

International Journal of Mathematics And its Applications

Some Graceful and α -Graceful Labeling for Cycle Related Graphs

V. J. Kaneria¹, Payal Akbari^{1,*} and Nishaba Parmar¹

1 Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India.

Abstract: In this paper we present graceful and α -graceful labeling for some cycle related graphs. We have proved that the graph obtained by adding two pendent vertices at distance two and one chord between them in a cycle C_n and the graph obtained by adding arbitrary pendent vertices at two different places at distance two in a cycle C_n , when n is odd are graceful graphs, while the graph obtained by adding alternate pendent vertices in a cycle C_n , when n is even and the graph obtained by adding arbitrary pendent vertices at two different places at distance two in a cycle C_n , when n is even and the graph obtained by adding arbitrary pendent vertices at two different places at distance two in a cycle C_n , when n is even are α -graceful graphs.

MSC: 05C78.

Keywords: Labeling, Graceful Labeling,
 $\alpha\mathchar`-Graceful Labeling, Cycle Related Graphs. © JS Publication.$

1. Introduction

We begin with a simple, undirected graph G = (V, E) with |V| = p vertices and |E| = q edges. For all terminology and notations, we follow Harary [1]. First of all we define and recall some definitions, which are used in this paper.

Definition 1.1. A function f is called graceful labeling for a graph G, if $f: V \to \{0, 1, ..., q\}$ is injective and the induced function $f^*: E \to \{1, 2, ..., q\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = uv \in E$. A graph G is called graceful graph, if it admits a graceful labeling.

Definition 1.2. A graceful labeling f on a graph G is said to be α -graceful labeling, if there exists a non-negative integer k less than q, the number of edges in G, with property that for every edge $uv \in E$ satisfies $\min \{f(u), f(v)\} \le k < \max\{f(u), f(v)\}$ in the graph G. A graph G is called α -graceful graph if it admits a α -graceful labeling.

Definition 1.3. The graph C_n^{2P+} is defined by adding two pendent vertices at the two vertices of a cycle C_n , which are at distance two and one chord between them in a cycle C_n .

Definition 1.4. The graph C_n^{AltP} is defined by adding alternate pendent vertices in a cycle C_n , where $n \equiv 0 \pmod{2}$.

The graceful labeling was introduced by A. Rosa [2] during 1967. Golomb [3] named such labeling as graceful labeling, which was called earlier as β -valuation. Rosa [2] also defined α -labeling. Any graph G, which admits a α -labeling is necessarily a bipartite graph. Here we call such α -labeling, as α -graceful labeling. Kaneria and Makadia [5-6] proved that a star of

^{*} E-mail: payalakbari111@gmail.com

cycle C_n $(n \equiv 0 \pmod{4})$ is graceful graph and cycle of cycles $C_t(C_n)$, $t \equiv 0 \pmod{2}$, $n \equiv 0 \pmod{4}$ is graceful graph. Rosa [2] proved that cycle C_n is graceful graph iff $n \equiv 0$, 3 (mod 4) and he also proved that cycle C_n is α -graceful graph iff $n \equiv 0 \pmod{4}$. Present work we investigate new graceful and α -graceful graphs which is obtain from cycle C_n , for all n. For detail survey of graph labeling one can refer Gallian [4].

2. Main Results

Theorem 2.1. C_n^{2P+} is a graceful graph.

Proof. Let G be a graph obtained by adding two pendent vertices at the two vertices of C_n , which are at distance two and one chord between them i.e. $G = C_n^{2P+}$. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$ and $E(C_n) = \{v_i v_{i+1}/1 \le i < n\} \cup \{v_1 v_n\}$. Now we shall add two vertices at v_1 and v_{n-1} and also add one chord between v_2 and v_n to obtain the graph G. Let us call these two vertices by v_0 and v_{n+1} . i.e. $V(G) = \{v_0, v_1, \ldots, v_{n+1}\}$ and $E(G) = E(C_n) \cup \{v_0 v_1, v_2 v_n, v_{n-1} v_{n+1}\}$. To define vertex labeling function $f: V(G) \to \{0, 1, 2, \ldots, n+2\}$, we take following cases.

