International Journal of Mathematics And its Applications

Some Properties of $s g \alpha$-continuous Functions

P. Gomathi Sundari ${ }^{1}$, N. Rajesh ${ }^{1, *}$ and S. Vinoth Kumar ${ }^{2}$
1 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamil Nadu, India.
2 Department of Mathematics, Swami Dayananda College of Arts and Science, Manjakkudi, Tamil Nadu, India.

Abstract

In [7] the authors, introduced the notion of $s g \alpha$-continuity and investigated its fundamental properties. In this paper, we investigate some more properties of this type of continuity.

MSC: 54D10.

Keywords: Topological spaces, $\operatorname{sg} \alpha$-open set, $\operatorname{sg\alpha } \alpha$-continuous function, $s g \alpha$-quotient function.
(c) JS Publication.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, seperation axioms etc. by utiliaing generalized open sets (See [1-3]). One of the most well known notions and also an inspiration source is the notion of α-open [5] sets introduced by Njastad in 1965. Quite recently, as generalization of closed sets called sga-closed sets were introduced and studied by the present authors in [6]. In [7] the authors, introduced the notion of $s g \alpha$-continuity and investigated its fundamental properties. In this paper, we investigate some more properties of this type of continuity.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(X, \tau), \operatorname{Cl}(A), \operatorname{Int}(A)$ and A^{c} denote the closure of A, the interior of A and the complement of A in X, respectively.

Definition 2.1. A subset A of a space X is called semi-open [4] (respectively α-open [5]) if $A \subset \operatorname{Cl}(\operatorname{Int}(A))$ (respectively $A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A))))$. The complement of α-open set is called α-closed.

The α-closure of a subset A of X, denoted by $\alpha \operatorname{Cl}(A)$ is defined to be the intersection of all α-closed sets containing A in X.

Definition 2.2. A subset A of a space X is called sg α-closed [6] if $\alpha \operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is semiopen in X. The complement of sga-closed set is called sga-open. The family of all sga-open subsets of (X, τ) is denoted by sg $\alpha O(X)$.

[^0]The family of all $\operatorname{sg} \alpha$-open (respectively $\operatorname{sg\alpha } \alpha$-closed) sets of X is denoted by $\operatorname{sg\alpha }(\tau)$ (respectively $\operatorname{sg\alpha } C(X)$). We set $\operatorname{sg} \alpha O(X, x)=\{U \mid U \in \operatorname{sg} \alpha(\tau)$ and $x \in U\}$. In [6] shown that the set $\operatorname{sg} \alpha(\tau)$ forms a topology, which is finer than τ.

Definition 2.3. The intersection of all sga-closed sets containing A is called the sgo-closure [6] of A and is denoted by $\operatorname{sg} \alpha-\mathrm{Cl}(A) . A$ set A is sgo-closed if and only if $\operatorname{sg\alpha }-\mathrm{Cl}(A)=A[6]$.

3. Properties of $s g \alpha$-continuous Functions

Definition 3.1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called :
(1). sgo-continuous [7] at a point $x \in X$ if for each open subset V in Y containing $f(x)$, there exists a $U \in \operatorname{sg} \alpha(X, x)$ such that $f(U) \subset V$;
(2). sga-continuous [7] if it has this property at each point of X.

Theorem 3.2 ([7]). The following statements are equivalent for a function $f:(X, \tau) \rightarrow(Y, \sigma)$:
(1). f is sg α-continuous;
(2). $f:(X, \operatorname{sg\alpha }(\tau)) \rightarrow(Y, \sigma)$ is continuous;
(3). for every open set V of $Y, f^{-1}(V)$ is sga-open in X;
(4). for every closed set V of $Y, f^{-1}(V)$ is sga-closed in X.

Lemma 3.3 ([6]). Let $A \subset B \subset X, A$ be a sgo-open set in B and B an open subset of (X, τ), then $A \in \operatorname{sg\alpha }(\tau)$.

Theorem 3.4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and $\Lambda=\left\{U_{i}: i \in I\right\}$ be a cover of X such that $U_{i} \in \operatorname{sg\alpha }(\tau)$ for each $i \in I$. If $\left.f\right|_{U_{i}}$ is continuous for each $i \in I$, then f is sga-continuous.

