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Abstract : In this work a new s-unitary similarity transformation of a normal matrix to complex
symmetric form will be discussed. The classical Speech criterion for the s-unitary similarity between two
complex n X n matrices is extended to the s-unitary similarity between two matrix sets of cardinally m

where discussed.

Keywords : s-Orthogonal, s-Unitary Matrices, Similarity of Matrices, u-Orthogonal Simi-

larity of Matrices.

1 Introduction
Throughout this paper we use the following notation:

Notation 1.1. Let F be a field and let M,,(F) be the algebra of n x n matrices.
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Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined by AS = VATV

(A® = VA*V), where “V”is the fized disjoint permutation matriz with units in its secondary diagonal.
Definition 1.3. [5] Let A € M, (F)

(i). The matriz A is called s-normal, if AA® = A® A

(ii). The matriz A is called s-orthogonal, if AA® = ASA = 1. That is ATVA=V
(iii). The matriz A is called s-unitary, if AA® = APA=1. That is A VA=V

Definition 1.4. [5] Let A € M, (F) and B € M, (F). A is said to be s-orthogonally similar (respectively
s-unitarily) to B if there exists a s-orthogonal matriz Q € M., (F) such that A = Q*BQ(A = Q®BQ)

2 s-unitary Similarity of a Complex Matrices

Theorem 2.1. Suppose A to be normal, having distinct singular values and A = UBV®, with U, V
s-unitary and B a real upper bidiagonal matriz. Then the s-unitary similarity transformation U® AU

results in a normal complex symmetric matrix.

Proof. Assume that the factorization B = U® AV, satisfying the constraints above, is known for algo-
rithms computing this factorization). The s-unitary matrices U and V can be combinations of either

Householder or Given transformations or of both, but are constructed such that the matrix B is real.

We will prove now that the s-unitary similar matrix Ay = U® AU is normal complex symmetric. Only
the complex symmetry A7, = Ay needs a formal proof, since normality is preserved under similarity. The

following relations hold for Ay A9 :
Ay AY = (UPAU)(U® APU) = UPAA®PU = (UPAV)(VO A®U) = BB°. (2.1)

The matrix B is real bidiagonal, implying that BB® is real, symmetric and tridiagonal. Hence we have
BB® = BB®. This gives us for Equation (2.1)

Ay AY = BB® = BB® = Ay A3, (2.2)

Assume that we have the following eigenvalue decomposition for Ay = QAQ®. Equation (2.2)) leads

us to the following two eigenvalue decompositions for the matrix product Ay A9:
QIAPQ® = Ay Af = Ay A} = QIAPQ°. (2.3)

Since all singular values of Ay are distinct (remember that for normal matrices, |A| =), the eigenvalue
decompositions in Equation are essentially unique and we obtain QD = Q, with D a unitary
diagonal matrix. This implies Ay = QAQ® = QAQ® = QA(QD)* = (QDY?)A(QD'?)*, indicating
that Af; = Ay and hence the matrix Ay is complex symmetric.

O
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Theorem 2.2. Let A be normal, having distinct singular values and A = UBV®, with U, V s-unitary
and B a bidiagonal matriz. We have that UP AU and VO AV will be self-adjoint with respect to s-unitary

diagonal matrices Qy and Qy respectively.

Proof. Construct two s-unitary diagonal matrices Dy and Dy such that the new bidiagonal matrix B
with DQ(U® AV)Dy = DEBDy = B is real. Let Ay = U®AU. Theorem states that DY Ay Dy is
complex symmetric. This together with the s-unitarity of Dy implies (D' = Dy)

Dy'AyDy = D§ Ay Dy = (Dg Ay Dy)* = Dy Ay Dy (24)

It remains to prove that there exists a 0y such that Ay is self-adjoint with respect to this matrix Q. Take
Qu = DEQ, which is s-unitary diagonal. We obtain (use Equation 1) and 1' A8 = Ql}lA‘fJQU =
D?]A;"’]DI}Q = Ay, proving thereby the selfadjointness. The proof for Ay proceeds identically. O

Corollary 2.3. Suppose A to be normal, having distinct singular values and A = UBV®, with U, V
s-unitary and B an upper bidiagonal matriz. Then there exist s-unitary diagonal matrices Dy and Dy
such that DE(U® AU)Dy and DS (VO AV)Dy are complex symmetric matrices.

Corollary 2.4. Under the conditions of Theorem one can obtain Ay and Ay of complex symmetric
form and hence self-adjoint for the standard scalar product. This means that the weight matriz Q) equals
the identity.