Case 1: $n \equiv 1 \pmod{4}$

$$f(v_i) = \begin{cases} \frac{i}{2} & ; if \ i = 0, 2, \dots, \left(\frac{n-1}{2}\right) \\ \left(\frac{i+2}{2}\right) & ; if \ i = \left(\frac{n+3}{2}\right), \left(\frac{n+7}{2}\right), \dots, (n-1) \\ n + \left(\frac{5-i}{2}\right) & ; if \ i = 3, 5, \dots, (n-2) \\ n+3 & ; if \ i = 1 \\ n+2 & ; if \ i = n \\ \left(\frac{n+5}{2}\right) & ; if \ i = n+1 \end{cases}$$

Case 2: $n \equiv 2 \pmod{4}$

$$f(v_i) = \begin{cases} \frac{i}{2} & ; if \ i = 0, 2, 4, \dots, \left(\frac{n+2}{2}\right) \\ \left(\frac{i+2}{2}\right) & ; if \ i = \left(\frac{n+6}{2}\right), \left(\frac{n+10}{2}\right), \dots, n \\ n + \left(\frac{7-i}{2}\right) & ; if \ i = 1, 3, \dots, \left(\frac{n}{2}\right) \\ n + \left(\frac{5-i}{2}\right) & ; if \ i = \left(\frac{n+4}{2}\right) \left(\frac{n+8}{2}\right), \dots, (n+1) \end{cases}$$

Case 3: $n \equiv 3 \pmod{4}$

$$f(v_i) = \begin{cases} \frac{i+2}{2} & ; if \ i = 2, 4, \dots, \left(\frac{n+1}{2}\right) \\ \left(\frac{i+4}{2}\right) & ; if \ i = \left(\frac{n+5}{2}\right), \left(\frac{n+9}{2}\right), \dots, (n-1) \\ n + \left(\frac{7-i}{2}\right) & ; if \ i = 1, 3, \dots, (n-2) \\ 1 & ; if \ i = n \\ \frac{n+7}{2} & ; if \ i = n+1 \\ 0 & ; if \ i = 0 \end{cases}$$

Case 4: $n \equiv 0 \pmod{4}$

Subcase 4.1: n = 4

$$f(v_i) = \begin{cases} \frac{i}{2} & ; if \ i = 0, 2, \dots, \left(\frac{n}{2}\right) \\ \frac{i+2}{2} & ; if \ i = \left(\frac{n+4}{2}\right), \left(\frac{n+6}{2}\right), \dots, n \\ n + \left(\frac{7-i}{2}\right) & ; if \ i = 1, 3, \dots, n+1 \end{cases}$$

Subcase 4.2: $n \neq 4$

$$f(v_i) = \begin{cases} \frac{i}{2} & ; if \ i = 0, 2, \dots, \left(\frac{n}{2}\right) \\ \left(\frac{i+2}{2}\right) & ; if \ i = \left(\frac{n+4}{2}\right), \left(\frac{n+6}{2}\right), \dots, n \\ n + \left(\frac{7-i}{2}\right) & ; if \ i = 1, 3, \dots, \left(\frac{n+2}{2}\right) \\ n + \left(\frac{5-i}{2}\right) & ; if \ i = \left(\frac{n+6}{2}\right), \left(\frac{n+10}{2}\right), \dots, (n+1) \end{cases}$$

By defined pattern of function, it can be observe that f is one-one, as there is no repeated vertex label. Now we shall prove f^* is bijection. First of all we compute range of f^* i.e. $f^*(E(G))$. Case 1: $n \equiv 1 \pmod{4}$. Observe that,

Therefore,

$$\{f^*(v_i v_{i+1})/i = 0, 1, \dots, (n-2)\} = \left\{3, 4, \dots, \left(\frac{n+1}{2}\right), \left(\frac{n+5}{2}\right), \dots, n+3\right\} \text{ and}$$
$$f^*(v_{n-1}v_{n+1}) = 2, \quad f^*(v_1v_n) = 1, \quad f^*(v_2v_n) = n+1, \quad f^*(v_{n-1}v_n) = \frac{n+3}{2}$$
$$i.e. \quad f^*(E(G)) = \{1, 2, 3, \dots, n+3\}.$$

Hence, f^* is onto in this case.

