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Abstract : A common fixed point theorem for pair of nonself- mapping is proved in complete metrically

convex metric space, which generalize earlier results due to M.Imdad [6] M.D. khan [4], MS Khan [5],

Bianchini [12], Chatterjea [13], and others.
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1 Introduction

In many applications the mappings under examination may not always be self- mapping, therefore fixed

point theorems for nonself-mapping from a natural subject for investigation. Assad and Kirk [8] initiated
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the study of fixed point for nonself –mappings in metrically convex spaces, noticed that with some kind

of metric convexity, domain and range of mapping under examination can be considered of more varied

type. In recent years this technique due to Assad and Kirk [8] has been utilized by many researchers

of domain and by now there exists considerable literature on this topic. To mention a few, we cite

[2, 3, 4, 5, 7, 8, 9, 10].

Assad [7] gave sufficient condition for nonself- mappings defined on a closed subset of complete met-

rically convex metric spaces satisfying Kannan type mappings [11] which have been generalized by M.S.

Khan [5]. For the sake of completeness, we stat that main result of M.S. Khan [5].

Theorem 1.1. Let (X , d)be a complete metrically convex space and K a closed nonempty subset of X.

Let T : K → Xbe the mapping satisfying the inequality

d (Tx, Ty) ≤ C max {d (x, Tx) , d(y, Ty)} + C
′
{d (x, Tx) + d(y, Tx)} (1.1)

for every x , y in K, where C and C’ are non-negative reals such that

max

{
C + C ′

1− C ′
,

C ′

1− C − C ′

}
= h > 0

max

{
1 + C + C ′

1− C ′
h ,

1 + C ′

1− C − C ′
h

}
= h′ > 0

max {h, h′} = h
′′
> 0

Further, for every x in ∂K , Tx ∈ K . Then T has a unique fixed point in K.

Currently M. Imdad and Ladlay Khan [6] generalized this result as,

Theorem 1.2. Let (X , d)be a complete metrically convex metric space and K a closed nonempty subset

of X. if F is generalized T contraction mapping of K into X satisfying the following:

1. δK ⊆ TK , FK ∩K ⊆ TK

2. Tx ∈ δK ⇒ Fx ∈ K

3. (F, T ) is coincidentally commuting

4. TK is closed in X.

Then F and T have a unique common fixed point.

Definition 1.3 ([6]). Let (X,d) be a metric space and Ka nonempty subset of X.Let F , T : K → Xbe a

pair of maps which satisfy the condition

φ (d (Fx, Fy)) ≤ a max
{

1

2
φ (d (Tx, Ty)) , φ (d (Tx, Fx)) , φ(d(Ty, Fy)

}
+ b {φ (d (Tx, Fy)) + φ (d (Ty, Fx))}

(1.2)

for all distinct x , y ∈ K , a , b ≥ 0 such that a + 4b < 1and let φ : R+ → R+ be an increasing

continuous function for which the following properties hold:
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φ (t) = 0 ⇐⇒ t = 0, φ(2t) ≤ 2φ(t)

Then F is called generalized T contraction mapping of K into X.

2 Preliminaries

We necessitate the following in the sequel

Definition 2.1 ([9]). Let K be a nonempty subset of a metric space (X , d) and T : K → X. The pair

(F, T ) is said to be weakly commuting if for every x , y ∈ Kwith x = Fy and Ty ∈ K

d (Tx, FTy) ≤ d (Ty, Fy) (2.1)

Definition 2.2 ([10]). Let K be a nonempty subset of a metric space (X , d) and F, T : K → X. The

pair (F, T ) is said to be compatible if every sequence {xn} ⊂ K and from the relation

lim
n→∞

d (Fxn , Txn) = 0. (2.2)

