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1. Introduction

Balancing Numbers Bn and Lucas Balancing Numbers Cn are defined by Behera and Panda [1] as the natural numbers that

satisfy the recurrence relations

Bn+1 = 6Bn −Bn−1

Cn+1 = 6Cn − Cn−1

with B0 = 0, B1 = 1 and C0 = 1, C1 = 3 where Bn, Cn are the nth Balancing Number and Lucas Balancing Number

respectively. Panda and Rout [5] generalized the above recurrence relation to

Bn+1 = pBn − qBn−1

Cn+1 = pCn − qCn−1

with B0 = 0, B1 = 1 and C0 = 1, C1 = p/2 for p, q positive integers.They proved that all properties of Balancing Numbers

and Lucas Balancing Number also hold for their generalised sequence when q = 1. In this paper using the properties of

Generalised Lucas Balancing sequences we generate the quadratic Diophantine Equations x2 ± pxy + y2 + ( p2−4
4

) = 0 and

x2 ± pxy + y2 ± ( p2−4
4

)x = 0 in two variables and prove that these equations are with infinitely many solutions. We further

obtain all the solutions of each of these Diophantine Equations in terms of Lucas Balancing Numbers. Marlewski and

∗ E-mail: panuradhakameswari@yahoo.in
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Zarzycki [7] proved that there exists infinitely many integer solutions (x, y), that are positive, for the Diophantine equation

x2 − pxy + y2 + x = 0 if and only if p = 3. Mojtaba Bahramain and Hussan Daghigh [8] proved that for a positive integer

p the Diophantine equation x2 ± pxy − y2 ± x = 0 has positive solutions (x, y) that are infinitely many and they expressed

these solutions in terms of Fibonacci sequences. A similar approach is adapted for the Diophantine equations mentioned

above to express all the infinitely many solutions in each case in terms of Generalised Lucas Balancing Sequences.

2. Properties of Generalised Balancing Sequences and Generalised
Lucas Balancing Sequences

In this section we investigate some properties of Generalised Lucas Balancing Sequences. Generalised Balancing Sequences

are numbers satisfying the recurrence relation

Bn+1 = pBn −Bn−1

with B0 = 0, B1 = 1 for p, a positive integer. The equation Bn+1 = pBn − Bn−1 can be expressed as a matrix equation

given as Bn+1

Bn

 =

p −1

1 0


 Bn

Bn−1



and the matrix

p −1

1 0

 is denoted as QBp . Generalised Lucas Balancing Sequences are numbers satisfying the recurrence

relation

Cn+1 = pCn − Cn−1

with C0 = 1, C1 = p/2 for p, a positive integer. When p is even we get Cn to be an integer sequence. We prove some results

on the above Generalised Lucas Balancing Sequence.

Remark 2.1. The definition of the Generalized Lucas Balancing sequences Cn+1 = pCn − Cn−1 can be extended to all

integers.

Theorem 2.2. C−n = Cn for all n ≥ 1.

Theorem 2.3 ([5]). Cm+n = CmCn + ( p2−4
4

)BmBn and Cm−n = CmCn − ( p2−4
4

)BmBn ∀ integers m,n.

Remark 2.4. We observe that Cn = ( p
2
)Bn −Bn−1 =

Bn+1−Bn−1

2
.

Definition 2.5. We define Balancing R-Matrix as

RB =

 p
2
−1

1 − p
2



Remark 2.6. RBQ
n
Bp

=

Cn+1 −Cn

Cn −Cn−1


Theorem 2.7. C2

n − pCnCn−1 + C2
n−1 + p2−4

4
= 0 for all integers n.

Proof. Follows from det(RBQ
n
Bp

) = det


Cn+1 −Cn

Cn −Cn−1
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Theorem 2.8. For S =

 p
2

p2−4
4

1 p
2

, Sn =

Cn
p2−4

4
Bn

Bn Cn


Theorem 2.9. C2

n − p2−4
4

B2
n = 1 for all integers n.

Proof. Follows from det(Sn) = 1.

3. Some Relations of Generalised Balancing Sequences and Conver-
gents of a Continued Fraction with Respect to Positive Integer p

For any positive integer D , if
√
D can be written as continued fraction that is infinite and simple, given as

(i).
√
D = a0 + 1

a1+
1

a2..

then it is denoted as
√
D = [a0, a1, a2, . . . ].