Proof. Suppose that V is any open subset of (Y, σ). Since $\left.f\right|_{U_{i}}$ is $s g \alpha$-continuous for each $i \in I$, it follows that $\left(\left.f\right|_{U_{i}}\right)^{-1}(V)$ is open in U_{i}. We have $f^{-1}(V)=\bigcup_{i \in I}\left(f^{-1}(V) \cap U_{i}\right)=\bigcup_{i \in I}\left(\left.f\right|_{U_{i}}\right)^{-1}(V)$. Then by Lemma 3.3, we obtain $f^{-1}(V) \in \operatorname{sg\alpha }(\tau)$, which means that f is $s g \alpha$-continuous.

Theorem 3.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and $x \in X$. If there exists an open set U of X such that $x \in U$, and the restriction of f to U is sga-continuous at x, then f is sga-continuous at x.

Proof. Suppose that F is an open subset of (Y, σ) containing $f(x)$. Since $\left.f\right|_{U}$ is $s g \alpha$-continuous at x, there exists a sg α-open set V of U containing x such that $f(V)=\left(\left.f\right|_{U}\right)(V) \subset F$. Since U is open in X containing x, it follows from Lemma 3.3 that $V \in \operatorname{sg} \alpha(\tau)$ containing x. Thus, f is $s g \alpha$-continuous at x.

Definition 3.6. Let and let be a net in. We say that x is a -limit of and we write if for every-neighbourhood A of x in X there exists a such that for all .

Theorem 3.7. *sga-continuous is identical with the union of the sga-frontiers of the inverse images of sga-open sets containing $f(x)$.

Proof. Suppose that f is not $s g \alpha$-continuous at a point x of X. Then there exists an open set V of Y containing $f(x)$ such that $f(U)$ is not a subset of V for every $U \subset \operatorname{sg\alpha }(\tau)$ containing x. Hence, we have $U \cap\left(X \backslash f^{-1}(V)\right) \neq \emptyset$ for every $\operatorname{sg} \alpha$-open set U containing x. It follows that $x \in \operatorname{sg} \alpha \operatorname{Cl}\left(X \backslash f^{-1}(V)\right)$. We also have $x \in f^{-1}(V) \subset \operatorname{sg\alpha } \operatorname{Cl}\left(f^{-1}(V)\right)$. This
means that $x \in \operatorname{sg\alpha Fr}\left(f^{-1}(V)\right)$. Now, let f be sga-continuous at $x \in X$ and V an open subset of Y containing $f(x)$. Then $x \in f^{-1}(V)$ is a $\operatorname{sg} \alpha$-open set of X. Thus, $x \in \operatorname{sg} \alpha \operatorname{Int}\left(f^{-1}(V)\right)$ and therefore $x \notin \operatorname{sg} \alpha F r\left(f^{-1}(V)\right)$ for every open set V containing $f(x)$.

Definition 3.8.

(1). A filter base Λ is said to be sga-convergent to a point x in X if for any $U \in \operatorname{sg} \alpha(\tau)$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.
(2). A filter base Λ is said to be convergent to a point x in X if for any open set U of X containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.9. If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is sga-continuous, then for each point $x \in X$ and each filter base Λ in X sga-converging to x, the filter base $f(\Lambda)$ is convergent to $f(x)$.

Proof. Let $x \in X$ and Λ be any filter base in X sg α-converging to x. Since f is $s g \alpha$-continuous, then for any open set V of (Y, σ) containing $f(x)$, there exists $U \in \operatorname{sg} \alpha O(X, x)$ such that $f(U) \subset V$. Since Λ is sga-converging to x, there exists a $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and hence the filter base $f(\Lambda)$ is convergent to $f(x)$.

Recall that for a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the subset $\{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 3.10. A graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be contra sga-closed if for each $(x, y) \in$ $(X \times Y) \backslash G(f)$, there exists $U \in \operatorname{sg} \alpha O(X, x)$ and a closed set V of Y containing y such that $(U \times V) \cap G(f)=\varnothing$.

Lemma 3.11. A graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra sga-closed in $X \times Y$ if and only if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in \operatorname{sg} \alpha(\tau)$ containing x and a closed set V of Y containing y such that $f(U) \cap V=\varnothing$.

