

International Journal of Mathematics And its Applications

Existence of Best Proximity Points For (ψ, α, β) -Weakly Contractive Mappings in Generalized Metric Spaces

S. Arul Ravi^{1,*}

1 Department of Mathematics, St Xavier's Colllege (Autonomous), Playamkottai, Tamil Nadu, India.

Abstract: Isik and Turkoglu proved a common fixed theorem in a rectangular metric space by using three auxiliary functions. In this paper we extend the result for the existence of best proximity points for (ψ, α, β) -weakly contractive mappings in generalized metric space.

Keywords: Best proximity point, Rectangular metric space, *p*-property. © JS Publication.

1. Introduction and Preliminaries

In 2012, Lakzian and Samet [1] proved a fixed point theorem of a self-mapping with certain conditions in the context of a rectangular metric space via two auxiliary functions. To generalize the main result [1]. Isik and Turkoglu [2] reported a common point result of two self-mappings in the setting of a rectangular metric space by using three auxiliary functions. The obtained results are inspired by the technique and ideas of [3-11]. Here in this paper we extend the result of N.Bilgili, E.Karapinar and D.Turkoglu [12].

Definition 1.1. Let X be nonempty set and let $d : X \times X \to [0, \infty)$ resolutions for all $x, y \in X$ and for all distinct points $u, v \in X$ each of which is different from x and y.

- (*i*). d(x, y) = 0 iff x = y
- (*ii*). d(x, y) = d(y, x)
- (*iii*). $d(x, y) \le d(x, u) + d(u, v) + d(v, y)$

Then (X, d) is called the rectangular metric space also known as generalized metric space.

We recall the definitions of the following auxiliary functions. Let Γ be the set of all functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the condition $\psi(t) = 0$ iff t = 0. We denote ψ be the set of functions $\psi \in \Gamma$ such that ψ is continuous and nondecreasing. We reserve ϕ for the set of functions $\alpha \in \phi$ such that α is continuous. Finally we denote the set of functions $\beta \in \Gamma$ satisfying the following conditions: β is lower semi-continuous. Lakziand and Samet [1] proved the following fixed point theorem.

^{*} E-mail: ammaarulravi@gmail.com

Theorem 1.2 ([1]). Let (X, d) be a Hausdorff and complete rectangular metric space and let $T : X \to X$ be a self mapping satisfying $\psi(d(Tx, Ty)) \leq \psi(d(x, y)) - \phi(d(x, y))$ for all $x, y \in X$, where $\psi \in \Psi$ and $\phi \in \Phi$. Then T has unique fixed point.

Definition 1.3. $A_0 = \{x \in A : d(x, y) = d(A, B)\}, \text{ for } y \in B; B_0 = \{y \in B : d(x, y) = d(A, B)\}, \text{ for } x \in A, \text{ where } d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}.$

Definition 1.4. Let(A, B) be a pair of nonempty subsets of metric space (X, d) with $A_0 \neq 0$. Then the pair (A, B) is said to have p-property iff for any $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0, d(x_1, y_1) = d(A, B) = d(x_2, y_2)$.

2. Main Results

Theorem 2.1. Let (X, d) be a Hausdroff and complete Rectangular metric space and Let (A, B) be a pair of nonempty subsets of a metric space such that A_0 is nonempty. Let $T : A \to B$ be a mapping satisfying $T(A_0) \subset B_0$. Suppose

$$\psi(d(Tx, Ty)) \le \psi(d(x, y) - d(A, B)) - \phi(d(x, y) - d(A, B))$$
(1)

for all $x \in A$, $y \in B$, where $\psi \in \Psi$ and $\phi \in \Phi$. Then T has best proximity point.

