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1 Introduction, Definitions and Notations

Let

P (z) = a0 + a1z + a2z
2 + a3z

3 + ........+ an−1z
n−1 + anz

n; |an| 6= 0

be a polynomial of degree n. Datt and Govil [2]; Govil and Rahaman [4]; Marden[8]; Mohammad[9];

Chattopadhyay, Das, Jain and Konwer[1]; Joyal, Labelle and Rahaman[5]; Jain [6, 7]; Sun and Hsieh[12];

Zilovic, Roytman, Combettes and Swamy [14]; Das and Datta[3] etc. worked in the theory of the distri-

bution of the zeros of polynomials and obtained some newly developed results.
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In this paper we intend to establish some sharper results concerning the theory of distribution of zeros

of entire functions on the basis of slowly changing functions.

The following definitions are well known :

Definition 1.1. The order ρ and lower order λ of an entire function f are defined as

ρ = lim sup
r→∞

log[2]M(r, f)

log r
and λ = lim inf

r→∞

log[2]M(r, f)

log r
,

where log[k] x = log(log[k−1] x) for k = 1, 2, 3, ... and log[0] x = x.

Let L ≡ L (r) be a positive continuous function increasing slowly i.e., L (ar) ∼ L (r) as r −→ ∞ for

every positive constant a. Singh and Barker[10] defined it in the following way:

Definition 1.2. [10] A positive continuous function L(r) is called a slowly changing function if for ε

(> 0),

1

kε
≤ L (kr)

L (r)
≤ kε for r > r (ε) and

uniformly for k(≥ 1).

If further, L(r) is differentiable, the above condition is equivalent to

lim
r→∞

rL
′
(r)

L(r)
= 0.

Somasundaram and Thamizharasi [11] introduced the notions of L-order and L-lower order for entire

functions defined in the open complex plane C as follows:

Definition 1.3. [11] The L-order ρL and the L-lower order λL of an entire function f are defined as

ρL = lim sup
r→∞

log[2]M(r, f)

log[rL(r)]
and λL = lim inf

r→∞

log[2]M(r, f)

log[rL(r)]
.

The more generalised concept for L-order and L-lower order are L∗-order and L∗-lower order respec-

tively. Their definitions are as follows:

Definition 1.4. The L∗-order ρL
∗

and the L∗-lower order λL
∗

of an entire function f are defined as

ρL
∗

= lim sup
r→∞

log[2]M(r, f)

log[reL(r)]
and λL

∗
= lim inf

r→∞

log[2]M(r, f)

log[reL(r)]
.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
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Lemma 2.1. If f (z) is an entire function of L-order ρL, then for every ε > 0 the inequality

N (r) ≤ [rL(r)]ρ
L+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z| ≤ [rL(r)].

Proof. Let us suppose that f (0) = 1. This supposition can be made without loss of generality because if

f (z) has a zero of order ′m′ at the origin then we may consider g (z) = c · f(z)zm where c is so chosen that

g (0) = 1. Since the function g (z) and f (z) have the same order therefore it will be unimportant for our

investigations that the number of zeros of g (z) and f (z) differ by m.

We further assume that f (z) has no zeros on |z| = 2[rL(r)] and the zeros zi’s of f (z) in |z| < [rL(r)]

are in non decreasing order of their moduli so that |zi| ≤ |zi+1|. Also let ρL supposed to be finite.

Now we shall make use of Jenson’s formula as state below

log |f (0)| = −
n∑
i=1

log
R

|zi|
+

1

2π

2π∫
0

log
∣∣f (R eiφ

)∣∣ dφ. (2.1)

Let us replace R by 2r and n by N (2r) in (2.1)

∴ log |f (0)| = −
N(2r)∑
i=1

log
2r

|zi|
+

1

2π

2π∫
0

log
∣∣f (2r eiφ)∣∣ dφ.

Since f (0) = 1,∴ log |f (0)| = log 1 = 0.

