International Journal of Mathematics find its Applications

Existence of Best Proximity Points For (ψ, α, β)-Weakly Contractive Mappings in Generalized Metric Spaces

S. Arul Ravi ${ }^{1, *}$
1 Department of Mathematics, St Xavier's Colllege (Autonomous), Playamkottai, Tamil Nadu, India.

Abstract

Isik and Turkoglu proved a common fixed theorem in a rectangular metric space by using three auxiliary functions. In this paper we extend the result for the existence of best proximity points for (ψ, α, β)-weakly contractive mappings in generalized metric space.

Keywords: Best proximity point, Rectangular metric space, p-property
© JS Publication.

1. Introduction and Preliminaries

In 2012, Lakzian and Samet [1] proved a fixed point theorem of a self-mapping with certain conditions in the context of a rectangular metric space via two auxiliary functions. To generalize the main result [1]. Isik and Turkoglu [2] reported a common point result of two self-mappings in the setting of a rectangular metric space by using three auxiliary functions. The obtained results are inspired by the technique and ideas of [3-11]. Here in this paper we extend the result of N.Bilgili, E.Karapinar and D.Turkoglu [12].

Definition 1.1. Let X be nonempty set and let $d: X \times X \rightarrow[0, \infty)$ resoectivelysatisfy the following conditions for all $x, y \in X$ and for all distinct points $u, v \in X$ each of which is different from x and y.
(i). $d(x, y)=0$ iff $x=y$
(ii). $d(x, y)=d(y, x)$
(iii). $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$

Then (X, d) is called the rectangular metric space also known as generalized metric space.

We recall the definitions of the following auxiliary functions. Let Γ be the set of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying the condition $\psi(t)=0$ iff $t=0$. We denote ψ be the set of functions $\psi \in \Gamma$ such that ψ is continuous and nondecreasing. We reserve ϕ for the set of functions $\alpha \in \phi$ such that α is continuous. Finally we denote the set of functions $\beta \in \Gamma$ satisfying the following conditions: β is lower semi-continuous. Lakziand and Samet [1] proved the following fixed point theorem.

[^0]Theorem $1.2([1])$. Let (X, d) be a Hausdorff and complete rectangular metric space and let $T: X \rightarrow X$ be a self mapping satisfying $\psi(d(T x, T y)) \leq \psi(d(x, y))-\phi(d(x, y))$ for all $x, y \in X$, where $\psi \in \Psi$ and $\phi \in \Phi$. Then T has unique fixed point.

Definition 1.3. $A_{0}=\{x \in A: d(x, y)=d(A, B)\}$, for $y \in B ; B_{0}=\{y \in B: d(x, y)=d(A, B)\}$, for $x \in A$, where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$.

Definition 1.4. Let (A, B) be a pair of nonempty subsets of metric space (X, d) with $A_{0} \neq 0$. Then the pair (A, B) is said to have p-property iff for any $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}, d\left(x_{1}, y_{1}\right)=d(A, B)=d\left(x_{2}, y_{2}\right)$.

2. Main Results

Theorem 2.1. Let (X, d) be a Hausdroff and complete Rectangular metric space and Let (A, B) be a pair of nonempty subsets of a metric space such that A_{0} is nonempty. Let $T: A \rightarrow B$ be a mapping satisfying $T\left(A_{0}\right) \subset B_{0}$. Suppose

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \psi(d(x, y)-d(A, B))-\phi(d(x, y)-d(A, B)) \tag{1}
\end{equation*}
$$

for all $x \in A, y \in B$, where $\psi \in \Psi$ and $\phi \in \Phi$. Then T has best proximity point.
Proof. Choose $x_{0} \in A$. Since $T x_{0} \in T\left(A_{0}\right) \subset B_{0}$, there exists $x_{1} \in A_{0}$ such that $d\left(x_{1}, T x_{0}\right)=d(A, B)$. Analogously, regarding the assumption, $T x_{1} \in T\left(A_{0}\right) \subset B_{0}$, we determine $x_{2} \in A_{0}$ such that $d\left(x_{2}, T x_{1}\right)=d(A, B)$. Recursively, we obtain a sequence $\left\{x_{n}\right\}$ in A_{0} satisfying

$$
\begin{equation*}
d\left(x_{n+1}, T x_{n}\right)=d(A, B) \forall n \in N \tag{2}
\end{equation*}
$$