2.1 s-unitary Similarity of Matrix Families

Proposition 2.5. For any two n X n matrices A and B, the following assertions are equivalent:
(1). A and B are s-unitarily similar,

(2). the families {A, A®} and {B, B®} are unitarily similar,

(3). the familes {A, A®} and {B, B®} are similar.

Proof. The implications (1) = (2) and (2) = (3) are obvious. Let us show that (3) implies (1). Let P be

a nonsingular matrix such that
P 'AP=B, P 'A°P=pRB° (2.5)

Then
UPAU =B (2.6)

where U is the s-unitary factor in the polar decomposition P = SU. Indeed, equalities (1) imply that
PP®A = APP®.

Since the Hermitian factor S, which is a square root of PP®, can be represented as a polynomial in PP®,
it follows from the relation above that SA = AS. This yields the desired result

B=P AP =U®S 'ASU = UP AU.
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Proposition 2.6. If two families of normal matrices are similar, then they are s-unitarily similar.
Corollary 2.7. If two families of s-normal matrices are similar, then they are s-unitarily similar.
Proposition 2.8. For any matrices A and B, the following assertions are equivalent:

(1). A and B are s-unitarily similar,

(2). the pair {Hy, Ha} and {G1,G2} composed of the Hermitian components of A and B, respectively,

are s-unitarily similar,
(3). the pairs composed of the Hermitian components of A and B are similar.

Proof. The validity of implication (3) = (2) follows from Proposition because Hermitian matrices
are normal. The fact that (2) implies (1) and (1) implies (3), follows from the definition of Hermitian

Components. O

Theorem 2.9. Completely reducible families o and 8 are similar if and only if
tr a(w) =tr fw) VYwe((X). (2.7)

Proof. The proof is obtained by applying the following well-known Theorem from [I] to representation
of monoid (X) if for two completely reducible representations of a semigroup, the trace of both matrices

corresponding to an arbitrary element are the same, then these representations are similar. O

Theorem 2.10 (Specht[2]& [3]). Two complex matrices A and B are s-unitary similar if and only if the
families

{a(z1) = A, a(xs) = AP} and  {B(z1) = B, B(x2) = B®} (2.8)

satisfy the condition

tr a(w) =tr f(w) VYVwe {z1,22}). (2.9)
Theorem 2.11. Two complex matrices A and B are s-unitarily similar if and only if the families
{a(z1) = Hi,a(ze) = Ha} and {B(x1) = G1, B(x2) = G2} (2.10)
composed of the Hermitian components of these matrices satisfy condition (@)

Proposition 2.12. A family o : X — M,,(C) is completely reducible if and only if it is similar sum of

irreducible families.

Proposition 2.13. A family o : X — M, (C) is a normal family, then the space C"™ can be decomposed

into an orthogonal sum of a—invarient subspaces that do not contain nontrivial a—invarient subspaces.

Proposition 2.14. Assume that two normal families o : X — M, (C) and 5 : X — M,(C) are similar.

Then a and B are s-unitarily similar if and only if a + B is a normal family.
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Proof. Let U be a s-unitary matrix transforming o into 8 and f a polynomial such that a®(z) = a(f).
Then

B (z) = U®a®(x)U
— U®a(f)U
= B(f)

Hence
(a+8)°(@) = (a+ B)(f)- (2.11)

Since z € X is arbitrary, this proves the normality of the family o + 3.

Now, we assume that « + § is a normal family, that is for each z € X, there exists f € C[X] with

property . Since
(@+B)(f)=alf)®B(f), (a+p)®@)=a@)® @),

it follows from that
a®(x) =alf),  B%x)=B(f) (2.12)

Let P transform « into 3:
P la(z)P = B(x), r e X.

Taking into account equalities (2.12)), we can write
P~a®(z)P = P~ a(f)P = B(f) = °(=).

Thus, the matrices a(x) and B(x) obey relations (2.5)). Proceeding as in the proof of Proposition we
conclude that the s-unitary factor in the polar decomposition of P can be taken as a matrix transforming
ain f. O

Corollary 2.15. Assume that two s-normal families o : X — M, (C) and B : X — M,(C) are similar.

Then o and B are s-unitarily similar if and only if « + B is a s-normal family.

Proposition 2.16. If a + ... + a5 is a normal family, then any partial sum o, + ...+ a;,,1 <ip < ... <

iy < 8, also is a normal family.

Corollary 2.17. If ay + ... + as is a s-normal family, then any partial sum o, + ... + oy, 1 < < ... <

iy < 8, also is a s-normal family.