∴
N(2r)∑
i=1

log
2r

|zi|
=

1

2π

2π∫
0

log
∣∣f (2r eiφ)∣∣ dφ. (2.2)

L.H.S. =

N(2r)∑
i=1

log
2r

|zi|
≥
N(r)∑
i=1

log
2r

|zi|
≥ N (r) log 2 (2.3)

because for large values of r,

log
2r

|zi|
≥ log 2.

R.H.S =
1

2π

2π∫
0

log
∣∣f (2r eiφ)∣∣ dφ

≤ 1

2π

2π∫
0

logM (2r) dφ = logM (2r) . (2.4)

Again by definition of order ρL of f (z) we have for every ε > 0 and as L (2r) ∼ L (r) ,

logM (2r) ≤ (2rL(2r))
ρL+ε/2

i.e., logM(2r) ≤ (2rL(r))ρ
L+ε/2

. (2.5)
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Hence from (2.2) by the help of (2.3) , (2.4) and (2.5) we have

N (r) log 2 ≤ (2rL(r))
ρL+ε/2

N (r) ≤ 2ρ
L+ε/2

log 2
· (rL(r))

ρL+ε

(rL(r))ε/2
≤ (rL(r))

ρL+ε
.

This proves the lemma.

In the line of Lemma 2.1, we may state the following lemma:

Lemma 2.2. If f (z) is an entire function of L∗ -order ρL
∗
, then for every ε > 0 the inequality

N (r) ≤ [reL(r)]ρ
L∗+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z| ≤ [reL(r)].

Proof. With the initial assumptions as laid down in Lemma 1, let us suppose that f (z) has no zeros on

|z| = 2[reL(r)] and the zeros zi’s of f (z) in |z| < [reL(r)] are in non decreasing order of their moduli so

that |zi| ≤ |zi+1|. Also let ρL
∗

supposed to be finite.

In view of (2.1),(2.2),(2.3) and (2.4), by definition of ρL
∗

and as L (2r) ∼ L (r) , we get for every ε > 0

that

logM (2r) ≤ [2reL(2r)]ρ
L∗+ε/2

i.e., logM(2r) ≤ [2reL(r)]ρ
L∗+ε/2

. (2.6)

Hence by the help of (2.3) , (2.4) and (2.6) we obtain from (2.2) that

N (r) log 2 ≤ [2reL(r)]ρ
L∗+ε/2

N (r) ≤ 2ρ
L∗+ε/2

log 2
· [reL(r)]ρ

L∗+ε

[rL(r)]ε/2
≤ [reL(r)]ρ

L∗+ε.

Thus the lemma is established.

3 Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let P (z) be an entire function defined as

P (z) = a0 + a1z + ........+ anz
n + ........

with L-order ρL. Also for all sufficiently large r in the disc |z| ≤ [rL(r)], a0 6= 0 and aN(r) 6= 0. Also

an → 0 as n > N(r). Then all the zeros of P (z) lie in the ring shaped region

1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the positive roots of the equations

g(t) ≡
∣∣aN(r)

∣∣ tN(r) −
∣∣aN(r)−1

∣∣ tN(r)−1 − ........− |a0| = 0
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and

h(t) ≡ |a0| tN(r) − |a1| tN(r)−1 − ........−
∣∣aN(r)

∣∣ = 0

respectively in |z| ≤ [rL(r)] and N(r) denotes the number of zeros of P (z) in |z| ≤ [rL(r)] for sufficiently

large r.

Proof. Since P (z) is an entire function of L-order ρL, then from Lemma 2.1 we have for sufficiently large

r in the disc |z| ≤ [rL(r)],

N(r) ≤ (rL(r))ρ
L+ε for ε > 0.

Also a0 6= 0 and aN(r) 6= 0. Further an → 0 as n > N(r).

Hence we have

P (z) = a0 + a1z + ........+ anz
n + .......

≈ a0 + a1z + ........+ aN(r)z
N(r).

Therefore

|P (z)| ≈
∣∣∣a0 + a1z + ........+ aN(r)z

N(r)
∣∣∣

≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣aN(r)−1

∣∣ |z|N(r)−1
........− |a0| (3.1)

in the disc |z| ≤ [rL(r)] for sufficiently large r. In fact (3.1) can be deduced in the following way∣∣∣a0 + .....+ aN(r)−1z
N(r)−1

∣∣∣ ≤ |a0|+ .....+
∣∣aN(r)−1

∣∣ |z|N(r)−1

i.e., − |a0| .....−
∣∣aN(r)−1

∣∣ |z|N(r)−1 ≤ −
∣∣∣a0 + .....+ aN(r)−1z

N(r)−1
∣∣∣ .