Case 2: $n \equiv 2 \pmod{4}$. Observe that,

$$f^*\left(v_0v_1\right) = n+3, \quad f^*\left(v_1v_2\right) = n+2, \dots, f^*\left(v_{\frac{n}{2}}v_{\frac{n+2}{2}}\right) = \frac{n+6}{2},$$
$$f^*\left(v_{\frac{n+2}{2}}v_{\frac{n+4}{2}}\right) = \frac{n+2}{2}, \quad f^*\left(v_{\frac{n+4}{2}}v_{\frac{n+6}{2}}\right) = \frac{n-2}{2}, \dots, f^*\left(v_{n-1}v_n\right) = 2.$$

Therefore,

$$\{f^*(v_iv_{i+1})/i = 0, 1, \dots, (n-1)\} = \{2, 3, \dots, \left(\frac{n-2}{2}\right), \left(\frac{n+2}{2}\right), \left(\frac{n+6}{2}\right), \dots, n+3\} \text{ and}$$
$$f^*(v_{n-1}v_{n+1}) = 1, \ f^*(v_1v_n) = \frac{n+4}{2}, \ f^*(v_2v_n) = \frac{n}{2}$$
$$i.e. \ f^*(E(G)) = \{1, 2, 3, \dots, n+3\}$$

Hence, f^* is onto in this case.

Case 3: $n \equiv 3 \pmod{4}$. Observe that,

$$f^*(v_0v_1) = n+3, \ f^*(v_1v_2) = n+1, \dots, f^*\left(v_{\frac{n+1}{2}}v_{\frac{n+3}{2}}\right) = \frac{n+3}{2},$$
$$f^*\left(v_{\frac{n+3}{2}}v_{\frac{n+5}{2}}\right) = \frac{n-1}{2}, \dots, f^*(v_{n-2}v_{n-1}) = 3.$$

Therefore,

$$f^*(v_i v_{i+1})/i = 0, 1, \dots, (n-2)\} = \{3, 4, \dots, \left(\frac{n-1}{2}\right), \left(\frac{n+3}{2}\right), \dots, n+3\}$$
 and

67

$$f^*(v_{n-1}v_{n+1}) = 2, \ f^*(v_1v_n) = n+2, \ f^*(v_2v_n) = 1, \ f^*(v_{n-1}v_n) = \frac{n+1}{2}$$

i.e.
$$f^*(E(G)) = \{1, 2, 3, \dots, n+3\}$$

Hence, f^* is onto in this case.

Case 4: $n \equiv 0 \pmod{4}$

Subcase 4.1: n = 4. Observe that,

$$f^*(v_0v_1) = n + 3, \ f^*(v_1v_2) = n + 2, \ f^*(v_2v_3) = n + 1, \ f^*(v_1v_n) = n,$$
$$f^*(v_{n-1}v_n) = n - 1, \ f^*(v_{n-1}v_{n+1}) = 1 \ and \ f^*(v_2v_n) = 2.$$
$$i.e. \ f^*(E(G)) = \{1, 2, 3, \dots, n+3\}$$

Hence, f^* is onto in this case.

