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Abstract : In this work a new s-unitary similarity transformation of a normal matrix to complex
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where discussed.

Keywords : s-Orthogonal, s-Unitary Matrices, Similarity of Matrices, u-Orthogonal Simi-

larity of Matrices.

1 Introduction

Throughout this paper we use the following notation:

Notation 1.1. Let F be a field and let Mn(F ) be the algebra of n× n matrices.
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Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined by As = V ATV

(AΘ = V A∗V ), where “V”is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.3. [5] Let A ∈Mn(F )

(i). The matrix A is called s-normal, if AAΘ = AΘA

(ii). The matrix A is called s-orthogonal, if AAs = AsA = I. That is ATV A = V

(iii). The matrix A is called s-unitary, if AAΘ = AΘA = I. That is A∗V A = V

Definition 1.4. [5] Let A ∈Mn(F ) and B ∈Mn(F ). A is said to be s-orthogonally similar (respectively

s-unitarily) to B if there exists a s-orthogonal matrix Q ∈Mn(F ) such that A = QsBQ(A = QΘBQ)

2 s-unitary Similarity of a Complex Matrices

Theorem 2.1. Suppose A to be normal, having distinct singular values and A = UBV Θ, with U, V

s-unitary and B a real upper bidiagonal matrix. Then the s-unitary similarity transformation UΘAU

results in a normal complex symmetric matrix.

Proof. Assume that the factorization B = UΘAV , satisfying the constraints above, is known for algo-

rithms computing this factorization). The s-unitary matrices U and V can be combinations of either

Householder or Given transformations or of both, but are constructed such that the matrix B is real.

We will prove now that the s-unitary similar matrix AU = UΘAU is normal complex symmetric. Only

the complex symmetry AsU = AU needs a formal proof, since normality is preserved under similarity. The

following relations hold for AUA
Θ
U :

AUA
Θ
U = (UΘAU)(UΘAΘU) = UΘAAΘU = (UΘAV )(V ΘAΘU) = BBΘ. (2.1)

The matrix B is real bidiagonal, implying that BBΘ is real, symmetric and tridiagonal. Hence we have

BBΘ = BBΘ. This gives us for Equation (2.1)

AUA
Θ
U = BBΘ = ¯BBΘ = ĀUA

s
U (2.2)

Assume that we have the following eigenvalue decomposition for AU = Q∆QΘ. Equation (2.2) leads

us to the following two eigenvalue decompositions for the matrix product AUA
Θ
U :

Q|∆|2QΘ = AUA
Θ
U = ĀUA

s
U = Q̄|∆|2Qs. (2.3)

Since all singular values of AU are distinct (remember that for normal matrices, |∆| = ), the eigenvalue

decompositions in Equation (2.3) are essentially unique and we obtain QD = Q̄, with D a unitary

diagonal matrix. This implies AU = Q∆QΘ = Q∆Q̄s = Q∆(QD)s = (QD1/2)∆(QD1/2)s, indicating

that AsU = AU and hence the matrix AU is complex symmetric.
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Theorem 2.2. Let A be normal, having distinct singular values and A = UBV Θ, with U, V s-unitary

and B a bidiagonal matrix. We have that UΘAU and V ΘAV will be self-adjoint with respect to s-unitary

diagonal matrices ΩU and ΩV respectively.

Proof. Construct two s-unitary diagonal matrices DU and DV such that the new bidiagonal matrix B̂

with DΘ
U (UΘAV )DV = DΘ

UBDV = B̂ is real. Let AU = UΘAU . Theorem 2.1 states that DΘ
UAUDU is

complex symmetric. This together with the s-unitarity of DU implies (D−1
U = D̄U )

D−1
U AUDU = DΘ

UAUDU = (DΘ
UAUDU )s = DUA

s
UD
−1
U . (2.4)

It remains to prove that there exists a ΩU such that AU is self-adjoint with respect to this matrix ΩU . Take

ΩU = D−2
U , which is s-unitary diagonal. We obtain (use Equation (2.3) and (2.4)) AΘ

U = Ω−1
U AsUΩU =

D2
UA

s
UD
−2
U = AU , proving thereby the selfadjointness. The proof for AV proceeds identically.