Hence ∣∣∣aN(r)z
N(r) + aN(r)−1z

N(r)−1 + .....+ a0

∣∣∣
≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣∣aN(r)−1z

N(r)−1 + .....+ a0

∣∣∣
≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣aN(r)−1

∣∣ |z|N(r)−1 − .....− |a0| .

Now let us write

g(t) ≡
∣∣aN(r)

∣∣ tN(r) −
∣∣aN(r)−1

∣∣ tN(r)−1 − .....− |a0| . (3.2)

Since (3.2) has one change of sign, by Descartes’ rule of sign, the maximum number of positive root of

(3.2) is one. Moreover

g(0) = − |a0| < 0

and g(∞) is a positive quantity.

Clearly t > t0 implies g(t) > 0.

If not, let for some t1 > t0, g(t1) < 0.

Then g(t) = 0 has another positive root in (t1,∞) which gives a contradiction. Hence g(t) > 0 for t > t0.

Therefore |P (z)| > 0 for |z| > t0. So P (z) does not vanish in |z| > t0 and therefore all the zeros of P (z)

lie in |z| ≤ t0 where t0 is the positive root of

g(t) ≡
∣∣aN(r)

∣∣ tN(r) −
∣∣aN(r)−1

∣∣ tN(r)−1 − .....− |a0| = 0.
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Now we give the proof of the other part of the theorem.

Let us consider

Q(z) = zN(r)P

(
1

z

)
(3.3)

for sufficiently large r in the disc |z| ≤ [rL(r)]. Now

Q(z) = zN(r)P

(
1

z

)
≈ zN(r)

[
a0 +

a1
z

+ ......+ aN(r)
1

zN(r)

]
= a0z

N(r) + a1z
N(r)−1 + ......+ aN(r). (3.4)

Again we have ∣∣∣a1zN(r)−1 + .....+ aN(r)

∣∣∣ ≤ |a1| |z|N(r)−1
+ |a2| |z|N(r)−2

+ .....+
∣∣aN(r)

∣∣
i.e.,

− |a1| |z|N(r)−1 − .....−
∣∣aN(r)

∣∣ ≤ − ∣∣∣a1zN(r)−1 + .....+ aN(r)

∣∣∣ .
So we get that ∣∣∣a0zN(r) + .....+ aN(r)

∣∣∣ ≥ |a0| |z|N(r) −
∣∣∣a1zN(r)−1 + .....+ aN(r)

∣∣∣
≥ |a0| |z|N(r) − |a1| |z|N(r)−1 − .....−

∣∣aN(r)

∣∣ . (3.5)

Let us consider the equation

h(t) ≡ |a0| |t|N(r) − |a1| |t|N(r)−1 − .....−
∣∣aN(r)

∣∣ = 0. (3.6)

Since (3.6) has one change of sign, by Descartes’ rule of sign the maximum number of positive root of

(3.6) is one. Moreover

h(0) = −
∣∣aN(r)

∣∣ < 0

and h(∞) is a positive quantity. So h(t) has exactly one positive root.

Let t
′

0 be the positive root of h(t) = 0. Clearly for t > t
′

0 we get h(t) > 0.

If not, let t
′

1 > t
′

0. Then h(t
′

1) < 0. Hence h(t) = 0 has another positive root in (t
′

1,∞) which gives a

contradiction.

Therefore h(t) > 0 for t > t
′

0 and |Q(z)| > 0 for |z| > t
′

0.

So Q(z) does not vanish in |z| > t
′

0 and therefore all the zeros of Q(z) lie in |z| ≤ t
′

0. Let z = z0 be any

zero of P (z) = 0. Clearly z0 6= 0 as |a0| 6= 0.