Subcase 4.2: $n \neq 4$. Observe that,

$$f^*\left(v_0v_1\right) = n+3, \ f^*\left(v_1v_2\right) = n+2, \dots, f^*\left(v_{\frac{n}{2}}v_{\frac{n+2}{2}}\right) = \frac{n+6}{2},$$
$$f^*\left(v_{\frac{n+2}{2}}v_{\frac{n+4}{2}}\right) = \frac{n+2}{2}, \ f^*\left(v_{\frac{n+4}{2}}v_{\frac{n+6}{2}}\right) = \frac{n-2}{2}, \dots, f^*(v_{n-1}v_n) = 2.$$

Therefore,

$$\{f^*(v_i v_{i+1})/i = 0, 1, \dots, (n-1)\} = \{2, 3, \dots, \left(\frac{n-2}{2}\right), \left(\frac{n+2}{2}\right), \left(\frac{n+6}{2}\right), \dots, n+3\}$$

and $f^*(v_{n-1}v_{n+1}) = 1$, $f^*(v_1v_n) = \frac{n+4}{2}$, $f^*(v_2v_n) = \frac{n}{2}$ i.e. $f^*(E(G)) = \{1, 2, 3, ..., n+3\}$. Hence, f^* is onto in this case. Thus, we proved that f^* is an onto map in each cases. Further domain of f^* and range of f^* have same cardinality, gives f^* is one-one. Therefore, f^* is bijection. Thus, f is graceful labeling for G. Therefore, $G = C_n^{2P+}$ is graceful graph. \Box

Illustration 2.2. Graph C_{10}^{2P+} and its graceful labeling shown in Figure 1.

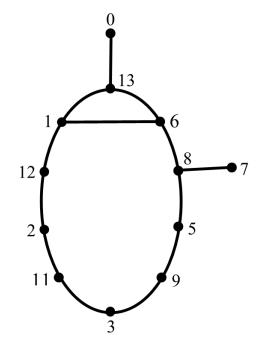


Figure 1. Graceful labeling for $G = C_{10}^{2P+}$

Theorem 2.3. C_n^{AltP} is α -graceful graph when $n \equiv 0 \pmod{2}$.

Proof. Let G be a graph obtained by adding alternate pendent vertices in cycle C_n when $n \equiv 0 \pmod{2}$ i.e. $G = C_n^{AltP}$. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and $E(C_n) = \{v_i v_{i+1}/1 \le i < n\} \cup \{v_1 v_n\}$. Now we shall add $\frac{n}{2}$ vertices at v_1, v_3, \dots, v_{n-1} to obtain graph G. Let us call these vertices by $v_{n+1}, v_{n+2}, \dots, v_{\frac{3n}{2}}$ i.e. $V(G) = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_{\frac{3n}{2}}\}$ and $E(G) = E(C_n) \cup \{v_1 v_{n+1}, v_3 v_{n+2}, \dots, v_{n-1} v_{\frac{3n}{2}}\}$.

To define vertex labeling function $f: V(G) \to \{0, 1, 2, \dots, \frac{3n}{2}\}$, we take following cases. **Case 1:** $n \equiv 0 \pmod{3}$

$$f(v_i) = \begin{cases} \frac{3n}{2} - \left(\frac{i-1}{2}\right) & ; if \ i = 1, 3, \dots, (n-1) \\ i - 1 & ; if \ i = 2, 4, \dots, \frac{2n}{3} \\ i & ; if \ i = \left(\frac{2n+6}{3}\right), \left(\frac{2n+12}{3}\right), \dots, n \\ 2(i-n) - 2 & ; if \ i = n+1, n+2, \dots, \frac{4n}{3} \\ 2(i-n) - 1 & ; if \ i = \left(\frac{4n+3}{3}\right), \left(\frac{4n+6}{3}\right), \dots, \frac{3n}{2} \end{cases}$$

Case 2: $n \equiv 1 \pmod{3}$

$$f(v_i) = \begin{cases} \frac{3n}{2} - \left(\frac{i-1}{2}\right) & ; if \ i = 1, 3, \dots, (n-1) \\ i & ; if \ i = 2, 4, \dots, \left(\frac{n-4}{3}\right) \\ i+1 & ; if \ i = \left(\frac{n+2}{3}\right), \left(\frac{n+8}{3}\right), \dots, (n-2) \\ 2\left(i-n\right) - 1 & ; if \ i = n+2, n+3, \dots, \left(\frac{7n+2}{6}\right) \\ 2\left(i-n\right) & ; if \ i = \left(\frac{7n+8}{6}\right), \left(\frac{7n+14}{6}\right), \dots, \frac{3n}{2} \\ 0 & ; if \ i = n+1 \\ 1 & ; if \ i = n \end{cases}$$