(ii).
√
D = a0 − 1

a1− 1
a2−..

then it is denoted as
√
D = (a0, a1, a2, . . . ).

For a non-negative integer n, the nth convergent of the continued fraction [a0, a1, a2, ....] is the real number

[a0, a1, a2, ...an−1] = hn/kn. The convergent in this case satisfy the recurrence relations give as

h−1 = 0, h0 = a0;hn+1 = an+1hn + hn−1, n ≥ 0

k−1 = 0, k0 = 1; kn+1 = an+1kn + kn−1, n ≥ 0.

Similarly for n, non-negative integer, the nth convergents of the continued fraction (a0, a1, a2, . . . ) is the real number

(a0, a1, a2, ...an−1) = hn/kn.The convergents in this case satisfy the recurrence relations give as

h−1 = 0, h0 = a0;hn+1 = an+1hn − hn−1, n ≥ 0

k−1 = 0, k0 = 1; kn+1 = an+1kn − kn−1, n ≥ 0.

Let p ≥ 2 be any integer then, p2 − 4 is a real number and the infinite simple continued fraction of
√

p2 − 4 is given as

√
p2 − 4 = (p, (p + 1)/2, 2, (p + 1)/2, 2p), when p is odd√
p2 − 4 = (p, p/2, 2p), when p is even.

In the following theorems the convergents of
√

p2 − 4 are expressed in terms of the Generalised Balancing sequence Bn.

Theorem 3.1. For an odd positive integer p, if the nth convergent of the continued fraction
√

p2 − 4 is hn/kn then for

every non-negative integer n the following holds

(i). h8n = B6n+2 −B6n and k8n = B6n+1

(ii). h8n+1 = 1/2[B6n+3 + B6n+2 −B6n+1 −B6n] and k8n+1 = 1/2[B6n+2 + B6n+1]

(iii). h8n+2 = B6n+3 −B6n+1 and k8n+2 = B6n+2

(iv). h8n+3 = 1/2[B6n+4 −B6n+2 and k8n+2 = 1/2B6n+3

(v). h8n+4 = B6n+5 −B6n+3 and k8n+4 = B6n+4

(vi). h8n+5 = 1/2[B6n+6 + B6n+5 −B6n+4 −B6n+3] and k8n+5 = 1/2[B6n+5 + B6n+4]
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(vii). h8n+6 = B6n+6 −B6n+4 and k8n+2 = B6n+5

(viii). h8n+7 = 1/2[B6n+7 −B6n+5] and k8n+7 = 1/2B6n+6.

Proof. Given p is odd then by the continued fraction we have
√

p2 − 4 = (p, (p + 1)/2, 2, (p + 1)/2, 2p) we have for a0 = p,

a1 = p + 1/2, a2 = 2, a3 = p + 1/2, a4 = 2p, n ≥ 1. hn kn

hn−1 kn−1

 =

an −1

1 0


hn−1 kn−1

hn−2 kn−2

 , n ≥ 1.

Now taking An =

an −1

1 0

 and Pn=

 hn kn

hn−1 kn−1

 note we have Pn = AnPn−1 , n ≥ 1, and setting N = A4A3A2A1, then

by induction we have for any positive integer t,

N t =

 B3t+1 −2B3t

1/2B3t −B3t−1

 .

We have

P4n = A4nP4n−1

= A4nA4n−1P4n−2

= A4nA4n−1A4n−2P4n−3

= A4nA4n−1A4n−2A4n−3P4n−4

= NP4n−4

therefore we have P8n = N2nP0

P8n =

 B6n+1 −2B6n

1/2B6n −B6n−1


p 1

1 0


Now by definition of Pn as

P8n =

 h8n k8n

h8n−1 k8n−1


we have h8n = pB6n+1 − 2B6n = B6n+2 −B6n and k8n = B6n+1. Similarly others can be proven.

Theorem 3.2. For an even positive integer p, if the nth convergent of the continued fraction
√

p2 − 4 is hn/kn then for all

non-negative integer n the following hold

(i). h2n = B2n+2 −B2n and k2n = B2n+1

(ii). h2n+1 = 1/2[B2n+3 −B2n+1] and k2n+1 = 1/2B2n+2

Proof. Given p is even. We have the continued fraction for
√

p2 − 4=(p, p/2, 2p) with a0 = p, a1 = p/2, a2 = 2p, then

note Pn = AnPn−1 ∀ n ≥ 1 with A2n =

2p −1

1 1

 and A2n−1 =

p/2 −1

1 0

. We have P2n = A2nP2n−1 = A2nA2n−1P2n−2.