Putting z = 1
z0

in Q(z) we get that

Q

(
1

z0

)
=

(
1

z0

)N(r)

.P (z0) =

(
1

z0

)N(r)

.0 = 0.

So 1
z0

is a zero of Q(z). Therefore
∣∣∣ 1
z0

∣∣∣ ≤ t′0 i.e, |z0| ≥ 1
t
′
0

. Since z0 is any arbitrary zero of P (z), all the

zeros of P (z) lie in |z| ≥ 1
t
′
0

.
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Hence all the zeros of P (z) lie in the ring shaped region

1

t
′
0

≤ |z| ≤ t0

where t0 and t
′

0 are the positive roots of

g(t) ≡
∣∣aN(r)

∣∣ tN(r) −
∣∣aN(r)−1

∣∣ tN(r)−1 − .....− |a0| = 0

and

h(t) ≡ |a0| tN(r) − |a1| tN(r)−1 − .....
∣∣aN(r)

∣∣ = 0

respectively for sufficiently large r in the disc |z| ≤ [rL(r)].

This proves the theorem.

In the line of Theorem 1, we may state the following theorem in view of Lemma 2 :

Theorem 3.2. Let P (z) be an entire function defined as

P (z) = a0 + a1z + ........+ anz
n + ........

with L∗−order ρL
∗
. Also for all sufficiently large r in the disc |z| ≤ [reL(r)], a0 6= 0 and aN(r) 6= 0. Also

an → 0 as n > N(r). Then all the zeros of P (z) lie in the ring shaped region

1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the positive roots of the equations

g(t) ≡
∣∣aN(r)

∣∣ tN(r) −
∣∣aN(r)−1

∣∣ tN(r)−1 − ........− |a0| = 0

and

h(t) ≡ |a0| tN(r) − |a1| tN(r)−1 − ........−
∣∣aN(r)

∣∣ = 0

respectively in |z| ≤ [reL(r)] and N(r) denotes the number of zeros of P (z) in |z| ≤ [reL(r)] for sufficiently

large r.

The proof is omitted.

Theorem 3.3. Let P (z) be an entire function defined by

P (z) = a0 + a1z + ....+ anz
n + ....

with L-order ρL. Also for all sufficiently large r in the disc |z| ≤ [rL(r)], aN(r) 6= 0 and a0 6= 0. Further

an → 0 as n > N(r).

Then all the zeros of P (z) lie in the ring shaped region

1

1 +M ′
< |z| < 1 +M

where M = max
0≤k≤N(r)−1

∣∣∣∣ ak
aN(r)

∣∣∣∣ and M ′ = max
0≤k≤N(r)−1

∣∣∣∣aka0
∣∣∣∣ .
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Proof. Since P (z) is an entire function of L-order ρL, then by Lemma 1 for sufficiently large values of r

in |z| ≤ [rL(r)] we have N(r) ≤ [rL(r)]ρ
L+ε for ε > 0. Also a0 6= 0, aN(r) 6= 0, and an → 0 as n > N(r).

Hence we may write

P (z) = a0 + a1z + ....+ anz
n + ....

≈ a0 + a1z + ....+ aN(r)z
N(r).

Now ∣∣∣a0 + a1z + ......+ aN(r)−1z
N(r)−1

∣∣∣
≤ |a0|+ ......+

∣∣aN(r)−1
∣∣ |z|N(r)−1

=
∣∣aN(r)

∣∣{ |a0|∣∣aN(r)

∣∣ + .....+

∣∣aN(r)−1
∣∣∣∣aN(r)

∣∣ |z|N(r)−1

}
i.e., ∣∣∣a0 + a1z + ....+ aN(r)−1z

N(r)−1
∣∣∣

≤
∣∣aN(r)

∣∣M (
|z|N(r)−1

+ |z|N(r)−2
+ ........+ 1

)
=
∣∣aN(r)

∣∣M |z|N(r)

{
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)

}

where |z| 6= 0. Therefore when |z| 6= 0,

−
∣∣∣a0 + a1z + ....+ aN(r)−1z

N(r)−1
∣∣∣

≥ −
∣∣aN(r)

∣∣M |z|N(r)

{
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)

}
.