Corollary 2.3. Suppose A to be normal, having distinct singular values and A = UBV Θ, with U, V

s-unitary and B an upper bidiagonal matrix. Then there exist s-unitary diagonal matrices DU and DV

such that DΘ
U (UΘAU)DU and DΘ

V (V ΘAV )DV are complex symmetric matrices.

Corollary 2.4. Under the conditions of Theorem 2.1 one can obtain AU and AV of complex symmetric

form and hence self-adjoint for the standard scalar product. This means that the weight matrix Ω equals

the identity.

2.1 s-unitary Similarity of Matrix Families

Proposition 2.5. For any two n× n matrices A and B, the following assertions are equivalent:

(1). A and B are s-unitarily similar,

(2). the families {A,AΘ} and {B,BΘ} are unitarily similar,

(3). the familes {A,AΘ} and {B,BΘ} are similar.

Proof. The implications (1)⇒ (2) and (2)⇒ (3) are obvious. Let us show that (3) implies (1). Let P be

a nonsingular matrix such that

P−1AP = B, P−1AΘP = BΘ (2.5)

Then

UΘAU = B (2.6)

where U is the s-unitary factor in the polar decomposition P = SU . Indeed, equalities (1) imply that

PPΘA = APPΘ.

Since the Hermitian factor S, which is a square root of PPΘ, can be represented as a polynomial in PPΘ,

it follows from the relation above that SA = AS. This yields the desired result

B = P−1AP = UΘS−1ASU = UΘAU.
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Proposition 2.6. If two families of normal matrices are similar, then they are s-unitarily similar.

Corollary 2.7. If two families of s-normal matrices are similar, then they are s-unitarily similar.

Proposition 2.8. For any matrices A and B, the following assertions are equivalent:

(1). A and B are s-unitarily similar,

(2). the pair {H1, H2} and {G1, G2} composed of the Hermitian components of A and B, respectively,

are s-unitarily similar,

(3). the pairs composed of the Hermitian components of A and B are similar.

Proof. The validity of implication (3) ⇒ (2) follows from Proposition 2.6, because Hermitian matrices

are normal. The fact that (2) implies (1) and (1) implies (3), follows from the definition of Hermitian

Components.

Theorem 2.9. Completely reducible families α and β are similar if and only if

tr α(ω) = tr β(ω) ∀ ω ∈ 〈X〉. (2.7)

Proof. The proof is obtained by applying the following well-known Theorem from [1] to representation

of monoid 〈X〉 if for two completely reducible representations of a semigroup, the trace of both matrices

corresponding to an arbitrary element are the same, then these representations are similar.

Theorem 2.10 (Specht[2]& [3]). Two complex matrices A and B are s-unitary similar if and only if the

families

{α(x1) = A,α(x2) = AΘ} and {β(x1) = B, β(x2) = BΘ} (2.8)

satisfy the condition

tr α(ω) = tr β(ω) ∀ ω ∈ 〈{x1, x2}〉. (2.9)

Theorem 2.11. Two complex matrices A and B are s-unitarily similar if and only if the families

{α(x1) = H1, α(x2) = H2} and {β(x1) = G1, β(x2) = G2} (2.10)

composed of the Hermitian components of these matrices satisfy condition (2.9).

Proposition 2.12. A family α : X → Mn(C) is completely reducible if and only if it is similar sum of

irreducible families.

Proposition 2.13. A family α : X →Mn(C) is a normal family, then the space Cn can be decomposed

into an orthogonal sum of α−invarient subspaces that do not contain nontrivial α−invarient subspaces.

Proposition 2.14. Assume that two normal families α : X →Mn(C) and β : X →Mn(C) are similar.

Then α and β are s-unitarily similar if and only if α+ β is a normal family.
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Proof. Let U be a s-unitary matrix transforming α into β and f a polynomial such that αΘ(x) = α(f).