Now setting M = A2A1 by induction we get for all positive integer t,

M t =

 B2t+1 −2B2t

1/2B2t −B2t−1

 .
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we have

P2n = MP2n−2

= MnP0

Pn =

 B2n+1 −2B2n

1/2B2n −B2n−1


p 1

1 0


⇒ h2n = pB2n+1 − 2B2n = B2n+2 −B2n and k2n = B2n+1

4. Solutions of Diophantine Equations Generated by Generalized Lu-
cas Balancing Sequences

In this section we first generate some Diophantine Equations from the property of Generalized Lucas Balancing Sequences.

The property C2
n − pCnCn−1 +C2

n−1 + p2−4
4

= 0 of Generalized Lucas Balancing Sequences given in theorem(2.6) generates

the polynomial x2 − pxy + y2 + ( p2−4
4

) = 0 and x2 + pxy + y2 + ( p2−4
4

) = 0 with
(
Cn, Cn−1

)
and

(
Cn,−Cn−1

)
as solutions

respectively .Further extending the property,C2
n − pCnCn−1 + C2

n−1 + p2−4
4

= 0 it generates the Diophantine equations

x2 − pxy + y2 + ( p2−4
4

)x = 0, x2 + pxy + y2 + ( p2−4
4

)x = 0, x2 − pxy + y2 − ( p2−4
4

)x = 0 and x2 + pxy + y2 − ( p2−4
4

)x = 0

with (C2
n, CnCn−1) , (C2

n,−CnCn−1), (−C2
n,−CnCn−1) and (−C2

n, CnCn−1) respectively. In section 4.1 we investigate the

solutions of each of the Diophantine Equations x2±pxy+y2+( p2−4
4

) = 0 in terms of Generalised Lucas Balancing Sequences.

In section 4.2 we investigate the solutions of each of the Diophantine Equations x2 ± pxy + y2 ± ( p2−4
4

)x = 0 in terms of

Generalised Lucas Balancing Sequences.

4.1. Solution of Diophantine Equation x2 ± pxy + y2 + (p
2−4
4

) = 0

In this section we show that the Diophantine equations x2 ± pxy + y2 + ( p2−4
4

) = 0 are solvable in integers for all positive p

and obtain the solutions in terms of Generalized Lucas Balancing Sequence.

4.1.1. Existence of Solutions

Theorem 4.1. For all non negative integer n, the following pairs satisfy the equation x2 − pxy + y2 + ( p2−4
4

) = 0

(
Cn, Cn−1

)
(
Cn−1, Cn

)
(
− Cn,−Cn−1

)
(
− Cn−1,−Cn

)
.

Proof. Follows from Theorem 2.6.

Each of the four formulas of solutions of x2 − pxy + y2 + ( p2−4
4

)x = 0 define a class of solution. Now we prove that these

four classes of solutions are only solutions.

4.1.2. The Four Classes of Solutions for each of the Diophantine Equations x2±pxy+y2+(p
2−4
4 ) = 0

In this section we solve the Diophantine Equation x2 − pxy + y2 + ( p2−4
4

) = 0 in terms of Generalized Lucas-Balancing

Sequence.We recall some properties of convergents in the following theorems.
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Theorem 4.2 ([10]). If the integer M satisfies |M | <
√
D then any positive integer solution (s, t) of x2 −Dy2 = M with

gcd(s, t) = 1 satisfies s = hn, t = kn where the nth convergent of the infinite simple continued fraction,
√
D = (a0, a1, a2, . . . )

is hn/kn for n a positive integer.

Theorem 4.3 ([10]). Let the infinite simple continued fraction of
√
D be (a0, a1, a2, ...) and suppose that mn and qn are

two sequences given by

m0 = 0

q0 = 1

mn+1 = anqn + mn

qn+1 = (D −m2
n+1)/qn.

Then

(a). mn and qn are integers for any positive integers n.

(b). h2
n −Dk2

n = (−1)n+1qn+1 for any integer n ≥ −1.