So for |z| 6= 0 ∣∣aN(r)

∣∣ |z|N(r) −
∣∣∣a0 + a1z + ....+ aN(r)−1z

N(r)−1
∣∣∣

≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣aN(r)

∣∣ |z|N(r)
M

{
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)

}
. (3.7)

Now

|P (z)| ≈
∣∣∣a0 + a1z + ....+ aN(r)z

N(r)
∣∣∣

≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣∣a0 + a1z + ....+ aN(r)−1z

N(r)−1
∣∣∣ .

Using (3.7) we have

|P (z)| ≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣aN(r)

∣∣ |z|N(r)
M

{
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)

}

=
∣∣aN(r)

∣∣ |z|N(r)

{
1−M

(
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)

)}
for |z| 6= 0.
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i.e., when |z| 6= 0

|P (z)| >
∣∣aN(r)

∣∣ |z|N(r)

{
1−M

(
1

|z|
+

1

|z|2
+ .....+

1

|z|N(r)
+ ....

)}
.

Therefore

|P (z)| >
∣∣aN(r)

∣∣ |z|N(r)

1−M
∞∑
j=1

1

|z|j

 for |z| 6= 0.

Now the geometric series
∞∑
j=1

1
|z|j is convergent when 1

|z| < 1 i.e., when |z| > 1 and is equal to

1

|z|
1

1− 1
|z|

=
1

|z| − 1
.

On |z| > 1 we can write

|P (z)| >
∣∣aN(r)

∣∣ |z|N(r)

(
1− M

|z| − 1

)
.

Now on |z| > 1,

|P (z)| > 0 if
∣∣aN(r)

∣∣ |z|N(r)

(
1− M

|z| − 1

)
≥ 0

i.e, if 1− M

|z| − 1
≥ 0

i.e, if |z| − 1 ≥M

i.e, if |z| ≥M + 1.

Therefore

|z| ≥M + 1 > 1 as M > 0.

Hence

|P (z)| > 0 if |z| ≥M + 1.

Therefore all the zeros of P (z) lie in |z| < M + 1.

Secondly, we give the proof of the lower bound. Let us consider

Q(z) = zN(r)P

(
1

z

)
.

Therefore

Q(z) = |z|N(r)

{
a0 +

a1
|z|

+ ......+
aN(r)

|z|N(r)

}
= a0 |z|N(r)

+ a1 |z|N(r)−1
+ ......+ aN(r).
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Now ∣∣∣a1 |z|N(r)−1
+ ......+ aN(r)

∣∣∣ ≤ |a1| |z|N(r)−1
+ ......+

∣∣aN(r)

∣∣
= |a0|

(
|a1|
|a0|
|z|N(r)−1

+ ......+

∣∣aN(r)

∣∣
|a0|

)
≤ |a0|M ′

(
|z|N(r)−1

+ ......+ 1
)

= |a0|M ′ |z|N(r)

(
1

|z|
+ ......+

1

|z|N(r)

)
.

Therefore

−
∣∣∣a1 |z|N(r)−1

+ ......+ aN(r)

∣∣∣ ≥ − |a0|M ′ |z|N(r)

(
1

|z|
+ ......+

1

|z|N(r)

)
.

So

|Q(z)| ≥ |a0| |z|N(r) −
∣∣∣a1zN(r)−1 + ....+ aN(r)

∣∣∣
≥ |a0| |z|N(r) − |a0|M ′ |z|N(r)

(
1

|z|
+ ......+

1

|z|N(r)

)

= |a0| |z|N(r)

{
1−M ′

(
1

|z|
+ ......+

1

|z|N(r)

)}

> |a0| |z|N(r)

{
1−M ′

(
1

|z|
+ ......+

1

|z|N(r)
+ .....

)}
.

Hence using above we get that

|Q(z)| > |a0| |z|N(r)

1−M ′
∞∑
j=1

1

|z|j

 .

Now the geometric series
∞∑
j=1

1
|z|j is convergent when 1

|z| < 1 i.e., |z| > 1 and is equal to

1

|z|
1

1− 1
|z|

=
1

|z| − 1
.