Theorem 3.12. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-continuous function and (Y, σ) is a T_{1}-space, then $G(f)$ is contra sga-closed.
Proof. Let $(x, y) \in(X \times Y) \backslash G(f)$. Then $y \neq f(x)$. Since Y is T_{1}, there exists an open set V in Y such that $f(x) \in V$ and $y \notin V$. Since f is sga-continuous, there exists $U \in \operatorname{sg\alpha } O(X, x)$ such that $f(U) \subset V$. Therefore, $f(U) \cap(Y \backslash V)=\varnothing$ and $Y \backslash V$ is a closed subset of Y containing y. This shows that $G(f)$ is contra sgo-closed.

Let $\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ and $\left\{Y_{\alpha}: \alpha \in \Lambda\right\}$ be two families of topological spaces with the same index set Λ. The product space of $\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ is denoted by $\Pi\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ (or simply ΠX_{α}). Let $f_{\alpha}: X_{\alpha} \rightarrow Y_{\alpha}$ be a function for each $\alpha \in \Lambda$. The product function $f: \Pi X_{\alpha} \rightarrow \Pi Y_{\alpha}$ is defined by $f\left(\left\{x_{\alpha}\right\}\right)=\left\{f_{\alpha}\left(x_{\alpha}\right)\right\}$ for each $\left\{x_{\alpha}\right\} \in \Pi X_{\alpha}$.

Theorem 3.13. If a function $f: X \rightarrow \Pi Y_{\alpha}$ is sg α-continuous, then $P_{\alpha} \circ f: X \rightarrow Y_{\alpha}$ is sg α-continuous for each $\alpha \in \Lambda$, where P_{α} is the projection of ΠY_{α} onto Y_{α}.

Proof. Let V_{α} be any open set of Y_{α}. Then, $P_{\alpha}^{-1}\left(V_{\alpha}\right)$ is open in ΠY_{α} and hence $\left(P_{\alpha} \circ f\right)^{-1}\left(V_{\alpha}\right)=f^{-1}\left(P_{\alpha}^{-1}\left(V_{\alpha}\right)\right)$ is $s g \alpha$-open in X. Therefore, $P_{\alpha} \circ f$ is $s g \alpha$-continuous.

Theorem 3.14. If a function $f: \Pi X_{\alpha} \rightarrow \Pi Y_{\alpha}$ is sga-continuous, then $f_{\alpha}: X_{\alpha} \rightarrow Y_{\alpha}$ is sg α-continuous for each $\alpha \in \Lambda$.
Proof. Let V_{α} be any open set of Y_{α}. Then $P_{\alpha}^{-1}\left(V_{\alpha}\right)$ is open in ΠY_{α} and $f^{-1}\left(P_{\alpha}^{-1}\left(V_{\alpha}\right)\right)=f_{\alpha}^{-1}\left(V_{\alpha}\right) \times \Pi\left\{X_{\alpha}: \alpha \in \Lambda\right.$ $\backslash\{\alpha\}\}$. Since f is sg α-continuous, $f^{-1}\left(P_{\alpha}^{-1}\left(V_{\alpha}\right)\right)$ is sg α-open in ΠX_{α}. Since the projection P_{α} of ΠX_{α} onto X_{α} is open continuous, $f_{\alpha}^{-1}\left(V_{\alpha}\right)$ is $s g \alpha$-open in X_{α} and hence f_{α} is $s g \alpha$-continuous.

Now, we recall the following definitions.

Definition 3.15. A space (X, τ) is said to be
(1). sgo-compact [7] if every sgo-open cover of X has a finite subcover;
(2). sga-compact relative to X if every cover of A by sga-open sets of X has a finite subcover.

Theorem 3.16. If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is sga-continuous and A is sga-compact relative to X, then $f(A)$ is compact in Y.