Claim: $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$
If $x_{N}=x_{N+1}$, then x_{N} is best proximity point. By the p-property, we have

$$
d\left(x_{n+1}, x_{n+2}\right)=d\left(T x_{n}, T x_{n+1}\right)
$$

Hence we assume that $x_{n} \neq x_{n+1}$ for all $n \in N$. Since $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$, from (2), we have for all $n \in N$.

$$
\begin{align*}
\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right) & =\psi\left(d\left(T x_{n}, T x_{n+1}\right)\right) \\
& \left.\leq \psi\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, T x_{n}\right)+d\left(x_{n+1}, T x_{n+1}\right)\right)-d(A, B)\right) \\
& \left.-\phi\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, T x_{n}\right)+d\left(x_{n+1}, T x_{n+1}\right)\right)-d(A, B)\right) \tag{3}\\
& \leq \psi\left(d\left(x_{n}, x_{n+1}\right)-d(A, B)\right)-\phi\left(d\left(x_{n}, x_{n+1}\right)-d(A, B)\right)
\end{align*}
$$

We get $d\left(x_{n}, x_{n+1}\right)=d(A, B)$ and follows $d\left(x_{n}, x_{n+1}\right)=0$ a contradiction. From (3) we get that $\psi\left(d\left(x_{n}, x_{n+1}\right)\right)=0$ and $d\left(x_{n}, x_{n+1}\right)=0$ contradicting our assumption. Therefore $d\left(x_{n+1}, x_{n+2}\right)<d\left(x_{n}, x_{n+1}\right)$ for any $n \in N$ and hence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is monotone decreasing sequence of nonnegative real numbers, hence there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$. In the view of the fact from (2), for any $n \in N$, we have

$$
\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)-\phi\left(d\left(x_{n}, x_{n+1}\right)\right)
$$

Taking the limit as $n \rightarrow \infty$ in the above inequality, and using the conditions of ψ and ϕ we have $\psi(r) \leq \psi(r)-\phi(r)$ which implies $\phi(r)=0$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{4}
\end{equation*}
$$

Next we show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
If otherwise there exists $\varepsilon>0$, for which we can find two sub sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ such that for all positive integers $m_{k}>n_{k}>k, d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \varepsilon$ and $d\left(x_{m_{k}}, x_{n_{k-1}}\right)<1$. Now $\varepsilon \leq d\left(x_{m_{k}}, x_{n_{k}}\right) \leq d\left(x_{m_{k}}, x_{n_{k-1}}\right)+$ $d\left(x_{n_{k-1}}, x_{n_{k}}\right)$. That is $\varepsilon \leq d\left(x_{m_{k}}, x_{n_{k}}\right)<\varepsilon+d\left(x_{n_{k-1}}, x_{n_{k}}\right)$. Taking the limit as $k \rightarrow \infty$ in the above inequality and using (4) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right)=\varepsilon \tag{5}
\end{equation*}
$$

Again $d\left(x_{m_{k}}, x_{n_{k}}\right) \leq d\left(x_{m_{k}}, x_{m_{k+1}}\right)+d\left(x_{m_{k+1}}, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, x_{n_{k}}\right)$. Taking the limit as $k \rightarrow \infty$ in the above inequalities and using (4) and (5) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{k+1}}, x_{n_{k+1}}\right)=\varepsilon \tag{6}
\end{equation*}
$$

Again

$$
\begin{aligned}
d\left(x_{m_{k+1}}, x_{n_{k+1}}\right) & \leq d\left(x_{m_{k}}, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, x_{n_{k}}\right) \\
& \leq d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k+1}}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequalities and using (4) and (5) we have

$$
\begin{align*}
& \lim _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k+1}}\right)=\varepsilon \tag{7}\\
& \lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k+1}}\right)=\varepsilon \tag{8}
\end{align*}
$$

For $x=x_{m_{k}}, y=y_{m_{k}}$ we have

$$
\begin{aligned}
d\left(x_{m_{k}}, T x_{m_{k}}\right)-d(A, B) & \leq d\left(x_{m_{k}}, x_{m_{k+1}}\right)+d\left(x_{m_{k+1}}, T x_{n_{k}}\right)-d(A, B) \\
& =d\left(x_{m_{k}}, x_{m_{k+1}}\right)
\end{aligned}
$$