Theorem 2.18. Let o; : X — M,,,(C), i =1,...,1, be irreducible pairwise dissimilar families. Then, for

arbitrary matrices C1, ..., Cy of orders ny, ..., n;, respectively, there exists a polynomial h € C[X] such that
(a1 +...+a)h)=C1@...aC.

Proposition 2.19. A family « is normal if and only if it is similar to a sum of irreducible families in

which similar summands are s-unitarily similar.
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Corollary 2.20. A family « is s-normal if and only if it is similar to a sum of irreducible families in

which similar summands are s-unitarily similar.

Theorem 2.21. Normal familes o : X — M, (C) and 8 : X — M, (C) are s-unitarily similar if and only
if
tr a® (v)a(w) = tr B (v)B(w), Vv, w e (X). (2.13)

Before proving the theorem, we make the following observation. Since trace is a linear function, the
validity of equalities (2.13)) implies that these equalities remain true when the words v and w are replaced
by arbitrary polynomials f, g € C[X]. The function

(f.9) =tr a®(g)a(f)

defines a scalar product on the complex linear space C[X]. Thus, Theorem asserts that the matrix

families o and S are s-unitarily similar if they define the same scalar product on C[X].

Proof. The fact that conditions (2.13) are necessary for s-unitary similarity is trivial. Let us prove that
these conditions are sufficient. Conditions ([2.13)contain conditions (2.7) in the particular case v = e.
In view of Theorem and the fact, noted above, that normal families are completely reducible, these

conditions are ensure that « and 8 are similar.

To prove that o and 3 are s-unitarily similar, we first consider the case in which « is an irreducible
family. By Burnside’s Theorem, there exists words wq, ..., w,2 such that the matrices

a(wy), .y a(wy2)

are linearly independent. Denote by o’ (w;) the column vector of dimension n? whose first n components
from the first column in a(w;), the next n components from the second column, and so on. Consider the
matrix

G = [/ (wy), ..., (wy2)]

of order n2. It is obvious that G is a nonsingular matrix. By a direct calculation, one can verify that
GOna(w)G = [|tr o (w;)a(w)a(wy)|
for an arbitrary word w € (X). Here na(w) is the direct sum of n copies of a(w). Define
H = [B'(wy), .., B/ (wn2)]-
For an arbitrary word w € (X), condition imply the equality
GOna(w)G = Honp(w)H. (2.14)

In particular, when w = e, we have G®G = H®H. The last equality implies that H is a nonsingular
matrix, while U = GH ! is s-unitary. Then it follows from (2.14) that
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Thus, the families na and nS are s-unitarily similar moreover, they are normal by construction. Accord-
ing to Proposition [2.14] the family na 4 n also is normal. Then the family o+ 3 is normal as well. As
already said, equality (2.13) ensures that o and § are similar. Again applying Proposition [2.14} this time

to the families o and 3, we conclude that « is s-unitarily similar to 3.

Now, assume that o and 8 are arbitrary normal families of matrices. By Proposition [2.19] each family
can be transformed by a s-unitary similarity into a sum of irreducible families any two of which are either

dissimilar or s-unitary similar. Therefore, it suffices to gives a proof for the families
a=a1+..+as andB=p1+ ...+ B, (2.15)

which are exactly such sums.

As already noted, equality implies the similarity between o and 5. The proof of a theorem
in [I] concerning the role of the trace of a completely reducible representation shows that this similarity
can be described in more exact terms, namely, one necessarily has s = ¢ in expression , and there
exists a permutation o of the integers {1, ..., s} such that «; is similar to 3,,. It will be convenient to
assume that aq,...,aq, [ < s, is the complete list of pairwise dissimilar summands. This can be achieved
by a permutation of diagonal blocks, which is a similarity transformation performed by a permutation

matrix, that is s-unitary similarity transformation.

Further, assume that m;, 1 < <[, is he number of times that a summand similar to a; enters the
family «. Then equalities (2.13]) can be rewritten as

! !
Zlmi tr af (v)a;(w) = ;mi tr ﬁ?m (V)ag, (W), Yv,we (X). (2.16)

Note that, because of the linearity of the trace, equalities (2.16]) remain true if the words v and w are

replaced by arbitrary polynomials.

Fix an arbitrary ag, 1 < k <[, and a word w € (X). According to Theorem there exists a
polynomial h € C[X] such that
ag(h) = ag(w), (2.17)

a;(h)y=0 Vi#k. (2.18)
Let Pj be a matrix that transforms the family oy into 8,(x). In particular,
Prtag(h) Py = Bogy (), Pyt aw(w) Pe = Bogiy (w).
In view of , it follows that
Bo (k) (h) = Bor iy (w). (2.19)
Taking into account, we have

Boiy(h) = P lay(h)P; =0 Vi+#k. (2.20)

(2
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Replacing w in (2.16]) by a polynomial h, taking relations (2.17)—(2.20]) into account, and dividing both
sides by my, we arrive at the equality

tr af (v)ag(w) = tr ﬁ?(k)(v)ﬁg(k)(w).