Proof. Let $\left\{H_{\alpha}: \alpha \in I\right\}$ be any cover of $f(A)$ by open sets of the subspace $f(A)$. For each $\alpha \in I$, there exists a open set A_{α} of Y such that $H_{\alpha}=K_{\alpha} \cap f(A)$. For each $x \in A$, there exists $\alpha_{x} \in I$ such that $f(x) \in A_{\alpha_{x}}$ and there exists $U_{x} \in$ $\operatorname{sg} \alpha(\tau)$ containing x such that $f\left(U_{x}\right) \subset A_{\alpha_{x}}$. Since the family $\left\{U_{x}: x \in K\right\}$ is a cover of A by sg α-open sets of K, there exists a finite subset A_{0} of A such that $A \subset\left\{U_{x}: x \in A_{0}\right\}$. Therefore, we obtain $f(A) \subset \bigcup\left\{f\left(U_{x}\right): x \in A_{0}\right\}$ which is a subset of $\bigcup\left\{A_{\alpha_{x}}: x \in A_{0}\right\}$. Thus, $f(A)=\bigcup\left\{A_{\alpha_{x}}: x \in A_{0}\right\}$ and hence $f(A)$ is compact.

Definition 3.17. A space (X, τ) is said to be:
(1). coutably sgo-compact if every sg α-open countably cover of X has a finite subcover;
(2). sg α-Lindelof if every sgo-open cover of X has a countable subcover;
(3). sga-closed compact if every sga-closed cover of X has a finite subcover;
(4). countably sga-closed compact if every countably cover of X by sga-closed sets has a finite subcover.

Theorem 3.18. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a sgo-continuous surjective function. Then the following statements hold:
(1). If X is sg α-Lindelof, then Y is Lindelof;
(2). If X is countably sgo-compact, then Y is countably compact.

Proof.
(1). Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be an open cover of Y. Since f is $\operatorname{sg} \alpha$-continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a sg α-open cover of X. Since X is sg α-Lindelof, there exists a countable subset I_{0} of I such that $X=\bigcup\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$. Thus, $Y=$ $\bigcup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$ and hence Y is Lindelof.
(2). Similar to (1).

Theorem 3.19. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a sgo-continuous surjective function. Then the following statements hold:
(1). If X is sgo-closed compact, then Y is compact;
(2). If X is sgo-closed Lindelof, then Y is Lindelof;
(3). If X is countably sg α-closed compact, then Y is countably compact.

Proof. The proof is similar to Theorem 3.18.

4. Separation Axioms

Definition 4.1. A space (X, τ) is said to be:
(1). sgo- $T_{1}[11]$ if for each pair of distinct points x and y of X, there exist sgo-open sets U and V containing x and y, respectively such that $y \notin U$ and $x \notin V$.
(2). sga- $T_{2}[11]$ if for each pair of distinct points x and y in X, there exist disjoint sgo-open sets U and V in X such that $x \in U$ and $y \in V$.

Recall, that a subset B_{x} of a topological space (X, τ) is said to be a $s g \alpha$-neighbourhood of a point $x \in X$ [11] if there exists a sg α-open set U such that $x \in U \subset B_{x}$.

Theorem 4.2. If an injective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is sga-continuous and Y is a T_{1}-space, then X is a sga- T_{1}-space.

Proof. Suppose that Y is T_{1}. For any distict points x and y in X, there exist open sets V and W such that $f(x) \in V$, $f(y) \notin V, f(x) \notin W$ and $f(y) \in W$. Since f is sga-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $s g \alpha$-open subsets of (X, τ) such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is $s g \alpha-T_{1}$.

Theorem 4.3. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-continuous injective function and (Y, σ) is a T_{2}-space, then (X, τ) is sga- T_{2} space.

Proof. For any pair of distinct points x and y in X, there exist disjoint open sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is $s g \alpha$-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $s g \alpha$-open in X containing x and y, respectively. Therefore, $f^{-1}(U) \cap f^{-1}(V)=\varnothing$ because $U \cap V=\varnothing$. This shows that X is $s g \alpha-T_{2}$.

Lemma 4.4 ([6]). The intersection of an open and sga-open subset of (X, τ) is sga-open in (X, τ).
Theorem 4.5. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a continuous function and $g:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-continuous function and Y is a T_{2}-space, then the set $E=\{x \in X: f(x)=g(x)\}$ is sga-closed set in X.