Similarly $d\left(x_{n_{k}}, T x_{n_{k}}\right)-d(A, B)=d\left(x_{m_{k}}, x_{n_{k+1}}\right)$ and $d\left(x_{n_{k}}, T x_{m_{k}}\right)-d(A, B)=d\left(x_{n_{k}}, x_{m_{k+1}}\right)$. From (1) we have

$$
\begin{aligned}
\psi\left(d\left(x_{m_{k+1}}, x_{n_{k+1}}\right)\right) & =\psi\left(d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right) \\
& \leq \psi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, T x_{m_{k}}\right)+d\left(x_{n_{k}}, T x_{n_{k}}\right)\right)-d(A, B)\right)-\phi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, T x_{m_{k}}\right)\right.\right. \\
& \left.\left.+d\left(x_{n_{k}}, T x_{n_{k}}\right)\right)-d(A, B)\right) \\
& \leq \psi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, x_{m_{k+1}}\right)+d\left(x_{n_{k}}, x_{n_{k+1}}\right)\right)-d(A, B)\right)-\phi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, x_{m_{k+1}}\right)\right.\right. \\
& \left.\left.+d\left(x_{n_{k}}, x_{n_{k+1}}\right)\right)-d(A, B)\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\psi\left(d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right) & \leq \psi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{n_{k}}, T x_{n_{k+1}}\right)+d\left(x_{m_{k}}, T x_{m_{k+1}}\right)\right)-d(A, B)\right) \\
& -\phi\left(\left(d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{n_{k}}, T x_{n_{k+1}}\right)+d\left(x_{m_{k}}, T x_{m_{k+1}}\right)\right)-d(A, B)\right)
\end{aligned}
$$

From (4), (5), (6) and (7) and letting $k \rightarrow \infty$ in the above inequalities and using the conditions of ψ and ϕ, we have $\psi(\varepsilon) \leq \psi(\varepsilon)-\phi(\varepsilon)$ which is contradiction by virtue of property ϕ. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Since $\left\{x_{n}\right\} \subset A$ and A is a closed subset of the complete metric space (X, d), there exists x^{*} in A such that $x_{n} \rightarrow x^{*}$. Putting $x=x_{n}$ and $y=x^{*}$ and since $d\left(x_{n}, T x^{*}\right) \leq d\left(x_{n}, x^{*}\right)+d\left(x^{*}, T x_{n}\right)$ and $d\left(x^{*}, T x_{n}\right) \leq d\left(x^{*}, T x^{*}\right)+d\left(T x^{*}, T x_{n}\right)$. We have

$$
\begin{aligned}
\psi\left(d\left(x_{n+1}, T x^{*}\right)-d(A, B)\right) & \leq \psi\left(d\left(T x_{n}, T x^{*}\right)-d(A, B)\right) \\
& \leq \psi\left(\left(d\left(x_{n}, x^{*}\right)+d\left(x_{n}, T x_{n}\right)+d\left(x^{*}, T x^{*}\right)\right)-d(A, B)\right) \\
& -\phi\left(\left(d\left(x_{n}, x^{*}\right)+d\left(x_{n}, T x_{n}\right)+d\left(x^{*}, T x^{*}\right)\right)-d(A, B)\right)
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ in the above inequalities and using the conditions of ψ and ϕ, we have

$$
\psi\left(\left(d\left(x^{*}, T x^{*}\right)-d(A, B)\right) \leq \psi\left(\left(d\left(x^{*}, T x^{*}\right)-d(A, B)\right)-\phi\left(\left(d\left(x^{*}, T x^{*}\right)-d(A, B)\right)\right.\right.\right.
$$

This implies that $d\left(x^{*}, T x^{*}\right)=d(A, B)$. Hence x^{*} is a best proximity point of T.
For the uniqueness, let p and q be two best proximity point and suppose that $p \neq q$, then putting $x=p$ and $y=q$ in (1) we obtain

$$
\psi\left(d\left(T_{p}, T_{q}\right)\right) \leq \psi\left(\left(d(p, q)+d\left(p, T_{p}\right)+d\left(q, T_{q}\right)-d(A, B)\right)-\phi\left(\left(d(p, q)+d\left(p, T_{p}\right)+d\left(q, T_{q}\right)-d(A, B)\right)\right.\right.
$$

That is $\psi(d(p, q)) \leq \psi(d(p, q))-\phi(d(p, q))$. Contradiction by virtue of a property ϕ. Therefore $p=q$. This completes the proof.