Theorem 4.4. (Cn, Cn−1) is a solution of the equation x2 − pxy + y2 + ( p2−4
4

) = 0 when p is odd.

Proof. Consider p to be an odd positive integer. Let (x, y) be any solution of x2− pxy + y2 + ( p2−4
4

) = 0 then there exists

c, e, positive integers such that (x, y)=(c, e). Then on substituting (c, e) we have

c2 − pce + e2 +
p2 − 4

4
= 0

This equation has integer solutions if and only if

4 = p2e2 − 4(e2 +
p2 − 4

4
)

= e2(p2 − 4)− (p2 − 4) is a square

Therefore there is an integer t satisfying

4 = t2 = (p2 − 4)(e2 − 1)

t2 − (p2 − 4)(e2 − 1) = 0

t2

p2 − 4
− (e2 − 1) = 0

t2

p2 − 4
+ 1− (e2 − 1) = 1

4

(
t2

p2 − 4
+ 1

)
− 4(e2 − 1) = 4

4

(
t2

p2 − 4
+ 1

)
− 4

(e2 − 1)

(p2 − 4)
(p2 − 4) = 4

(t′)2 − (p2 − 4)(e′)2 = 4

then we obtain

c =
pe± t

2
,
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by solving for (t′, e′) from the equation (t′)2 − (p2 − 4)(e′)2 = 0. Now considering the continued fraction of
√

p2 − 4 given

as
√

p2 − 4 =
(
p, (p + 1)/2, 2, (p + 1)/2, 2p) with

a0 = p,

a4n−3 =
(p + 1)

2
,

a4n−2 = 2,

a4n−1 =
p + 1

2
,

a4n = 2p,

for n ≥ 0. Now by the above theorem we have the periodic sequence give as

{(−1)n+1qn+1}∞n=−1 = {1, 4, p + 2, 4, 1}.

Now assuming (t, e) is a positive solution of t2 − (p2 − 4)e2 = 4 we have (t, e) = (hn, kn) for some positive integers n by

Theorem 3.3 and as h2
n −Dk2

n = (−1)n+1qn+1 by Theorem 3.4, we have by periodicity we have

h2
8n − (p2 − 4)k2

8n = (−1)8n+1q8n+1 = 4

h2
8n+2 − (p2 − 4)k2

8n+2 = (−1)8n+3q4n+1 = 4

h2
8n+3 − (p2 − 4)k2

8n+3 = (−1)8n+4q8n+4 = 1

h2
8n+4 − (p2 − 4)k2

8n+4 = (−1)8n+1q8n+5 = 4

h2
8n+6 − (p2 − 4)k2

8n+6 = (−1)8n+7q8n+7 = 4

h2
8n+7 − (p2 − 4)k2

8n+7 = (−1)8n+1q8n+8 = 1

for all n ≥ 0. Therefore all the solutions (t′, e′) of (t′)2 − (p2 − 4)(e′)2 = 4 are

(t′, e′) = (h8n, k8n)

= (2h8n+3, 2k8n+3)

= (h8n+6, k8n+6); n ≥ 0

Case 1: when t′ = h8n and e′ = k8n

(e′)2 = (k8n)2

4
(e2 − 1)

(p2 − 4)
= (B6n+1)2

e2 − 1 =
(p2 − 4)

4
B2

6n+1

e2 =
(p2 − 4)

4
B2

6n+1 + 1 = C2
6n+1

e = C6n+1

Now

(t′)2 = (h8n)2
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4

(
t2

p2 − 4
+ 1

)
= (B6n+2 −B6n)2 = 4C2

6n+1

t2

p2 − 4
= C2

6n+1 − 1

t2 =
(
C2

6n+1 − 1
) (

p2 − 4
)

t2 =

(
p2 − 4

)2
4

B2
6n+1

Case 2: when t′ = h8n+2 and e′ = k8n+2

(e′)2 = (k8n+2)2

4
(e2 − 1)

(p2 − 4)
= (B6n+2)2

e2 − 1 =
(p2 − 4)

4
B2

6n+2

e2 =
(p2 − 4)

4
B2

6n+2 + 1 = C2
6n+2

e = C6n+2

Now

(t′)2 = (h8n)2

4
( t2

p2 − 4
+ 1
)

=
(
B6n+3 −B6n+1

)2
= 4C2

6n+2

t2

p2 − 4
= C2

6n+2 − 1

t2 =
(
C2

6n+2 − 1
)(
p2 − 4

)
t2 =

(
p2 − 4

)2
4

B2
6n+2

Now for c = pe+t
2

we get c = C6n+3. The solutions (c, e) = (C6n+3, C6n+2).