And Txn ∈ K (for every) n ∈ N , it follows that

lim
n→∞

d (Tyn , FTxn) = 0 (2.3)

for every sequence yn ∈ K such that yn = Fxn , n ∈ N

Definition 2.3 ([3]). A pair of nonself –mapping (F, T ) on a nonempty subset K of a metric space (X, d)

is said to be coincidentally commuting if Tx , Fx ∈ Kand Tx = Fx =⇒ FTx = TFx

Definition 2.4 ([8]). A metric space (X, d) is said to be metrically convex if for any distinct x, y ∈ X,
there exists a point z ∈ X with x 6= z 6= y such that

d (x, z) + d (z, y) = d (x, y) (2.4)

Lemma 2.5 ([8]). Let K be a nonempty closed subset of a metrically convex metric space X. if x ∈ Kand

6∈ K, then there exists a point z ∈ δK(the boundary of K) such that

d (x, z) + d (z, y) = d (x, y) (2.5)

3 Our main result runs as follows

Theorem 3.1. Let (X , d)be a complete metrically convex metric space and K a closed nonempty subset

of X. Let F, T : K → X be the mappings satisfying the inequality

d (Fx, Fy) ≤ (a+ b) d (Fx, Tx) + b [max {d (Tx, Fx) , d (Tx, Ty)}+ d (Ty, Fy)] (3.1)

for every x , y ∈ K, where a , b , and c are nonnegative reals such that
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a+ b+ c

1− c
= h > 0

and

(i) δK ⊆ TK, FK ∩K ⊆ TK

(ii) Tx ∈ δK ⇒ Fx ∈ K

(iii) (F, T ) is coincidentally commuting

(iv) TK is closed in X

Then F and T have a unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following way: Let x ∈ δK.

Then (due to δK ⊂ TK ) there exists a point x0 ∈ Ksuch that x = Tx0. Since Tx ∈ δK =⇒ Fx ∈ K,

one concludes that Fx0 ∈ FK ∩K ⊆ TK. Let x1 ∈ Kbe such that y1 = Tx1 = Fx0.

Let y2 = Fx1 , if y2 ∈ K , then y2 ∈ FK ∩K ⊂ TK which implies that there exists a point x2 ∈ K such

that y2 = Tx2. If y2 6∈ K , then there exists a point t ∈ δK such that

d (Tx , t) + d (t , y2) = d (Tx1 , y2) (3.2)

Since t ∈ δK ⊆ TKthere exists a point x2 ∈ K such that t = Tx2 so that

d (Tx1 , Tx2) + d (Tx2 , y2) = d (Tx1 , y2) (3.3)

Thus repeating the foregoing arguments one obtains two sequences {xn} and {yn} such that

(v) yn+1 = Fxn

(vi) yn ∈ K ⇒ yn = Txn or yn 6∈ K ⇒ Txn ∈ δK

and

d (Txn−1 , Txn) + d (Txn , yn) = d (Txn−1 , yn) . (3.4)

We denote

P = {Txi ∈ {Txn} : Txi = yi }

Q = {Txi ∈ {Txn} : Txi 6= yi }

Obviously, the two consecutive terms cannot lie in Q. Now, we distinguish the following three cases,

Case 1. If Txn , Txn+1 ∈ P then

d (Txn, Txn+1) = d(yn , yn+1)

= d(Fxn−1 , Fxn)

≤ (a+ c) d (Fxn−1 Txn−1) + b [max {d (Txn−1 , Fxn−1) , d (Txn−1 Txn)}+ d(Txn , Fxn)]

= (a+ c) d (yn Txn−1) + b [max {d (Txn−1 , yn) , d (Txn−1 Txn)}+ d(Txn , yn+1)]

= (a+ c) d (Txn , Txn−1) + b [max {d (Txn−1 , Txn) , d (Txn−1 , Txn)}] + b d(Txn , Txn+1)
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(1− b)d (Txn , Txn+1) ≤ (a+ c) d (Txn Txn−1) + b d(Txn−1 , Txn)

(1− b) d (Txn , Txn+1) ≤ (a+ c+ b) d(Txn−1 , Txn)

d (Txn Txn+1) ≤ (a+ c+ b)