Theorem 2.2. Let (X, d) be a Hausdroff and complete Rectangular metric space and Let (A, B) be a pair of nonempty subsets of a metric space such that A_{0} is nonempty. Let $T: A \rightarrow B$ be a mapping satisfying $T\left(A_{0}\right) \subset B_{0}$. Suppose

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \alpha(d(x, y)-d(A, B))-\beta(d(x, y)-d(A, B)) \tag{9}
\end{equation*}
$$

for all $x \in A, y \in B$, where $\psi \in \Psi, \alpha \in \Phi, \beta \in \Gamma$ and these mappings satisfy the condition

$$
\begin{equation*}
\psi(t)-\alpha(t)+\beta(t)>0 \forall t>0 \tag{10}
\end{equation*}
$$

Then T has best proximity point.

Note: since the proof is the mimic of the proof of Theorem 1.1, we say that the above theorem is equivalent to Theorem 2.1.

Theorem 2.3. Theorem 2.2 is a consequence of Theorem 2.1.

Proof. Taking $\alpha=\psi$ in Theorem 2.2, we obtain immediately Theorem 2.1. Indeed let $T: A \rightarrow B$ be a mapping satisfying (9) with $\psi \in \Psi, \alpha \in \Phi, \beta \in \Gamma$ and let these mappings satisfy conditions (10). From (9), for all $x \in A, y \in B$, we have

$$
\begin{align*}
\psi(d(T x, T y)) & \leq \alpha(d(x, y)-d(A, B))-\beta(d(x, y)-d(A, B)) \\
& =\psi(d(x, y)-d(A, B))-[\beta(d(x, y)-d(A, B))-\alpha(d(x, y)-d(A, B))+\psi(d(x, y)-d(A, B))] \tag{11}
\end{align*}
$$

Define $\theta:[0, \infty) \rightarrow[0, \infty)$ by $\theta(t)=\beta(t)-\alpha(t)+\psi(t), t \geq 0$. Then we have

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \psi(d(x, y)-d(A, B))-\theta(d(x, y)-d(A, B)) \tag{12}
\end{equation*}
$$

for all $x \in A, y \in B$. Due to the definition of θ, we observe that $\theta \in \Gamma$. Now Theorem 2.2 follows immediately from Theorem 2.1.

References

[1] H. Lakzian and B. Samet, Fixed points (ψ, ϕ)-weakly contractive mappings in generalized metric spaces, App. Math. Lett., 25(2012), 902-906.
[2] K. Isik and D. Turkoglu, Common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., 2013(2013).
[3] R. H. Haghi, S. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74(2011), 1799-1803.
[4] H. Aydi, E. Karapinar and B. Samet, Remarks on some fixed point theorems, Fixed Point Theory Appl., 2012(2012).
[5] W. A. Krik and N. Shahzad, Generalized metrices and caristis theorem, Fixed Point Theory Appl., 2013(2013).
[6] M. Arshad, J. Ahmad and E. Karapinar, Some common fixed point results in rectangular metric spaces, Int. J. Anal., 2013(2013).
[7] I. J. Sarma, J. M. Rao and S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2(3)(2009), 180-182.
[8] M. Arshad, J. Ahmad and C. Vetro, On a theorem of Khan in a generalized metric spaces, Int. J. Anal., 2013(2013).
[9] C. M. Chan and W. Y. Sun, Periodic points and fixed points for the weaker (ϕ, ψ)-contractive mappings in complete generalized metric spaces, J. Appl. Math., 2012(2012).
[10] C. M. Chan, Common fixed point theorems in complete generalized metric spaces, J. Appl. Math., 2012(2012).
[11] C. Di Bari and P. Vetro, Common fixed points in generealized metric spaces, Appl. Math. Compact., (2012).
[12] N. Bilgili, E. Karapinar and D. Turkoglu, A note on common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., 2013(2013).
[13] V. SankarRaj, A best proximity point Theorem for Weakly contractive non-self mappings, Nonlinear Analysis, 74(2011), 4804-4808.

[^0]: * E-mail: ammaarulravi@gmail.com