On |z| > 1 we may write

|Q(z)| > |a0| |z|N(r)

(
1− M ′

|z| − 1

)
.

Now for |z| > 1,

|Q(z)| > 0 if |a0| |z|N(r)

(
1− M ′

|z| − 1

)
≥ 0

i.e., if 1− M ′

|z| − 1
≥ 0

i.e., if |z| ≥ 1 +M ′.

Therefore |z| ≥ 1+ M ′ > 1 as M ′ > 0.

Hence |Q(z)| > 0 for |z| ≥ 1+ M ′.
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So all the zeros of Q(z) lie in |z| < 1+ M ′.

Let z = z0 be any zero of P (z). Therefore P (z0) = 0. Clearly z0 6= 0 as |a0| 6= 0. Putting z = 1
z0

in |Q(z)|
we have ∣∣∣∣Q( 1

z0

)∣∣∣∣ =

(
1

z0

)n
.P (z0) =

(
1

z0

)n
.0 = 0

Therefore z = 1
z0

is a root of Q(z). So ∣∣∣∣ 1

z0

∣∣∣∣ < 1 +M ′,

which implies that

|z0| >
∣∣∣∣ 1

1 +M ′

∣∣∣∣ .
As z0 is an arbitrary root of P (z) = 0, all the zeros of P (z) lie in |z| >

∣∣∣ 1
1+M ′

∣∣∣ .
Hence all the zeros of P (z) lie in the ring shaped region

1

1 +M ′
< |z| < 1 +M.

This proves the theorem.

In the line of Theorem 3.3, we may state the following theorem in view of Lemma 2.2 :

Theorem 3.4. Let P (z) be an entire function defined by

P (z) = a0 + a1z + ....+ anz
n + ....

with L∗-order ρL
∗
. Also for all sufficiently large r in the disc |z| ≤ [reL(r)], aN(r) 6= 0 and a0 6= 0.

Further an → 0 as n > N(r).

Then all the zeros of P (z) lie in the ring shaped region

1

1 +M ′
< |z| < 1 +M

where M = max
0≤k≤N(r)−1

∣∣∣∣ ak
aN(r)

∣∣∣∣ and M ′ = max
0≤k≤N(r)−1

∣∣∣∣aka0
∣∣∣∣ .

The proof is omitted.

Theorem 3.5. Let P (z) be an entire function defined by

P (z) = a0 + a1z + a2z
2 + ....+ anz

n + ......

with L-order ρL. Also for sufficiently large r in the disc |z| ≤ [rL(r)], aN(r) 6= 0, a0 6= 0 and an → 0 as

n > N(r). For any p, q with p > 1, q > 1 and 1
p + 1

q = 1, all the zeros of P (z) lie in the annular region

11 +

(
N(r)−1∑
j=0

∣∣∣aN(r)−j

a0

∣∣∣p)
q
p

 1
q

< |z| <

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
p

q
p

.
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Proof. Given that a0 6= 0, aN(r) 6= 0 and an → 0 as n > N(r). Therefore for sufficiently large r in the

disc |z| ≤ [rL(r)] the existence of N(r) implies that

P (z) = a0 + a1z + a2z
2 + ....+ anz

n + .....

≈ a0 + a1z + a2z
2 + ....+ aN(r)z

N(r).

Now ∣∣∣a0 + a1z + a2z
2 + ......+ aN(r)−1z

N(r)−1
∣∣∣

≤ |a0|+ |a1| |z|+ ......
∣∣aN(r)−1

∣∣ |z|N(r)−1

=
∣∣aN(r)

∣∣{ |a0|∣∣aN(r)

∣∣ + ......+

∣∣aN(r)−1
∣∣∣∣aN(r)

∣∣ |z|N(r)−1

}

=
∣∣aN(r)

∣∣N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣ |z|j . (3.8)

Therefore using (3.8) we get that

|P (z)| ≈
∣∣∣a0 + a1z + a2z

2 + ....+ aN(r)z
N(r)

∣∣∣
≥

∣∣aN(r)

∣∣ |z|N(r) −
∣∣∣a0 + a1z + a2z

2 + ....+ aN(r)−1z
N(r)−1

∣∣∣
≥

∣∣aN(r)

∣∣ |z|N(r) −
∣∣aN(r)

∣∣N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣ |z|j
i.e., |P (z)| ≥

∣∣aN(r)

∣∣|z|N(r) −
N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣ |z|j
 .