Proof. If $x \in E^{c}$, then it follows that $f(x) \neq g(x)$. Since Y is T_{2}, there exist disjoint open sets V and W of Y such that $f(x) \in V$ and $g(x) \in W$. Since f is continuous and g is sga-continuous, then $f^{-1}(V)$ is open and $g^{-1}(W)$ is $s g \alpha$-open in X with $x \in f^{-1}(V)$ and $x \in g^{-1}(W)$. Put $A=f^{-1}(V) \cap g^{-1}(W)$. By Lemma 4.4, A is $s g \alpha$-open in X. Therefore, $f(A) \cap g(A)$ $=\varnothing$ and it follows that $x \notin \operatorname{sg\alpha } \alpha-\mathrm{Cl}(E)$. This shows that E is $s g \alpha$-closed in X.

Definition 4.6. A graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be strongly sga-closed if for each $(x, y) \in$ $(X \times Y) \backslash G(f)$, there exist $U \in \operatorname{sg} \alpha O(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f)=\varnothing$.

Lemma 4.7. A graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is strongly sgo-closed in $X \times Y$ if and only if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in \operatorname{sg} \alpha O(X, x)$ and an open set V of Y containing y such that $f(U) \cap V=\varnothing$.

Theorem 4.8. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is sgo-continuous and (Y, σ) is Hausdorff, then $G(f)$ is strongly sga-closed in $X \times$ Y.

Proof. Let $(x, y) \in(X \times Y) \backslash G(f)$. Then $f(x) \neq y$. Since Y is Hausdorff, there exist open sets V and W in Y containing $f(x)$ and y, respectively, such that $V \cap W=\varnothing$. Since f is $\operatorname{sg\alpha } \alpha$-continuous, there exists $U \in \operatorname{sg\alpha } O(X, x)$ such that $f(U) \subset$ V. Therefore, $f(U) \cap W=\varnothing$ and then by Lemma 4.7, $G(f)$ is strongly sg α-closed in $X \times Y$.

Theorem 4.9. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective with the strongly sga-closed graph, then (X, τ) is sga- T_{1}.

Proof. Suppose that x and y are two distinct points of X. Then $f(x) \neq f(y)$. Hence there exist a sg α-open set U and an open set V containing x and $f(y)$, respectively, such that $f(U) \cap V=\varnothing$. Hence $y \notin U$. This implies that (X, τ) is $\operatorname{sg} \alpha-T_{1}$.

Theorem 4.10. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a surjective function with the strongly sgo-closed graph, then (Y, σ) is T_{1}.
Proof. Let y_{1} and y_{2} be two distinct points of Y. Since f is surjective, there exists a point x in X such that $f(x)=y_{2}$. Hence $\left(x, y_{1}\right) \notin G(f)$. Then by Lemma 4.7, there exist a sg α-open set U and an open set V containing x and y_{1}, respectively, such that $f(U) \cap V=\varnothing$. Hence $y_{2} \notin V$. This means that (Y, σ) is T_{1}.

Definition 4.11. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ has a ultra sgo-closed graph if and only if for each $(x, y) \in(X \times Y) \backslash$ $G(f)$, there exist $U \in \operatorname{sg} \alpha O(X, x), V \in \operatorname{sg} \alpha O(Y, y)$ such that $(U \times \operatorname{sg} \alpha-\mathrm{Cl}(V)) \cap G(f)=\varnothing$.

Lemma 4.12. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ has a ultra sga-closed graph if and only if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in \operatorname{sg\alpha } O(X, x), V \in \operatorname{sg\alpha } O(Y, y)$ such that $f(U) \cap \operatorname{sg\alpha }-\mathrm{Cl}(V)=\varnothing$.

Proof. Follows from Definition 4.11.
Definition 4.13. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be sga-irresolute if $f^{-1}(V) \in \operatorname{sg} \alpha(\tau)$ for each $V \in \operatorname{sg\alpha }(\sigma)$.
Theorem 4.14. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sga-irresolute function and (Y, σ) is a sgo- T_{2} space, then $G(f)$ is ultra sg α-closed.
Proof. Similar proof of Theorem 3.12.
Theorem 4.15. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is surjective and has a ultra sga-closed graph $G(f)$, then (Y, σ) is both sga- T_{2} and sg $\alpha-T_{1}$ space.