Proof. Choose $x_0 \in A$. Since $Tx_0 \in T(A_0) \subset B_0$, there exists $x_1 \in A_0$ such that $d(x_1, Tx_0) = d(A, B)$. Analogously, regarding the assumption, $Tx_1 \in T(A_0) \subset B_0$, we determine $x_2 \in A_0$ such that $d(x_2, Tx_1) = d(A, B)$. Recursively, we obtain a sequence $\{x_n\}$ in A_0 satisfying

$$d(x_{n+1}, Tx_n) = d(A, B) \ \forall \ n \in N$$

$$\tag{2}$$

Claim: $d(x_n, x_{n+1}) \to 0$

If $x_N = x_{N+1}$, then x_N is best proximity point. By the *p*-property, we have

$$d(x_{n+1}, x_{n+2}) = d(Tx_n, Tx_{n+1})$$

Hence we assume that $x_n \neq x_{n+1}$ for all $n \in N$. Since $d(x_{n+1}, Tx_n) = d(A, B)$, from (2), we have for all $n \in N$.

$$\psi(d(x_{n+1}, x_{n+2})) = \psi(d(Tx_n, Tx_{n+1}))$$

$$\leq \psi(d(x_n, x_{n+1}) + d(x_n, Tx_n) + d(x_{n+1}, Tx_{n+1})) - d(A, B))$$

$$- \phi(d(x_n, x_{n+1}) + d(x_n, Tx_n) + d(x_{n+1}, Tx_{n+1})) - d(A, B))$$

$$\leq \psi(d(x_n, x_{n+1}) - d(A, B)) - \phi(d(x_n, x_{n+1}) - d(A, B))$$
(3)

We get $d(x_n, x_{n+1}) = d(A, B)$ and follows $d(x_n, x_{n+1}) = 0$ a contradiction. From (3) we get that $\psi(d(x_n, x_{n+1})) = 0$ and $d(x_n, x_{n+1}) = 0$ contradicting our assumption. Therefore $d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1})$ for any $n \in N$ and hence $\{d(x_n, x_{n+1})\}$ is monotone decreasing sequence of nonnegative real numbers, hence there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$. In the view of the fact from (2), for any $n \in N$, we have

$$\psi(d(x_{n+1}, x_{n+2})) \le \psi(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1}))$$

Taking the limit as $n \to \infty$ in the above inequality, and using the conditions of ψ and ϕ we have $\psi(r) \le \psi(r) - \phi(r)$ which implies $\phi(r) = 0$. Hence

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0 \tag{4}$$

Next we show that $\{x_n\}$ is a Cauchy sequence.

If otherwise there exists $\varepsilon > 0$, for which we can find two sub sequences of positive integers $\{m_k\}$ and $\{n_k\}$ such that for all positive integers $m_k > n_k > k$, $d(x_{m_k}, x_{n_k}) \ge \varepsilon$ and $d(x_{m_k}, x_{n_{k-1}}) < 1$. Now $\varepsilon \le d(x_{m_k}, x_{n_k}) \le d(x_{m_k}, x_{n_{k-1}}) + d(x_{n_{k-1}}, x_{n_k})$. That is $\varepsilon \le d(x_{m_k}, x_{n_k}) < \varepsilon + d(x_{n_{k-1}}, x_{n_k})$. Taking the limit as $k \to \infty$ in the above inequality and using (4) we have

$$\lim_{n \to \infty} d(x_{m_k}, x_{n_k}) = \varepsilon \tag{5}$$

Again $d(x_{m_k}, x_{n_k}) \leq d(x_{m_k}, x_{m_{k+1}}) + d(x_{m_{k+1}}, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k})$. Taking the limit as $k \to \infty$ in the above inequalities and using (4) and (5) we have

$$\lim_{k \to \infty} d(x_{m_{k+1}}, x_{n_{k+1}}) = \varepsilon \tag{6}$$

Again

$$d(x_{m_{k+1}}, x_{n_{k+1}}) \le d(x_{m_k}, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k})$$
$$\le d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}})$$

Letting $k \to \infty$ in the above inequalities and using (4) and (5) we have

$$\lim_{k \to \infty} d(x_{m_k}, x_{n_{k+1}}) = \varepsilon \tag{7}$$

$$\lim_{k \to \infty} d(x_{n_k}, x_{m_{k+1}}) = \varepsilon \tag{8}$$

For $x = x_{m_k}, y = y_{m_k}$ we have

$$d(x_{m_k}, Tx_{m_k}) - d(A, B) \le d(x_{m_k}, x_{m_{k+1}}) + d(x_{m_{k+1}}, Tx_{n_k}) - d(A, B)$$
$$= d(x_{m_k}, x_{m_{k+1}})$$