By Holder’s inequality we have

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣ |z|j ≤
N(r)−1∑

j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q 1

q

. (3.9)

In view of (3.9) we obtain that

|P (z)| ≥
∣∣aN(r)

∣∣
|z|N(r) −

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q 1

q


=
∣∣aN(r)

∣∣
|z|N(r) − |z|N(r)

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p
N(r)−1∑

j=0

|z|jq

|z|N(r)q

 1
q


=
∣∣aN(r)

∣∣ |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
1

|z|q
)N(r)−j

 1
q


=
∣∣aN(r)

∣∣ |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p
N(r)∑
j=1

(
1

|z|q
)j 1

q

 .



IJ
M
AA

Deductions on Slowly Changing Functions Oriented Bounds for the Zeros of Entire Functions 35

Now the geometric series
N(r)∑
j=1

(
1
|z|q
)j

is convergent for

1

|z|q
< 1

i.e., for |z|q > 1

i.e., for |z| > 1

and is convergent to
1

|z|q
.

1

1− 1
|z|q

=
1

|z|q − 1
.

So N(r)∑
j=1

(
1

|z|q
)j 1

q

converges to

(
1

|z|q − 1

) 1
q

for |z| > 1.

Therefore on |z| > 1

|P (z)| >
∣∣aN(r)

∣∣ |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

 .

Now if |P (z)| > 0 then we have

∣∣aN(r)

∣∣ |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

 ≥ 0

i.e, 1−

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

≥ 0

i.e, (|z|q − 1)
1
q ≥

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
 1

p

i.e., |z|q − 1 ≥

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p

i.e., |z| ≥

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p


1
q

.

Clearly 1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p


1
q

> 1.
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Therefore |P (z)| > 0 for

|z| ≥

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p


1
q

.

Therefore all the zeros of P (z) lie in

|z| <

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p


1
q

. (3.10)

For the lower bound let us take Q(z) = zN(r)P ( 1
z ). Therefore

Q(z) = zN(r)P

(
1

z

)
≈ zN(r)

{
a0 +

a1
z

+ .....+
aN(r)

zN(r)

}
= a0z

N(r) + a1z
N(r)−1 + .....+ aN(r).

Therefore

|Q(z)| ≈
∣∣∣a0zN(r) + a1z

N(r)−1 + .....+ aN(r)

∣∣∣ .
Now ∣∣∣a1zN(r)−1 + .....+ aN(r)

∣∣∣ ≤ |a1| |z|N(r)−1
+ .......+

∣∣aN(r)

∣∣
= |a0|

{
|a1|
|a0|
|z|N(r)−1

+ .......+

∣∣aN(r)

∣∣
|a0|

}

= |a0|
N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣ |z|j . (3.11)

Therefore using (3.11) we get that

|Q(z)| ≥ |a0| |z|N(r) −
∣∣∣a1zN(r)−1 + .....+ aN(r)

∣∣∣
≥ |a0| |z|N(r) − |a0|

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣ |z|j
= |a0|

|z|N(r) −
N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣ |z|j
 .

Now by Holder’s inequality we have

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣ |z|j ≤
N(r)−1∑

j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q 1

q

. (3.12)

Using (3.12) we obtain from above that

|Q(z)| ≥ |a0|

|z|N(r) −

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q 1

q


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= |a0|

|z|N(r) − |z|N(r)

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q

|z|N(r)q


1
q



= |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
|z|j
)q

|z|N(r)q


1
q


= |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

1

|z|q(N(r)−j)

 1
q


= |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)−1∑

j=0

(
1

|z|q
)(N(r)−j)

 1
q


> |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)∑
j=0

(
1

|z|q
)j 1

q

 .

Therefore

|Q(z)| ≥ |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p
N(r)∑
j=1

(
1

|z|q
)j 1

q

 .