Proof. Let $y_{1}, y_{2}\left(y_{1} \neq y_{2}\right) \in Y$. The surjectivity of f gives a $x_{1} \in X$ such that $f\left(x_{1}\right)=y_{1}$. Now $\left(x_{1}, x_{2}\right) \in(X \times Y)$ $\backslash G(f)$. The ultra $s g \alpha$-closedness of $G(f)$ provides $U \in \operatorname{sg} \alpha O\left(X, x_{1}\right), V \in \operatorname{sg} \alpha O\left(Y, y_{2}\right)$ such that $f(U) \cap \operatorname{sg\alpha } \alpha-\mathrm{Cl}(V)=\varnothing$. Whence one infers that $y_{1} \notin \operatorname{sg} \alpha-\mathrm{Cl}(V)$. This means that there exists $W \in \operatorname{sg} \alpha O\left(Y, y_{1}\right)$ such that $W \cap V=\varnothing$. So, Y is $\operatorname{sg} \alpha-T_{2}$ and hence $s g \alpha-T_{1}$.

Theorem 4.16. A space (X, τ) is sg $\alpha-T_{2}$ if and only if the identity function $i: X \rightarrow X$ has a ultra sgo-closed graph.
Proof. Necessity. Let (X, τ) be $s g \alpha-T_{2}$. Since the identity function $i: X \rightarrow X$ is $s g \alpha$-irresolute, it follows from Theorem 4.14 that $G(i)$ is ultra $s g \alpha$-closed. Sufficiency: Let $G(i)$ be ultra $s g \alpha$-closed. Then the surjectivity of i and ultra sg α closedness of $G(i)$ together imply, by Theorem 4.15, that X is $s g \alpha-T_{2}$.

Theorem 4.17. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injection and $G(f)$ is ultra sgo-closed, then (X, τ) is a sgo- T_{1} space.
Proof. Since f is injective, for any pair of distinct point $x_{1}, x_{2} \in X, f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Then $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y) \backslash$ $G(f)$. Since $G(f)$ is ultra $\operatorname{sg} \alpha$-closed there exist $U \in \operatorname{sg\alpha } O\left(X, x_{1}\right), V \in \operatorname{sg\alpha } O\left(Y, f\left(x_{2}\right)\right)$ such that $f(U) \cap \operatorname{sg\alpha } \alpha-\mathrm{Cl}(V)=\varnothing$. Therefore $x_{2} \notin U$. Similarly we can obtain a set $W \in \operatorname{sg\alpha } O\left(X, x_{2}\right)$ such that $x_{1} \notin W$. Hence (X, τ) is $\operatorname{sg} \alpha-T_{1}$.

Theorem 4.18. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a bijective function with ultra sgo-closed graph, then both (X, τ) and (Y, σ) are sgo- T_{1} space.

Proof. The proof is an immediate consequence of Theorem 4.15 and 4.17.
Definition 4.19. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be weakly sga-irresolute [8] if for each point $x \in X$ and each V $\in \operatorname{sg\alpha } O(Y, f(x))$, there exists $U \in \operatorname{sg\alpha } O(X, x)$ such that $f(U) \subset \operatorname{sg\alpha }-\mathrm{Cl}(V)$.

Theorem 4.20. If a weakly sga-irresolute function $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injection with ultra sgo-closed graph $G(f)$, then (X, τ) is $\operatorname{sg\alpha }-T_{2}$.

Proof. Since f is injective for any pair of distinct points x_{1} and $x_{2} \in X, f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Therefore, $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y)$ $\backslash G(f)$. The sg α-closedness of $G(f)$ gives $U \in \operatorname{sg\alpha } O\left(X, x_{1}\right), V \in \operatorname{sg\alpha } O\left(Y, f\left(x_{2}\right)\right)$ such that $f(U) \cap \operatorname{sg\alpha }$-Cl$(V)=\varnothing$, where one obtains $U \cap f^{-1}(g \mathrm{Cl}(V))=\varnothing$. Consequently, $f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V)) \subset X \backslash U$. Since f is weakly $s g \alpha$-irresolute, it is so at x_{2}. Then there exists $W \in \operatorname{sg} \alpha O\left(X, x_{2}\right)$ such that $f(W) \subset \operatorname{sg\alpha }-\mathrm{Cl}(V)$. It follows that $W \subset f^{-1}(\operatorname{sg} \alpha-\operatorname{Cl}(V)) \subset X \backslash U$. Whence one infer that $W \cap U=\varnothing$. Thus, for any pair of distinct points x_{1}, x_{2} there exist $U \in \operatorname{sg} \alpha O\left(X, x_{1}\right), V \in \operatorname{sg\alpha } O\left(X, x_{2}\right)$ such that $W \cap V=\varnothing$. This shows that (X, τ) is $s g \alpha-T_{2}$.