Similarly $d(x_{n_k}, Tx_{n_k}) - d(A, B) = d(x_{m_k}, x_{n_{k+1}})$ and $d(x_{n_k}, Tx_{m_k}) - d(A, B) = d(x_{n_k}, x_{m_{k+1}})$. From (1) we have

$$\begin{aligned} \psi(d(x_{m_{k+1}}, x_{n_{k+1}})) &= \psi(d(Tx_{m_k}, Tx_{n_k})) \\ &\leq \psi((d(x_{m_k}, x_{n_k}) + d(x_{m_k}, Tx_{m_k}) + d(x_{n_k}, Tx_{n_k})) - d(A, B)) - \phi((d(x_{m_k}, x_{n_k}) + d(x_{m_k}, Tx_{m_k})) \\ &+ d(x_{n_k}, Tx_{n_k})) - d(A, B)) \\ &\leq \psi((d(x_{m_k}, x_{n_k}) + d(x_{m_k}, x_{m_{k+1}}) + d(x_{n_k}, x_{n_{k+1}})) - d(A, B)) - \phi((d(x_{m_k}, x_{n_k}) + d(x_{m_k}, x_{m_{k+1}})) \\ &+ d(x_{n_k}, x_{n_{k+1}})) - d(A, B)) \end{aligned}$$

It follows that

$$\psi(d(Tx_{m_k}, Tx_{n_k})) \le \psi((d(x_{m_k}, x_{n_k}) + d(x_{n_k}, Tx_{n_{k+1}}) + d(x_{m_k}, Tx_{m_{k+1}})) - d(A, B))$$
$$-\phi((d(x_{m_k}, x_{n_k}) + d(x_{n_k}, Tx_{n_{k+1}}) + d(x_{m_k}, Tx_{m_{k+1}})) - d(A, B))$$

From (4), (5), (6) and (7) and letting $k \to \infty$ in the above inequalities and using the conditions of ψ and ϕ , we have $\psi(\varepsilon) \le \psi(\varepsilon) - \phi(\varepsilon)$ which is contradiction by virtue of property ϕ . Hence $\{x_n\}$ is a Cauchy sequence.

Since $\{x_n\} \subset A$ and A is a closed subset of the complete metric space (X, d), there exists x^* in A such that $x_n \to x^*$. Putting $x = x_n$ and $y = x^*$ and since $d(x_n, Tx^*) \leq d(x_n, x^*) + d(x^*, Tx_n)$ and $d(x^*, Tx_n) \leq d(x^*, Tx^*) + d(Tx^*, Tx_n)$. We have

$$\psi(d(x_{n+1}, Tx^*) - d(A, B)) \le \psi(d(Tx_n, Tx^*) - d(A, B))$$
$$\le \psi((d(x_n, x^*) + d(x_n, Tx_n) + d(x^*, Tx^*)) - d(A, B))$$
$$- \phi((d(x_n, x^*) + d(x_n, Tx_n) + d(x^*, Tx^*)) - d(A, B))$$

Taking the limit as $n \to \infty$ in the above inequalities and using the conditions of ψ and ϕ , we have

$$\psi((d(x^*, Tx^*) - d(A, B)) \le \psi((d(x^*, Tx^*) - d(A, B)) - \phi((d(x^*, Tx^*) - d(A, B)))$$

This implies that $d(x^*, Tx^*) = d(A, B)$. Hence x^* is a best proximity point of T.

For the uniqueness, let p and q be two best proximity point and suppose that $p \neq q$, then putting x = p and y = q in (1) we obtain

$$\psi(d(T_p, T_q)) \le \psi((d(p, q) + d(p, T_p) + d(q, T_q) - d(A, B)) - \phi((d(p, q) + d(p, T_p) + d(q, T_q) - d(A, B)))$$

That is $\psi(d(p,q)) \leq \psi(d(p,q)) - \phi(d(p,q))$. Contradiction by virtue of a property ϕ . Therefore p = q. This completes the proof.