Case 3: $n \equiv 2 \pmod{3}$

$$f(v_i) = \begin{cases} \frac{3n}{2} - \left(\frac{i-1}{2}\right) & ; if \ i = 1, 3, \dots, (n-1) \\ i & ; if \ i = 2, 4, \dots, \left(\frac{n-2}{3}\right) \\ i+1 & ; if \ i = \left(\frac{n+4}{3}\right), \left(\frac{n+10}{3}\right), \dots, (n-2) \\ 2\left(i-n\right) - 1 & ; if \ i = n+2, n+3, \dots, \left(\frac{7n-2}{6}\right) \\ 2\left(i-n\right) & ; if \ i = \left(\frac{7n+4}{6}\right), \left(\frac{7n+10}{6}\right), \dots, \frac{3n}{2} \\ 0 & ; if \ i = n+1 \\ 1 & ; if \ i = n \end{cases}$$

By defined pattern of function f, it can be observe that f is one-one, as there is no repeated vertex label. Now we shall prove f^* is bijection. First of all we compute range of f^* i.e. $f^*(E(G))$. **Case 1:** $n \equiv 0 \pmod{3}$. Observe that,

$$f^*(v_1v_{n+1}) = \frac{3n}{2}, \ f^*(v_1v_2) = \frac{3n}{2} - 1, \dots, f^*\left(v_{\frac{2n}{3}}v_{\frac{2n+3}{3}}\right) = \frac{n+2}{2}$$
$$f^*\left(v_{\frac{2n+3}{3}}v_{\frac{4n+3}{3}}\right) = \frac{n-2}{2}, \dots, f^*\left(v_{n-2}v_{\frac{3n}{2}}\right) = 2, \ f^*(v_{n-1}v_n) = 1 \ and$$
$$f^*(v_1v_n) = \frac{n}{2} \ i.e. \ f^*(E(G)) = \left\{1, 2, 3, \dots, \frac{3n}{2}\right\}$$

Hence, f^* is onto in this case.

Case 2: $n \equiv 1 \pmod{3}$. Observe that,

$$f^*(v_1v_{n+1}) = \frac{3n}{2}, \ f^*(v_1v_n) = \frac{3n}{2} - 1, \ f^*(v_1v_2) = \frac{3n}{2} - 2, \ f^*(v_2v_3) = \frac{3n}{2} - 3, \dots, \ f^*\left(v_{\frac{n-1}{3}}v_{\frac{7n+2}{6}}\right) = n+1,$$

$$f^*\left(v_{\frac{n-1}{3}}v_{\frac{n+2}{3}}\right) = n-1, \dots, f^*\left(v_{n-2}v_{n-1}\right) = 2, \ f^*\left(v_{n-1}v_{\frac{3n}{2}}\right) = 1 \ and$$
$$f^*(v_{n-1}v_n) = n \ i.e. \ f^*(E(G)) = \left\{1, 2, 3, \dots, \frac{3n}{2}\right\}$$

Hence, f^* is onto in this case.

Case 3: $n \equiv 2 \pmod{3}$. Observe that,

$$f^{*}\left(v_{1}v_{n+1}\right) = \frac{3n}{2}, \ f^{*}\left(v_{1}v_{n}\right) = \frac{3n}{2} - 1, \ f^{*}\left(v_{1}v_{2}\right) = \frac{3n}{2} - 2, \ f^{*}\left(v_{2}v_{3}\right) = \frac{3n}{2} - 3, \dots, f^{*}\left(v_{\frac{n-2}{3}}v_{\frac{n+1}{3}}\right) = n+1, \\ f^{*}\left(v_{\frac{n+1}{3}}v_{\frac{7n+4}{6}}\right) = n - 1, \dots, f^{*}\left(v_{n-2}v_{n-1}\right) = 2, \ f^{*}\left(v_{n-1}v_{\frac{3n}{2}}\right) = 1 \ and \\ f^{*}(v_{n-1}v_{n}) = n \ i.e. \ f^{*}(E(G)) = \left\{1, 2, 3, \dots, \frac{3n}{2}\right\}$$

Hence, f^* is onto in this case.

