.

Proof. The proof is an immediate consequence of Theorem 4.15 and 4.17.

Definition 4.19. A function f : (X, τ)→ (Y, σ) is said to be weakly sgα-irresolute [8] if for each point x ∈ X and each V

∈ sgαO(Y, f(x)), there exists U ∈ sgαO(X,x) such that f(U) ⊂ sgα-Cl(V ).
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Theorem 4.20. If a weakly sgα-irresolute function f : (X, τ) → (Y, σ) is an injection with ultra sgα-closed graph G(f),

then (X, τ) is sgα-T2.

Proof. Since f is injective for any pair of distinct points x1 and x2 ∈ X, f(x1) 6= f(x2). Therefore, (x1, f(x2)) ∈ (X ×Y )

\ G(f). The sgα-closedness of G(f) gives U ∈ sgαO(X,x1), V ∈ sgαO(Y, f(x2)) such that f(U) ∩ sgα-Cl(V ) = ∅, where

one obtains U ∩ f−1(gCl(V )) = ∅. Consequently, f−1(sgα-Cl(V )) ⊂ X \ U . Since f is weakly sgα-irresolute, it is so at x2.

Then there exists W ∈ sgαO(X,x2) such that f(W ) ⊂ sgα-Cl(V ). It follows that W ⊂ f−1(sgα-Cl(V )) ⊂ X \ U . Whence

one infer that W ∩ U = ∅. Thus, for any pair of distinct points x1, x2 there exist U ∈ sgαO(X,x1), V ∈ sgαO(X,x2) such

that W ∩ V = ∅. This shows that (X, τ) is sgα-T2.

5. sgα-Quotient Functions

We introduce the following definition

Definition 5.1. A surjective function f : (X, τ) → (Y, σ) is said to be a sgα-quotient function if f is sgα-continuous and

f−1(V ) is open in (X, τ) implies V is a sgα-open set in (Y, σ).

Proposition 5.2. Every quotient function is sgα-quotient function.

Proof. Follows from the definitions.

The following example shows that sgα-quotient function need not be a quotient function in general.

Example 5.3. Let X = {a, b, c, d}, Y = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {a}, Y }. Define a function f : (X, τ) →

(Y, σ) by f(a) = b, f(b) = a and f(c) = f(d) = c. Then f is a sgα-quotient function but not a quotient function.

Theorem 5.4. A function f : (X, τ) → (Y, σ) is sgα-quotient function if and only if (X, τ) → (Y, sgα(τ)) is quotient

function.

Definition 5.5. A function f : (X, τ)→ (Y, σ) is said to be sgα-open [9] if f(U) ∈ sgα(σ) for each U ∈ τ .

Proposition 5.6. If a function f : (X, τ)→ (Y, σ) is surjective, sgα-continuous and sgα-open function, then f is a quotient

function.

Proof. We only need to prove that f−1(V ) is open in (X, τ) implies V is a sgα-open set in (Y, σ). Let f−1(V ) is open in

(X, τ). Then f(f−1(V )) is sgα-open, since f is sgα-open. Hence V is a sgα-open set of Y , as f is surjective, f(f−1(V )) =

V . Thus, f is a sgα-quotient function.

Proposition 5.7. Let f : (X, τ) → (Y, σ) be an open surjective sgα-irresolute function and g : (Y, σ) → (Z, η) be a

sgα-quotient function. Then the composition g ◦ f : (X, τ) → (Z, η) is a sgα-quotient function.

Proof. Let V be any open set in (Z, η). Then g−1(V ) is a sgα-open set, since g is a sgα-quotient function. Since f is

sgα-irresolute, f−1(g−1(V )) = (g ◦ f)−1(V ) is a sgα-open in X. This shows that g ◦ f is sgα-continuous. Also, assume that

(g ◦ f)−1(V ) is open in (X, τ) for V ⊂ Z, that is f−1(g−1(V )) is open in (X, τ). Since f is open f(f−1(g−1(V ))) is open in

(Y, σ). It follows that g−1(V ) is open in (Y, σ), because f is surjective. Since g is a sgα-quotient function, V is sgα-open in

Z. Thus, g ◦ f : (X, τ) → (Z, η) is a sgα-quotient function.

Proposition 5.8. If h : (X, τ) → (Y, σ) is a sgα-quotient function and g : (X, τ) → (Z, η) is a continuous function where

(Z, η) is a space that is constant on each set h−1({y}), for y ∈ Y , then g induces a sgα-continuous function f : (Y, σ) →

(Z, η) such that f ◦ h = g.
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Proof. Since g is constant on h−1({y}), for each y ∈ Y , the set g(h−1({y})) is a point set in (Z, η). Let f(y) denote this

point, then it is clear that f is well defined and for each x ∈ X, f(h(x)) = g(x). We claim that f is sgα-continuous. Let V

be any open set of (Z, η), then g−1(V ) is open, as g is continuous. But g−1(V ) = h−1(f−1(V )) is open in (X, τ). Since h is

a sgα-quotient function, f−1(V ) is sgα-open in Y .

Definition 5.9. A surjective function f : (X, τ)→ (Y, σ) is said to be a strongly sgα-quotient function if f is sgα-continuous

and f−1(V ) is sgα-open in (X, τ) implies V is open set in (Y, σ).

Proposition 5.10. Every strongly sgα-quotient function is sgα-quotient function.

For example, the function in the Example 5.3 is a sgα-quotient function but not strongly sgα-quotient function.

Definition 5.11. A function f : (X, τ) → (Y, σ) is called a completely sgα-quotient function if f is sgα-irresolute and

f−1(U) is sgα-open in X implies U is open in Y .

Definition 5.12. A function f : (X, τ) → (Y, σ) is called sgα∗-open [9] if the image of every sgα-open set in X is an

sgα-open in Y .

Theorem 5.13. Let f : (X, τ)→ (Y, σ) be a surjective sgα∗-open and sgα-irresolute function and g : (Y, σ) → (Z, η) be a

completely sgα-quotient function. Then g ◦ f is a completely sgα-quotient function.

Proof. Let V be a sgα-open set in Z. Then g−1(V ) is a sgα-open set in Y because g is a completely sgα-quotient

function. We claim that g ◦ f is sgα-irresolute. Since f is sgα-irreoslute, f−1(g−1(V )) is a sgα-open set in X, that is g ◦ f

is sgα-irresolute. Suppose (g ◦ f)−1(V ) is an sgα-open set in X for V ⊂ Z, that is, f−1(g−1(V )) is a sgα-open set in X.

Since f is sgα∗-open, f(f−1) is a sgα-open set in Y , and g−1(V ) is a sgα-open set in Y because f is surjective. Since g is

completely sgα-quotient function, V is an open set in Z. Thus, g ◦ f is completely sgα-quotient function.

Proposition 5.14. Every completely sgα-quotient function is strongly sgα-quotient function.

Proof. Suppose V is an open set in Y then it is a sgα-open set in Y . Since f is sgα-irresolute, f−1(V ) is a sgα-open in X.

Thus V is open in Y gives f−1(V ) is a sgα-open set in X. Suppose f−1(V ) is a sgα-open set in X. Since f is a completely

sgα-quotient function, V is an open set in Y . Hence f is strongly sgα-quotient function.

Theorem 5.15. Let f : (X, τ) → (Y, σ) be a strongly sgα-quotient function and g : (Y, σ) → (Z, η) be a sgα-quotient

function, then g ◦ f is a completely sgα-quotient function.
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