Then

βΘ(x) = UΘαΘ(x)U

= UΘα(f)U

= β(f).

Hence

(α+ β)Θ(x) = (α+ β)(f). (2.11)

Since x ∈ X is arbitrary, this proves the normality of the family α+ β.

Now, we assume that α + β is a normal family, that is for each x ∈ X, there exists f ∈ C[X] with

property (2.11). Since

(α+ β)(f) = α(f)⊕ β(f), (α+ β)Θ(x) = αΘ(x)⊕ βΘ(x),

it follows from (2.11)that

αΘ(x) = α(f), βΘ(x) = β(f). (2.12)

Let P transform α into β:

P−1α(x)P = β(x), x ∈ X.

Taking into account equalities (2.12), we can write

P−1αΘ(x)P = P−1α(f)P = β(f) = βΘ(x).

Thus, the matrices α(x) and β(x) obey relations (2.5). Proceeding as in the proof of Proposition 2.5, we

conclude that the s-unitary factor in the polar decomposition of P can be taken as a matrix transforming

α in β.

Corollary 2.15. Assume that two s-normal families α : X → Mn(C) and β : X → Mn(C) are similar.

Then α and β are s-unitarily similar if and only if α+ β is a s-normal family.

Proposition 2.16. If α1 + ...+αs is a normal family, then any partial sum αi1 + ...+αit ,1 ≤ i1 < ... <

it ≤ s, also is a normal family.

Corollary 2.17. If α1 + ...+ αs is a s-normal family, then any partial sum αi1 + ...+ αit ,1 ≤ i1 < ... <

it ≤ s, also is a s-normal family.

Theorem 2.18. Let αi : X →Mni
(C), i = 1, ..., l, be irreducible pairwise dissimilar families. Then, for

arbitrary matrices C1, ..., Cl of orders n1, ..., nl, respectively, there exists a polynomial h ∈ C[X] such that

(α1 + ...+ αl)(h) = C1 ⊕ ...⊕ Cl.

Proposition 2.19. A family α is normal if and only if it is similar to a sum of irreducible families in

which similar summands are s-unitarily similar.
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Corollary 2.20. A family α is s-normal if and only if it is similar to a sum of irreducible families in

which similar summands are s-unitarily similar.

Theorem 2.21. Normal familes α : X →Mn(C) and β : X →Mn(C) are s-unitarily similar if and only

if

tr αΘ(v)α(w) = tr βΘ(v)β(w), ∀ v, w ∈ 〈X〉. (2.13)

Before proving the theorem, we make the following observation. Since trace is a linear function, the

validity of equalities (2.13) implies that these equalities remain true when the words v and w are replaced

by arbitrary polynomials f, g ∈ C[X]. The function

(f, g) = tr αΘ(g)α(f)

defines a scalar product on the complex linear space C[X]. Thus, Theorem 2.21 asserts that the matrix

families α and β are s-unitarily similar if they define the same scalar product on C[X].

Proof. The fact that conditions (2.13) are necessary for s-unitary similarity is trivial. Let us prove that

these conditions are sufficient. Conditions (2.13)contain conditions (2.7) in the particular case v = e.

In view of Theorem 2.9 and the fact, noted above, that normal families are completely reducible, these

conditions are ensure that α and β are similar.

To prove that α and β are s-unitarily similar, we first consider the case in which α is an irreducible

family. By Burnside’s Theorem, there exists words w1, ..., wn2 such that the matrices

α(w1), ..., α(wn2)

are linearly independent. Denote by α′(wi) the column vector of dimension n2 whose first n components

from the first column in α(wi), the next n components from the second column, and so on. Consider the

matrix

G = [α′(w1), ..., α′(wn2)]

of order n2. It is obvious that G is a nonsingular matrix. By a direct calculation, one can verify that

GΘnα(w)G = ‖tr αΘ(wi)α(w)α(wj)‖

for an arbitrary word w ∈ 〈X〉. Here nα(w) is the direct sum of n copies of α(w). Define

H = [β′(w1), ..., β′(wn2)].