Thus, we proved that f^* is an onto map in each cases. Further domain of f^* and range of f^* have same cardinality, gives f^* is one-one. Therefore, f^* is bijection. Thus, f is graceful labeling for $G = C_n^{AltP}$, $n \equiv 0 \pmod{2}$. By taking k = n, it can be observe that C_n^{AltP} , $n \equiv 0 \pmod{2}$ is bipartite graph and for any $uv \in E(G)$, $\min\{f(u), f(v)\} \leq k < \max\{f(u), f(v)\}$ and hence, f is an α -labeling in these cases. Therefore, C_n^{AltP} , $n \equiv 0 \pmod{2}$ is α -graceful graph.

Illustration 2.4. Graph C_{10}^{AltP} and its α -graceful labeling shown in figure 2.

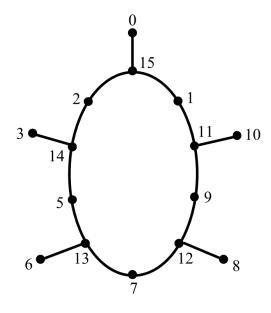


Figure 2. α -graceful labeling for $G = C_{10}^{AltP}$ [here k = n = 10]

Theorem 2.5. The graph obtained by adding arbitrary pendent vertices at two different places among at first place t and second place m in cycle C_n at distance two is graceful graph when $n \equiv 1 \pmod{2}$ and it is α -graceful graph when $n \equiv 0 \pmod{2}$, where $\max\{t, m\} \ge \left\lceil \frac{n}{2} \right\rceil$.

Proof. Let G be a graph obtained by adding arbitrary pendent vertices at two different places among at first place t and second place at m in cycle C_n at distance two. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$ and $E(C_n) = \{v_i v_{i+1}/1 \le i < n\} \cup \{v_1 v_n\}$. Now we shall add two different arbitrary pendent vertices at v_1 and v_{n-1} in numbers of t and m respectively to obtain graph G. To define vertex labeling function $f: V(G) \to \{0, 1, 2, \ldots, n, n+1, \ldots, t+m+n\}$, we take following cases. We take following cases.

Case 1: $t \ge \left[\frac{n}{2}\right]$

Subcase 1.1: $n \equiv 0 \pmod{2}$

$$f\left(v_{i}\right) = \begin{cases} m+t+n-\left(\frac{i-1}{2}\right) \;\;;\;\; if \;\; i=1,3,\ldots,(n-1) \\ t+\left(\frac{i-2}{2}\right) \;\;;\;\; if \;\; i=2,4,\ldots,(n-2) \\ m+t+\frac{n}{2} \;\;;\;\; if \;\; i=n \\ i-(n+1) \;\;;\;\; if \;\; i=n+1,n+2,\ldots,t+n \\ i-\frac{n}{2}-2 \;\;;\;\; if \;\; i=n+t+1,n+t+2,\ldots,t+m-\frac{n}{2}+2 \\ i-\frac{n}{2}-1 \;\;;\;\; if \;\; i=t+m-\frac{n}{2}+3,\ldots,m+t+n \end{cases}$$

Subcase 1.2: $n \equiv 1 \pmod{2}$

$$f(v_i) = \begin{cases} m+n+t-\left(\frac{i-1}{2}\right) \; ; \; if \; i=1,3,\ldots,n \\ t+\left(\frac{i-2}{2}\right) \; ; \; if \; i=2,4,\ldots,(n-1) \\ i-(n+1) \; ; \; if \; i=n+1,n+2,\ldots,n+t \\ i-\left[\frac{n}{2}\right]-2 \; ; \; if \; i=t+n+1,t+n+2,\ldots,t+n+\left[\frac{n}{2}\right]-1 \\ i-\left[\frac{n}{2}\right]-1 \; ; \; if \; i=t+n+\left[\frac{n}{2}\right],\ldots,m+t+n \end{cases}$$