Case 3: when t′ = 2h8n+3 and e′ = 2k8n+3. We get the solutions (c, e) = (C6n+4, C6n+3).

Case 4: when t′ = h8n+4 and e′ = k8n+4. We get the solutions (c, e) = (C6n+5, C6n+4).

Case 5: when t′ = h8n+6 and e′ = k8n+6. We get the solutions (c, e) = (C6n+6, C6n+5).

Case 6: when t′ = 2h8n+7 and e′ = 2k8n+7. We get the solutions (c, e) = (C6n+7, C6n+6).

And finally as (x, y) = (c, e) we obtain

(x, y) =
(
C6n+2, C6n+1

)
(x, y) =

(
C6n+3, C6n+2

)
(x, y) =

(
C6n+4, C6n+3

)
(x, y) =

(
C6n+5, C6n+4

)
(x, y) =

(
C6n+6, C6n+5

)
(x, y) =

(
C6n+7, C6n+6

)
and therefore

(x, y) =
(
C2n, C2n−1

)
;n ≥ 1
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or

(x, y) =
(
C2n+1, C2n

)
;n ≥ 1

Therefore (x, y) =
(
Cn, Cn−1

)
is a solution of x2 − pxy + y2 + ( p2−4

4
) = 0 when p is odd for k > 2 and also for k = 1.

Theorem 4.5. (Cn, Cn−1) is a solutions of the equation x2 − pxy + y2 + ( p2−4
4

) = 0 when p is even.

Proof. Consider p to be an even positive integer. Let (x, y) be any solution of x2−pxy+y2 +( p2−4
4

) = 0 then there exists

c, e, positive integers such that (x, y)=(c, e). Then on substituting (c, e) we have

c2 − pce + e2 +
p2 − 4

4
= 0

This equation has integer solutions if and only if

4 = p2e2 − 4(e2 +
p2 − 4

4
)

= e2(p2 − 4)− (p2 − 4) is a square

Therefore there is an integer t satisfying

4 = t2 = (p2 − 4)(e2 − 1)

t2 − (p2 − 4)(e2 − 1) = 0

t2

p2 − 4
− (e2 − 1) = 0

t2

p2 − 4
+ 1− (e2 − 1) = 1

4
( t2

p2 − 4
+ 1
)
− 4(e2 − 1) = 4

4
( t2

p2 − 4
+ 1
)
− 4

(e2 − 1)

(p2 − 4)
(p2 − 4) = 4

(t′)2 − (p2 − 4)(e′)2 = 4

then we obtain

c =
pe± t

2
,

by solving for (t′, e′) from the equation (t′)2−(p2−4)(e′)2 = 0. As p be an even positive integer we have
√

p2 − 4 =
(
p, p

2
, 2p).

Let a0 = p, a2n+1 = p
2
, a2n+2 = 2p ∀ n ≥ 0. We have by periodic sequence

{(−1)n+1qn+1}∞n=−1 = {1, 4}

and

h2
2n − (p2 − 4)k2

2n = 4 ∀n ≥ 0.

Moreover in this case all solutions of

(t′)2 − (p2 − 4)(e′)2 = 4

are

Case 1:

(t′, e′) = (h2n, k2n)
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(c, e) = (
pt + e

2
, e)

But from the theorem if n is even then

c = C2n+2

e = C2n+1

(x, y) = (c, e) =
(
C2n+2, C2n+1

)
.

Case 2:

(t′, e′) = (h2n+1, k2n+1)

(c, e) = (
pt + e

2
, e)

But from the theorem if n is even then

c = C2n+3

e = C2n+2

(x, y) = (c, e) =
(
C2n+3, C2n+2

)
.

Therefore the solution of x2−pxy+y2+( p2−4
4

)x = 0 is (x, y) =
(
C2n, C2n−1

)
or (x, y) =

(
C2n+1, C2n

)
ie (x, y) =

(
Cn, Cn−1

)
is a solution for x2 − pxy + y2 + ( p2−4

4
) = 0 for a positive even integer p, k > 2 and also for k = 2.