1− b
d (Txn−1 Txn) (3.5)

Case 2. If Txn ∈ P , Txn+1 ∈ Q then

d (Txn, Txn+1) + d (Txn+1 , yn+1) = d(Txn , yn+1)

d (Txn, Txn+1) ≤ d (Txn , yn+1) = d (yn , yn+1) (3.6)

d(yn , yn+1) = d(Fxn−1 , Fxn)

≤ (a+ c) d (Fxn−1 Txn−1) + b [max {d (Txn−1 , Fxn−1) , d (Txn−1 , Txn)}+ d(Txn Fxn)]

= (a+ c) d (yn Txn−1) + b [max {d (Txn−1 , yn) , d (Txn−1 Txn)}+ d(Txn , yn+1)]

= (a+ c) d (Txn , Txn−1) + b [max {d (Txn−1 Txn) , d (Txn−1 Txn)}] + b d(Txn Txn+1)

= (a+ c) d (Txn Txn−1) + b [max {d (Txn−1 , Txn) , d (Txn−1 , Txn)}] + b d(yn yn+1)

(1− b)d (yn , yn+1) ≤ (a+ c) d (Txn , Txn−1) + b d(Txn−1 , Txn)

(1− b)d (yn , yn+1) ≤ (a+ c+ b) d (Txn , Txn−1)

d (yn , yn+1) ≤ (a+ c+ b)

1− b
d (Txn−1 , Txn) (3.7)

Since d (Txn , Txn+1) ≤ d (yn yn+1) from(3.6). Therefore,

d (Txn , Txn+1) ≤ (a+ c+ b)

1− b
d (Txn−1 , Txn) (3.8)

Case 3. If Txn ∈ Q , Txn+1 ∈ P then Txn−1 ∈ P
Since Txn is the convex linear combination of Txn and yn, it follows that

d (Txn, Txn+1) ≤ max {d (Txn−1 , Txn+1) , d (yn , Txn+1)}. (3.9)

If d (Txn−1, Txn+1) ≤ d (yn , Txn+1). Then

d (Txn, Txn+1) ≤ d (yn , Txn+1)

= d(yn , yn+1)

= d(Fxn−1 , Fxn)

≤ (a+ c) d (Fxn−1 , Txn−1) + b [max {d (Txn−1 , Fxn−1) , d (Txn−1 Txn)}+ d(Txn , Fxn)]

= (a+ c) d (yn , Txn−1) + b [max {d (Txn−1 , yn) , d (Txn−1 , Txn)}+ d(Txn , yn+1)]

= (a+ c) d (yn , Txn−1) + b [max {d (Txn−1 , yn) , d (Txn−1 , Txn)}] + b d(Txn , Txn+1)

(1− b) d (Txn , Txn+1) ≤ (a+ c) d (yn , Txn−1) + b [max {d (Txn−1 , yn) , d (Txn−1 Txn)}] (3.10)

Since

d (Txn−1, yn) + d (yn , Txn) = d (Txn−1, Txn)

d (Txn−1, yn) ≤ d (Txn−1, Txn)
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(1− b) d (Txn , Txn+1) ≤ (a+ c) d (yn , Txn−1) + b d (Txn−1 , Txn)

≤ (a+ c)d (Txn−1 , Txn) + b d (Txn−1 , Txn)

= (a+ c+ b) d (Txn−1 , Txn)

d (Txn , Txn+1) ≤ (a+ c+ b)

1− b
d (Txn−1 , Txn) . (3.11)

On the other hand if d(yn , Txn+1) ≤ d(Txn−1 , Txn+1).