Now the geometric series
∞∑
j=1

(
1
|z|q
)j

is convergent for

1

|z|q
< 1

i.e., for |z|q > 1.

Therefore for |z| > 1 and the series is convergent to

1

|z|q
1

1− 1
|z|q

=
1

|z|q − 1
.

So  ∞∑
j=1

(
1

|z|q
)j 1

q

is convergent to

(
1

|z|q − 1

) 1
q

for |z| > 1.

Therefore on |z| > 1,

|Q(z)| > |a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

 .

Now if |Q(z)| > 0 then

|a0| |z|N(r)

1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

 ≥ 0
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i.e, 1−

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

≥ 0

i.e., 1 ≥

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p (
1

|z|q − 1

) 1
q

i.e., (|z|q − 1)
1
q ≥

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p
 1

p

i.e., |z|q − 1 ≥

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p

i.e., |z| ≥

1 +

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p


1
q

.

Clearly 1 +

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p


1
q

> 1.

Therefore |Q(z)| > 0 if

|z| ≥

1 +

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p


1
q

.

Therefore all the zeros Q(z) lie in

|z| <

1 +

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p


1
q

.

Let z = z0 be any other zero of P (z). Therefore P (z0) = 0. Clearly z0 6= 0 as a0 6= 0.

Putting z = 1
z0

in Q(z) we have

Q(z0) =

(
1

z0

)N(r)

.P (z0) =

(
1

z0

)N(r)

.0 = 0

Therefore z = 1
z0

is a zero of Q(z). So

∣∣∣∣ 1

z0

∣∣∣∣ <
1 +

N(r)−1∑
j=0

∣∣∣∣aN(r)−j

a0

∣∣∣∣p


q
p


1
q

i.e., |z0| >
11 +

(
N(r)−1∑
j=0

∣∣∣aN(r)−j

a0

∣∣∣p)
q
p

 1
q

.
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As z0 is an arbitrary zero of P (z) so all the zeros of P (z) lie in

|z| > 11 +

(
N(r)−1∑
j=0

∣∣∣aN(r)−j

a0

∣∣∣p)
q
p

 1
q

. (3.13)

Hence combining (3.10) and (3.13) we may say that all the zeros of P (z) lie in the ring shaped region

11 +

(
N(r)−1∑
j=0

∣∣∣aN(r)−j

a0

∣∣∣p)
q
p

 1
q

< |z| <

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p


q
p


1
q

.

This proves the theorem.

In the line of Theorem 3.5, we may state the following theorem in view of Lemma 2.2 :

Theorem 3.6. Let P (z) be an entire function defined by

P (z) = a0 + a1z + a2z
2 + ....+ anz

n + ......

with L∗-order ρL
∗
. Also for sufficiently large r in the disc |z| ≤ [reL(r)], aN(r) 6= 0, a0 6= 0 and an → 0 as

n > N(r). For any p, q with p > 1, q > 1 and 1
p + 1

q = 1, all the zeros of P (z) lie in the annular region

11 +

(
N(r)−1∑
j=0

∣∣∣aN(r)−j

a0

∣∣∣p)
q
p

 1
q

< |z| <

1 +

N(r)−1∑
j=0

∣∣∣∣ aj
aN(r)

∣∣∣∣p
p

q
p

.

Corollary 3.7. In particular if we take p = 2, q = 2 in Theorem 3.5 then we get that all the zeros of the

polynomial P (z) = a0 + a1z + a2z
2 + ....+ anz

n lie in the ring shaped region

1[
1 +

(
n∑
j=0

∣∣∣ana0 ∣∣∣2
)] 1

2

< |z| <

1 +

 n∑
j=0

∣∣∣∣ ajan
∣∣∣∣2
 1

2

.

Corollary 3.8. In particular if we take p = 2, q = 2 in Theorem 3.6 then we get that all the zeros of the

polynomial P (z) = a0 + a1z + a2z
2 + ....+ anz

n lie in the ring shaped region

1[
1 +

(
n∑
j=0

∣∣∣ana0 ∣∣∣2
)] 1

2

< |z| <

1 +

 n∑
j=0

∣∣∣∣ ajan
∣∣∣∣2
 1

2

.
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