Recall that no restrictions were placed on the words v and w. According to the first part of the proof,
the irreducible families ax and f,(x) are s-unitarily similar. Let Uy be a s-unitary matrix transforming

ag and By (), and let F be a permutation matrix such that
FO(Bi(z) & ... @ Bs(z))F = Bo1)(7) @ ... ® Bo(sy () VI € X,
It is easy to see that the s-unitary matrix
(U1 @...0U,)F°

transforms the family « into S. O

2.2 Finite Criteria for s-unitary Similarity

Specht’s theorem was refined by Pearcy [4l [3], who converted t into a finite criterion by showing that the
verification of equality can be limited to words of length at most 2n2. This proves the existence of a
finite complete system of s-unitary invariants. We show that Theorem [2:2]] can also be transformed into
a finite criterion. Denote by X* the set composed of words of length at most k and by & the number of
such words. Define

dj, = dim span{a(p), p € X*}.

It is obvious that

1=dy<d <..
Moreover, if
l=dy<dy <..<d=dj1, (2.21)
then
dl = dl+1 = ... and dim A = dl. (222)

The least number 1 such that d; = d; 1 will be called the length of the family «.

It will be convenient to assume that the set (X) is indexed ((X) = {po,p1,..-}) so that a shorter
word has a smaller index than a longer one. In particular, pg = e. For the system of vectors a(po),

a(p1),...,a(pg_;), we form the new Gram matrix
G, = |ltr a®(pi)a(p;)|-
It rank is equal to the maximum number of linearly independent vectors in the system; hence we have
rank Gy = d;..

This equality implies
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Proposition 2.22. The length o : X — M, (C) is equal to the least number | with the property that
rank Gy = rank Giy1.

Proposition 2.23. The functional tr o® (v)a(w) is defined for arbitrary v,w € (X), if one knows its

values on words v € X', w € X' where 1 is the length of the family a.

Proof. Write the matrix Gy as
Gy =HPH,, where Hy=I[a'(po),...,a/ (pr_,)]-
Define an auxiliary matrix family & : X — Mj(C) from the equations
no(z)H, = Hig(z), =€ X. (2.23)

Since

na(z)H, = [o/(z),d (zp1)...d (zp;_y)], =€ X,

and in view of properties (2.21)) and (2.22)) of the number 1, Equation (2.23) are indeed salvable. The
multiplication of (2.23) by H, l@ yields the system

HPno(z)H, = Gja(z), =€ X. (2.24)
Systems and are equivalent, because the first system is solvable [?]. Since
HP na(x)H; = |[tr o (p;)a(zp;)|,
we can assert that the family & is completely determined by the numbers
tr a®(W)a(w), ve X', we X,

where 1 is the length of «.

It is clear that equalities (2.23) remain true if x is replaced by an arbitrary word w. Multiplying the

equalities
na(w)H, = Hia(w) HPna®(v) = a®(v)HP,
we obtain
HPna® (v)na(w)H, = a° (v)HP Hié(w),
or

1t a® (vpi)a(wp; )| = &° (v)Gré(w). (2.25)

Note that the entry (1, 1) of the matrix in (2.25) is equal to tr a® (v)a(w).

Thus, given the matrix G; and the matrix family & are determined by the values indicated in the

formulation of Proposition [2.23 O
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Now, it is easy to prove a finite criterion for the s-unitary similarity between the normal matrix

families.

Theorem 2.24. Let o : X — M,,C be a normal family of length I. It is s-unitarily similar to the families
6:X — M,C if
tr a®(W)a(w) = tr B2 (v)B(w) Vo,w e X+ (2.26)

Proof. Equalities (2.26)) ensure that o and 8 have the same new Gram matrix, that is
Gi(a) = Gg(B) k=1,...,[,1+1.

Hence by Proposition [2.22] the length of the family o and § is equal to I. Now applying Proposition [2:23]
we conclude that equalities (2.26]) are fulfilled for all v,w € (X). Then, by Theorem a and (8 are

s-unitarily similar. O
Corollary 2.25. For matrices A and B to be s-unitarily similar, it suffices that
tr a(w) = tr flw) VYw e X2,

where 1 is the length of the family «.
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