Case 2: $m \ge \left[\frac{n}{2}\right]$

Subcase 2.1: $n \equiv 0 \pmod{2}$

$$f(v_i) = \begin{cases} m+t+\frac{n}{2} + \left(\frac{i+1}{2}\right) &; if \ i=1,3,\dots,(n-1) \\ m+\frac{n}{2} - \left(\frac{i+2}{2}\right) &; if \ i=2,4,\dots,(n-2) \\ m+t+\frac{n}{2} &; if \ i=n \\ i-(t+n+1) &; if \ i=t+n+1,t+n+2,\dots,m+t+n \\ m-\frac{n}{2} - 2 + i &; if \ i=n+1,n+2,\dots,t+\frac{n}{2} + 2 \\ m-\frac{n}{2} - 1 + i &; if \ i=t+\frac{n}{2} + 3, \ t+\frac{n}{2} + 4,\dots,t+n \end{cases}$$

Subcase 2.2: $n \equiv 1 \pmod{2}$

$$f(v_i) = \begin{cases} m + \left[\frac{n}{2}\right] - \left(\frac{i+1}{2}\right) & ; if \ i = 1, 3, \dots, (n-2) \\ m + t + \left[\frac{n}{2}\right] + \left(\frac{i+2}{2}\right) & ; if \ i = 2, 4, \dots, (n-1) \\ m + t + \left[\frac{n}{2}\right] + 1 & ; if \ i = n \\ i - (t+n+1) & ; if \ i = t+n+1, t+n+2, \dots, m+t+n \\ m + (i-n+1) & ; if \ i = n+1, n+2, \dots, n+\left[\frac{n}{2}\right] - 1 \\ m - n + i + 2 & ; if \ i = n + \left[\frac{n}{2}\right], n + \left[\frac{n}{2}\right] - 1, \dots, t+n \end{cases}$$

By defined pattern of function f, it can be observe that f is one-one, as there is no repeated vertex label. Now we shall prove f^* is a bijection. First of all we compute range of f^* . i.e. $f^*(E(G))$.

Case 1:
$$t \ge \left[\frac{n}{2}\right]$$

Subcase 1.1: $n \equiv 0 \pmod{2}$. Observe that,

$$\{f^*(v_1v_i)/i = n+1, n+2, \dots, n+t\} = \{m+n+1, m+n+2, \dots, m+n+t\},\$$

$$f^*(v_1v_2) = m+n, \ f^*(v_2v_3) = m+n-1, \dots, f^*(v_{n-2}v_{n-1}) = m+3, (v_{n-1}v_n) = 1, \ f^*(v_1v_n) = \frac{n}{2} \ and$$

$$\{f^*(v_{n-1}v_i)/i = t + n + 1, t + n + 2, \dots, t + m + n\} = \{2, 3, \dots, \frac{n}{2} - 1, \frac{n}{2} + 1, \dots, m + 2\}$$

i.e. $f^*(E(G)) = \{1, 2, 3, \dots, m + t + n\}$

Hence, f^* is onto in this case.

Subcase 1.2: $n \equiv 1 \pmod{2}$. Observe that,

$$\{f^*(v_1v_i)/i = n+1, n+2, \dots, n+t\} = \{m+n+1, m+n+2, \dots, m+n+t\},\$$

$$f^*(v_1v_2) = m+n, f^*(v_2v_3) = m+n-1, \dots, f^*(v_{n-1}v_n) = m+2, f^*(v_1v_n) = \left[\frac{n}{2}\right] \quad and\$$

$$\{f^*(v_{n-1}v_i)/i = t+n+1, \dots, t+m+n\} = \{1, 2, \dots, \left[\frac{n}{2}\right] - 1, \left[\frac{n}{2}\right] + 1, \dots, m+1\}$$

$$i.e. \quad f^*(E(G)) = \{1, 2, 3, \dots, m+t+n\}$$

Hence, f^* is onto in this case.