Then d (Txn , Txn+1) ≤ d (Txn−1 Txn+1) = d(yn−1 , yn+1) from (3.9).

d (Txn , Txn+1) ≤ d(yn−1 , yn+1)

= d(Fxn−2 , Fxn)

≤ (a+ c) d (Fxn−2 , Txn−2) + b [max {d (Txn−2 , Fxn−2) , d (Txn−2 Txn)}+ d(Txn , Fxn)]

= (a+ c) d (yn−1 , Txn−2) + b [max {d (Txn−2 , yn−1) , d (Txn−2 , Txn)}+ d(Txn , yn+1)]

= (a+ c) d (yn−1 , Txn−2) + b [max {d (Txn−2 , yn−1) , d (Txn−2 Txn)}] + b d(Txn , Txn+1)

(1− b) d (Txn , Txn+1) ≤ (a+ c) d (Txn−1 , Txn−2) + b [max {d (Txn−2 , Txn−1) , d (Txn−2 , Txn)}] .
(3.12)

Since

d (Txn−2 , Txn) + d (Txn , Txn−1) = d(Txn−2 , Txn−1)

d (Txn−2 , Txn) ≤ d(Txn−2 , Txn−1).

Therefore,

(1− b) d (Txn , Txn+1) ≤ (a+ c) d (Txn−1 , Txn−2) + bd (Txn−2 , Txn−1)

= (a+ c+ b) d (Txn−1 , Txn−2)

d (Txn , Txn+1) ≤ (a+ c+ b)

1− b
d (Txn−1 , Txn−2) . (3.13)

Thus in the all case we have d (Txn , Txn+1) ≤ Amax {d (Txn−1 , Txn) , d(Txn−1 , Txn−2)}, where

A = (a+c+b)
1−b .

It can be easily shown that by induction that for n ≥ 1we have

d (Txn , Txn+1) ≤ An max {d (Tx0 , Tx1) , d (Tx1 , Tx2)}.

Now for any positive integer r we have

d (Txn , Txn+r) ≤ d (Txn , Txn+1) + d (Txn+1 , Txn+2) + ...+ d (Txn+r−1 , Txn+r)

≤
{

1 +A+A2 +A3 + ...+Ap−1}Anmax{d (Tx0, Tx1) , d(Tx1, Tx2)}

≤ 1

1 +A
An max {d (Tx0, Tx1) , d (Tx1, Tx2)}

(3.14)

This implies that d (Txn, Txn+1) → 0 as n → ∞. So that { Txn} is a Cauchy sequence and hence

converge to a point z in X. We assume that a subsequence {Txnk
} of {Txn} contained in P and TK is
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a closed subspace of X. Since {Txnk
} is Cauchy in TK, it converse to a point, z ∈ TK. Let u ∈ T−1z

then Tu = z. Here one also needs to note that {Fxnk−1} will also converge to z.

d (Fxnk−1 , Fu) ≤ (a+ c) d (Fxnk−1 Txnk−1)+b [max {d (Txnk−1 , Fxnk−1) , d (Txnk−1 , Tu)}+ d(Tu , Fu)]

Which , on letting,k →∞ reduces to

d (z , Fu) ≤ (a+ c) d (z , z) + b max {d (z, z) , d (z , Tu)}+ bd (Tu, Fu)

d (Fu, z) ≤ bd (Tu, Fu)

d (Fu, z) ≤ bd (Fu, Tu) (3.15)

Yielding there by Tu = Fu which shows that uis a point of coincidence for F and T. Since the pair

(F , T ) is coincidentally commuting, therefore

z = Tu = Fu ⇒ Fz = FTu = TFu = Tz (3.16)

To prove that z is fixed point of,F consider d (Fz, z) = d(Fz, Fu)

d (Fz, z) ≤ (a+ b) d (Fz, Tz) + b [max {d (Tz, Fz) , d(Tz, Tu)}+ d(Tu, Fu)]

d (Fz, z) ≤ (a+ b) d (Fz, Tz) + bmax {d (Tz, Fz) , d(Tz, Tu)}+ bd(Tu, Fu)

d (Fz, z) ≤ b d (Fz , z)

Which shows that z is a common fixed point of F and T. The proof goes on similar lines in case we

assume subsequence {Txnk
} of {Txn} contained in Q. hence it is omitted. The uniqueness of fixed point

follows easily this completes the proof.
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