5. sgo-Quotient Functions

We introduce the following definition
Definition 5.1. A surjective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be a sgo-quotient function if f is sgo-continuous and $f^{-1}(V)$ is open in (X, τ) implies V is a sg α-open set in (Y, σ).

Proposition 5.2. Every quotient function is sga-quotient function.
Proof. Follows from the definitions.

The following example shows that $\operatorname{sg} \alpha$-quotient function need not be a quotient function in general.
Example 5.3. Let $X=\{a, b, c, d\}, Y=\{a, b, c\}, \tau=\{\varnothing,\{a\}, X\}$ and $\sigma=\{\varnothing,\{a\}, Y\}$. Define a function $f:(X, \tau) \rightarrow$ (Y, σ) by $f(a)=b, f(b)=a$ and $f(c)=f(d)=c$. Then f is a sga-quotient function but not a quotient function.

Theorem 5.4. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is sga-quotient function if and only if $(X, \tau) \rightarrow(Y, \operatorname{sg\alpha }(\tau))$ is quotient function.

Definition 5.5. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be sga-open [9] if $f(U) \in \operatorname{sg\alpha }(\sigma)$ for each $U \in \tau$.
Proposition 5.6. If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is surjective, sgo-continuous and sga-open function, then f is a quotient function.

Proof. We only need to prove that $f^{-1}(V)$ is open in (X, τ) implies V is a sga-open set in (Y, σ). Let $f^{-1}(V)$ is open in (X, τ). Then $f\left(f^{-1}(V)\right)$ is sgo-open, since f is $s g \alpha$-open. Hence V is a $s g \alpha$-open set of Y, as f is surjective, $f\left(f^{-1}(V)\right)=$ V. Thus, f is a $s g \alpha$-quotient function.

Proposition 5.7. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an open surjective sga-irresolute function and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a sga-quotient function. Then the composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is a sga-quotient function.

Proof. Let V be any open set in (Z, η). Then $g^{-1}(V)$ is a $s g \alpha$-open set, since g is a $s g \alpha$-quotient function. Since f is sg α-irresolute, $f^{-1}\left(g^{-1}(V)\right)=(g \circ f)^{-1}(V)$ is a $s g \alpha$-open in X. This shows that $g \circ f$ is $s g \alpha$-continuous. Also, assume that $(g \circ f)^{-1}(V)$ is open in (X, τ) for $V \subset Z$, that is $f^{-1}\left(g^{-1}(V)\right)$ is open in (X, τ). Since f is open $f\left(f^{-1}\left(g^{-1}(V)\right)\right)$ is open in (Y, σ). It follows that $g^{-1}(V)$ is open in (Y, σ), because f is surjective. Since g is a sgo-quotient function, V is $s g \alpha$-open in Z. Thus, $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is a $s g \alpha$-quotient function.

Proposition 5.8. If $h:(X, \tau) \rightarrow(Y, \sigma)$ is a sga-quotient function and $g:(X, \tau) \rightarrow(Z, \eta)$ is a continuous function where (Z, η) is a space that is constant on each set $h^{-1}(\{y\})$, for $y \in Y$, then g induces a sga-continuous function $f:(Y, \sigma) \rightarrow$ (Z, η) such that $f \circ h=g$.

Proof. Since g is constant on $h^{-1}(\{y\})$, for each $y \in Y$, the set $g\left(h^{-1}(\{y\})\right)$ is a point set in (Z, η). Let $f(y)$ denote this point, then it is clear that f is well defined and for each $x \in X, f(h(x))=g(x)$. We claim that f is sga-continuous. Let V be any open set of (Z, η), then $g^{-1}(V)$ is open, as g is continuous. But $g^{-1}(V)=h^{-1}\left(f^{-1}(V)\right)$ is open in (X, τ). Since h is a $s g \alpha$-quotient function, $f^{-1}(V)$ is $s g \alpha$-open in Y.