For an arbitrary word w ∈ 〈X〉, condition (2.13)imply the equality

GΘnα(w)G = HΘnβ(w)H. (2.14)

In particular, when w = e, we have GΘG = HΘH. The last equality implies that H is a nonsingular

matrix, while U = GH−1 is s-unitary. Then it follows from (2.14) that

UΘnα(w)U = nβ(w).
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Thus, the families nα and nβ are s-unitarily similar moreover, they are normal by construction. Accord-

ing to Proposition 2.14, the family nα+ nβ also is normal. Then the family α+ β is normal as well. As

already said, equality (2.13) ensures that α and β are similar. Again applying Proposition 2.14, this time

to the families α and β, we conclude that α is s-unitarily similar to β.

Now, assume that α and β are arbitrary normal families of matrices. By Proposition 2.19, each family

can be transformed by a s-unitary similarity into a sum of irreducible families any two of which are either

dissimilar or s-unitary similar. Therefore, it suffices to gives a proof for the families

α = α1 + ...+ αs andβ = β1 + ...+ βt, (2.15)

which are exactly such sums.

As already noted, equality (2.13) implies the similarity between α and β. The proof of a theorem

in [1] concerning the role of the trace of a completely reducible representation shows that this similarity

can be described in more exact terms, namely, one necessarily has s = t in expression (2.15), and there

exists a permutation σ of the integers {1, ..., s} such that αi is similar to βσi
. It will be convenient to

assume that α1, ..., αl, l ≤ s, is the complete list of pairwise dissimilar summands. This can be achieved

by a permutation of diagonal blocks, which is a similarity transformation performed by a permutation

matrix, that is s-unitary similarity transformation.

Further, assume that mi, 1 ≤ i ≤ l, is he number of times that a summand similar to αi enters the

family α. Then equalities (2.13) can be rewritten as

l∑
i=1

mi tr α
Θ
i (v)αi(w) =

l∑
i=1

mi tr β
Θ
σ(i)

(v)ασ(i)
(w), ∀ v, w ∈ 〈X〉. (2.16)

Note that, because of the linearity of the trace, equalities (2.16) remain true if the words v and w are

replaced by arbitrary polynomials.

Fix an arbitrary αk, 1 ≤ k ≤ l, and a word w ∈ 〈X〉. According to Theorem 2.18, there exists a

polynomial h ∈ C[X] such that

αk(h) = αk(w), (2.17)

αi(h) = 0 ∀ i 6= k. (2.18)

Let Pk be a matrix that transforms the family αk into βσ(k). In particular,

P−1
k αk(h)Pk = βσ(k)(h), P−1

k αk(w)Pk = βσ(k)(w).

In view of (2.17), it follows that

βσ(k)(h) = βσ(k)(w). (2.19)

Taking (2.18) into account, we have

βσ(i)(h) = P−1
i αi(h)Pi = 0 ∀ i 6= k. (2.20)
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Replacing w in (2.16) by a polynomial h, taking relations (2.17)–(2.20) into account, and dividing both

sides by mk, we arrive at the equality

tr αΘ
k (v)αk(w) = tr βΘ

σ(k)(v)βσ(k)(w).

Recall that no restrictions were placed on the words v and w. According to the first part of the proof,

the irreducible families αk and βσ(k) are s-unitarily similar. Let Uk be a s-unitary matrix transforming

αk and βσ(k), and let F be a permutation matrix such that

FΘ(β1(x)⊕ ...⊕ βs(x))F = βσ(1)(x)⊕ ...⊕ βσ(s)(x) ∀x ∈ X.

It is easy to see that the s-unitary matrix

(U1 ⊕ ...⊕ Us)FΘ

transforms the family α into β.

2.2 Finite Criteria for s-unitary Similarity

Specht’s theorem was refined by Pearcy [4, 3], who converted t into a finite criterion by showing that the

verification of equality (2.9) can be limited to words of length at most 2n2. This proves the existence of a

finite complete system of s-unitary invariants. We show that Theorem 2.21 can also be transformed into

a finite criterion. Denote by Xk the set composed of words of length at most k and by k̄ the number of

such words. Define

dk = dim span{α(p), p ∈ Xk}.