Case 2: $m \ge \left\lceil \frac{n}{2} \right\rceil$

Subcase 2.1: $n \equiv 0 \pmod{2}$. Observe that,

$$\{f^*(v_1v_i)/i = n+1, n+2, \dots, n+t\} = \{2, 3, \dots, \frac{n}{2} - 1, \frac{n}{2} + 1, \dots, t+2\},\$$

$$f^*(v_1v_2) = t+3, \ f^*(v_2v_3) = t+4, \dots, f^*(v_{n-2}v_{n-1}) = t+n, \ f^*(v_{n-1}v_n) = \frac{n}{2}, f^*(v_1v_n) = 1 \ and$$

 $\{f^*(v_{n-1}v_i)/i = t + n + 1, t + n + 2, \dots, t + m + n\} = \{t + n - 1, t + n, \dots, m + t + n\}$

i.e.
$$f^*(E(G)) = \{1, 2, 3, \dots, m+t+n\}$$

Hence, f^* is onto in this case.

Subcase 2.2: $n \equiv 1 \pmod{2}$. Observe that,

$$\{f^*(v_1v_i)/i = n+1, n+2, \dots, n+t\} = \{1, 2, \dots, \left\lfloor\frac{n}{2}\right\rfloor - 1, \left\lfloor\frac{n}{2}\right\rfloor + 1, \dots, t+1\}, f^*(v_1v_2) = t+3$$

$$f^*(v_2v_3) = t+4, \dots, f^*(v_{n-2}v_{n-1}) = t+n, \ f^*(v_1v_n) = t+2, \ f^*(v_{n-1}v_n) = \left\lfloor\frac{n}{2}\right\rfloor \ and$$

$$\{f^*(v_{n-1}v_i)/i = t+n+1, t+n+2, \dots, m+t+n\} = \{t+n+1, t+n+2, \dots, m+t+n\}$$

$$i.e. \ f^*(E(G)) = \{1, 2, 3, \dots, m+t+n\}$$

Hence, f^* is onto in this case.

Thus, we proved that f^* is an onto map in each cases. Further domain of f^* and range of f^* have same cardinality, gives f^* is one-one. Therefore, f^* is bijective. Thus, f is graceful labeling for G. By taking $k = m + t + \frac{n}{2}$ when $n \equiv 0 \pmod{2}$, it can be observe that G is bipartite graph and for any $uv \in E(G)$, min $\{f(u), f(v)\} \leq k < \max\{f(u), f(v)\}$ and hence, f is α -labeling when $n \equiv 0 \pmod{2}$. Therefore G is graceful graph when $n \equiv 1 \pmod{2}$ and it is α -graceful graph when $n \equiv 0 \pmod{2}$.

Illustration 2.6. Graph G with n = 10, t = 2 and m = 5 and its α -graceful labeling shown in Figure 3.

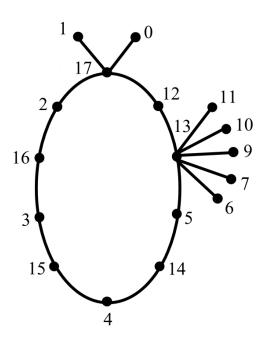


Figure 3. α -graceful labeling for graph G [here $k = m + t + \frac{n}{2} = 12$]

Acknowledgement

Authors of this paper would like to thanks reviewers for their thoughtful comments and suggestions.

References

- [1] F. Harary, Graph theory, Addition Wesley, Massachusetts, (1972).
- [2] A. Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, (1967), 349-355.
- [3] S. W. Golomb, How to number a graph, Graph Theory and Computing (R. C. Read. Ed.) Academic Press, New York, (1972), 23-37.
- [4] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 22(2020), #DS6.
- [5] V. J. Kaneria and H. M. Makadia, Some graceful graphs, J. of Math. Res., 4(1)(2012), 54-57.
- [6] V. J. Kaneria, H. M. Makadia and M. M. Jariya, Graceful labeling for cycle of graphs, Int. J. of Math. Res., 6(2)(2014), 173-178.