Definition 5.9. A surjective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be a strongly sgo-quotient function if f is sga-continuous and $f^{-1}(V)$ is sga-open in (X, τ) implies V is open set in (Y, σ).

Proposition 5.10. Every strongly sga-quotient function is sga-quotient function.

For example, the function in the Example 5.3 is a $\operatorname{sg} \alpha$-quotient function but not strongly $\operatorname{sg} \alpha$-quotient function.

Definition 5.11. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a completely sga-quotient function if f is sga-irresolute and $f^{-1}(U)$ is sga-open in X implies U is open in Y.

Definition 5.12. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called sga*-open [9] if the image of every sga-open set in X is an sga-open in Y.

Theorem 5.13. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a surjective sgα^{*}-open and sgo-irresolute function and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a completely sga-quotient function. Then $g \circ f$ is a completely sga-quotient function.

Proof. Let V be a $s g \alpha$-open set in Z. Then $g^{-1}(V)$ is a $s g \alpha$-open set in Y because g is a completely $s g \alpha$-quotient function. We claim that $g \circ f$ is $s g \alpha$-irresolute. Since f is $s g \alpha$-irreoslute, $f^{-1}\left(g^{-1}(V)\right)$ is a sg α-open set in X, that is $g \circ f$ is $s g \alpha$-irresolute. Suppose $(g \circ f)^{-1}(V)$ is an $s g \alpha$-open set in X for $V \subset Z$, that is, $f^{-1}\left(g^{-1}(V)\right)$ is a $s g \alpha$-open set in X. Since f is $s g \alpha^{*}$-open, $f\left(f^{-1}\right)$ is a $s g \alpha$-open set in Y, and $g^{-1}(V)$ is a $s g \alpha$-open set in Y because f is surjective. Since g is completely sga-quotient function, V is an open set in Z. Thus, $g \circ f$ is completely $s g \alpha$-quotient function.

Proposition 5.14. Every completely sga-quotient function is strongly sga-quotient function.

Proof. Suppose V is an open set in Y then it is a $s g \alpha$-open set in Y. Since f is $s g \alpha$-irresolute, $f^{-1}(V)$ is a $s g \alpha$-open in X. Thus V is open in Y gives $f^{-1}(V)$ is a $s g \alpha$-open set in X. Suppose $f^{-1}(V)$ is a $s g \alpha$-open set in X. Since f is a completely $s g \alpha$-quotient function, V is an open set in Y. Hence f is strongly $s g \alpha$-quotient function.

Theorem 5.15. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a strongly sga-quotient function and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a sga-quotient function, then $g \circ f$ is a completely sga-quotient function.

References

[1] M. Caldas, On weakly preopenness and decomposition of preopeness, Southeast Asian Bull. Math., 33(5)(2009), 827-834.
[2] M. Caldas, S. Jafari and T. Noiri, On functions with λ-closed graph, Southeast Asian Bull. Math., 33(2)(2009), 229-236.
[3] M. Caldas, S. Jafari and N. Rajesh, On faintly \tilde{g}-continuous functions, Southeast Asian Bull. Math., 35(2)(2011), 191-202.
[4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[5] O. Nijastad, On some classes nearly open sets, Pacific J. Math., 15(1965), 961-970.
[6] N. Rajesh and B. Krsteska, Semi Generalized α-closed sets, Antarctica J. Math., 6(1)(2009), 1-12.
[7] N. Rajesh, B. Krsteska and G. Shanmugam, Semi Generalized α-continuous functions, (submitted).
[8] N. Rajesh and G. Shanmugam, Weak forms of strongly continuous functions, (submitted).
[9] P. Gomathi Sundari, N. Rajesh and S. Vinoth Kumar, Generalization of homeomorphisms, International Journal of Mathematics and Applications, 7(1)(2019), 195-202.
[10] N. Rajesh and G. Shanmugam, Characterizations of sga-Ro, sg $\alpha-R_{1}$ and weakly sg $\alpha-R_{0}$ topological spaces, (submitted).
[11] N. Rajesh and G. Shanmugam, Characterizations of $\operatorname{sg\alpha }-T_{0}$, $\operatorname{sg\alpha }-T_{1}$ and $\operatorname{sg\alpha } \alpha-T_{2}$ topological spaces, (submitted).

[^0]: * E-mail: nrajesh_topology@yahoo.co.in