It is obvious that

1 = d0 ≤ d1 ≤ ...

Moreover, if

1 = d0 < d1 < ... < dl = dl+1, (2.21)

then

dl = dl+1 = ... and dimA = dl. (2.22)

The least number l such that dl = dl+1 will be called the length of the family α.

It will be convenient to assume that the set 〈X〉 is indexed (〈X〉 = {p0, p1, ...}) so that a shorter

word has a smaller index than a longer one. In particular, p0 = e. For the system of vectors α(p0),

α(p1), ..., α(pk̄−1), we form the new Gram matrix

Gk = ‖tr αΘ(pi)α(pj)‖.

It rank is equal to the maximum number of linearly independent vectors in the system; hence we have

rank Gk = dk.

This equality implies
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Proposition 2.22. The length α : X →Mn(C) is equal to the least number l with the property that

rank Gl = rank Gl+1.

Proposition 2.23. The functional tr αΘ(v)α(w) is defined for arbitrary v, w ∈ 〈X〉, if one knows its

values on words v ∈ X l, w ∈ X l+1, where l is the length of the family α.

Proof. Write the matrix Gk as

Gk = HΘ
k Hk, where Hk = [α′(p0), ..., α′(pk̄−1)].

Define an auxiliary matrix family α̂ : X →Ml̄(C) from the equations

nα(x)Hl = Hlα̂(x), x ∈ X. (2.23)

Since

nα(x)Hl = [α′(x), α′(xp1)...α′(xpl̄−1)], x ∈ X,

and in view of properties (2.21) and (2.22) of the number l, Equation (2.23) are indeed salvable. The

multiplication of (2.23) by HΘ
l yields the system

HΘ
l nα(x)Hl = Glα̂(x), x ∈ X. (2.24)

Systems (2.23) and (2.24) are equivalent, because the first system is solvable [?]. Since

HΘ
l nα(x)Hl = ‖tr αΘ(pi)α(xpj)‖,

we can assert that the family α̂ is completely determined by the numbers

tr αΘ(v)α(w), v ∈ X l, w ∈ X l+1,

where l is the length of α.

It is clear that equalities (2.23) remain true if x is replaced by an arbitrary word w. Multiplying the

equalities

nα(w)Hl = Hlα̂(w) HΘ
l nα

Θ(v) = α̂Θ(v)HΘ
l ,

we obtain

HΘ
l nα

Θ(v)nα(w)Hl = α̂Θ(v)HΘ
l Hlα̂(w),

or

‖tr αΘ(vpi)α(wpj)‖ = α̂Θ(v)Glα̂(w). (2.25)

Note that the entry (1, 1) of the matrix in (2.25) is equal to tr αΘ(v)α(w).

Thus, given the matrix Gl and the matrix family α̂ are determined by the values indicated in the

formulation of Proposition 2.23.
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Now, it is easy to prove a finite criterion for the s-unitary similarity between the normal matrix

families.

Theorem 2.24. Let α : X →MnC be a normal family of length l. It is s-unitarily similar to the families

β : X →MnC if

tr αΘ(v)α(w) = tr βΘ(v)β(w) ∀v, w ∈ X l+1. (2.26)

Proof. Equalities (2.26) ensure that α and β have the same new Gram matrix, that is

Gk(α) = Gk(β) k = 1, ..., l, l + 1.

Hence by Proposition 2.22 the length of the family α and β is equal to l. Now applying Proposition 2.23,

we conclude that equalities (2.26) are fulfilled for all v, w ∈ 〈X〉. Then, by Theorem 2.21, α and β are

s-unitarily similar.

Corollary 2.25. For matrices A and B to be s-unitarily similar, it suffices that

tr α(w) = tr β(w) ∀w ∈ X2l+2,

where l is the length of the family α.
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