Theorem 2.2. Let (X, d) be a Hausdroff and complete Rectangular metric space and Let (A, B) be a pair of nonempty subsets of a metric space such that A_0 is nonempty. Let $T : A \to B$ be a mapping satisfying $T(A_0) \subset B_0$. Suppose

$$\psi(d(Tx,Ty)) \le \alpha(d(x,y) - d(A,B)) - \beta(d(x,y) - d(A,B)) \tag{9}$$

for all $x \in A, y \in B$, where $\psi \in \Psi, \alpha \in \Phi, \beta \in \Gamma$ and these mappings satisfy the condition

$$\psi(t) - \alpha(t) + \beta(t) > 0 \quad \forall \quad t > 0 \tag{10}$$

Then T has best proximity point.

Note: since the proof is the mimic of the proof of Theorem 1.1, we say that the above theorem is equivalent to Theorem 2.1.

Theorem 2.3. Theorem 2.2 is a consequence of Theorem 2.1.

Proof. Taking $\alpha = \psi$ in Theorem 2.2, we obtain immediately Theorem 2.1. Indeed let $T : A \to B$ be a mapping satisfying (9) with $\psi \in \Psi$, $\alpha \in \Phi$, $\beta \in \Gamma$ and let these mappings satisfy conditions (10). From (9), for all $x \in A, y \in B$, we have

$$\psi(d(Tx,Ty)) \le \alpha(d(x,y) - d(A,B)) - \beta(d(x,y) - d(A,B))$$

= $\psi(d(x,y) - d(A,B)) - [\beta(d(x,y) - d(A,B)) - \alpha(d(x,y) - d(A,B)) + \psi(d(x,y) - d(A,B))]$ (11)

Define $\theta: [0,\infty) \to [0,\infty)$ by $\theta(t) = \beta(t) - \alpha(t) + \psi(t), t \ge 0$. Then we have

$$\psi(d(Tx, Ty)) \le \psi(d(x, y) - d(A, B)) - \theta(d(x, y) - d(A, B))$$
(12)

for all $x \in A, y \in B$. Due to the definition of θ , we observe that $\theta \in \Gamma$. Now Theorem 2.2 follows immediately from Theorem 2.1.

References

- H. Lakzian and B. Samet, Fixed points (ψ, φ)-weakly contractive mappings in generalized metric spaces, App. Math. Lett., 25(2012), 902-906.
- [2] K. Isik and D. Turkoglu, Common fixed points for (ψ, α, β) -weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., 2013(2013).
- [3] R. H. Haghi, S. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74(2011), 1799-1803.
- [4] H. Aydi, E. Karapinar and B. Samet, Remarks on some fixed point theorems, Fixed Point Theory Appl., 2012(2012).
- [5] W. A. Krik and N. Shahzad, Generalized metrices and caristis theorem, Fixed Point Theory Appl., 2013(2013).
- [6] M. Arshad, J. Ahmad and E. Karapinar, Some common fixed point results in rectangular metric spaces, Int. J. Anal., 2013(2013).
- [7] I. J. Sarma, J. M. Rao and S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2(3)(2009), 180-182.
- [8] M. Arshad, J. Ahmad and C. Vetro, On a theorem of Khan in a generalized metric spaces, Int. J. Anal., 2013(2013).
- [9] C. M. Chan and W. Y. Sun, Periodic points and fixed points for the weaker (ϕ, ψ) -contractive mappings in complete generalized metric spaces, J. Appl. Math., 2012(2012).
- [10] C. M. Chan, Common fixed point theorems in complete generalized metric spaces, J. Appl. Math., 2012(2012).
- [11] C. Di Bari and P. Vetro, Common fixed points in generalized metric spaces, Appl. Math. Compact., (2012).
- [12] N. Bilgili, E. Karapinar and D. Turkoglu, A note on common fixed points for (ψ, α, β) -weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., 2013(2013).
- [13] V. SankarRaj, A best proximity point Theorem for Weakly contractive non-self mappings, Nonlinear Analysis, 74(2011), 4804-4808.