Remark 4.6. For the solution (x, y) of the equation x2 − pxy + y2 + ( p2−4
4

) = 0 note (−x, y) satisfies the equation

x2−pxy+y2 +( p2−4
4

) = 0. Therefore by repeating the above arguments we get for all non negative integer n, the four classes

of solution of the equation x2 − pxy + y2 + ( p2−4
4

) = 0 are

(
− Cn, Cn−1

)
(
Cn−1,−Cn

)
(
Cn,−Cn−1

)
(
− Cn−1, Cn

)
.

4.2. Solution of Diophantine Equation x2 ± pxy + y2 ± (p
2−4
4

)x = 0

In this section we show that the Diophantine equations x2 ± pxy + y2 ± ( p2−4
4

)x = 0 are solvable in integers for all positive

p and obtain the solutions in terms of Generalized Lucas Balancing Sequence.

4.2.1. Existence of Solutions

Lemma 4.7. If the solution of x2−pxy+y2 +( p2−4
4

)x = 0 is (x, y) then (x, px−y) and (py−x− p2−4
4

, y) are also solutions

of the equation.

Proof. Follows by the simple verification.
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Theorem 4.8. For all non negative integer n, the following pairs satisfy the equation x2 − pxy + y2 + ( p2−4
4

)x = 0

(
C2

2n, C2nC2n−1

)
(
C2

2n, C2nC2n+1

)
(
C2

2n+1, C2nC2n+1

)
(
C2

2n+1, C2n+1C2n+2

)
.

Proof. First note
(
C2

2n, C2nC2n−1

)
satisfies x2− pxy + y2 + ( p2−4

4
)x = 0. On substituting

(
C2

2n, C2nC2n−1

)
in x2− pxy +

y2 + ( p2−4
4

)x, we get

(C2
2n)2 − pC3

2nC2n−1 + C2
2nC

2
2n−1 + (

p2 − 4

4
)C2

2n = C2
2n

[
C2

2n − pC2nC2n−1 + C2
2n−1 + (

p2 − 4

4
)
]

= C2
2n

[
C2

2n − C2n−1

(
pC2n − C2n−1

)
+ (

p2 − 4

4
)
]

= C2
2n

[
C2

2n − C2n−1C2n+1 + (
p2 − 4

4
)
]

= C2
2n.0

= 0

Therefore (x, y) =
(
C2

2n, C2nC2n−1

)
is a solution of x2 − pxy + y2 + ( p2−4

4
)x = 0. Now by above lemma note (x, px − y)

satisfies the Diophantine equation x2 − pxy + y2 + ( p2−4
4

)x = 0 and we have

(x, px− y) =
(
C2

2n, pC
2
2n − C2nc2n−1

)
=
(
C2

2n, C2n[pC2n − C2n−1]
)

=
(
C2

2n, C2nC2n+1

)
Therefore (x, y) =

(
C2

2n, C2nC2n+1

)
is a solution of x2−pxy+y2 + ( p2−4

4
)x = 0. Now for (x, y) =

(
C2

2n, C2nC2n+1

)
as it is a

solution of x2−pxy+y2+( p2−4
4

)x = 0, again by above lemma (py−x− p2−4
4

, y) is also a solution of the Diophantine equation

x2 − pxy + y2 + ( p2−4
4

)x = 0 and we have (py − x− p2−4
4

, y) =
(
C2

2n+1, C2nC2n+1

)
. Therefore (x, y) =

(
C2

2n+1, C2nC2n+1

)
is a solution of x2 − pxy + y2 + ( p2−4

4
)x = 0.

Similarly, as
(
C2

2n+1, C2nC2n+1

)
satisfies x2 − pxy + y2 + ( p2−4

4
)x = 0 then (x, px− y) is also a solution of the Diophantine

equation x2−pxy+y2+( p2−4
4

)x = 0 and we have (x, px−y) =
(
C2

2n+1, C2n+1C2n+2

)
. Therefore (x, y) = (C2

2n+1, C2n+1C2n+2

)
is a solution of x2 − pxy + y2 + ( p2−4

4
)x = 0.

Each of the four formulas for solution of x2 − pxy + y2 + ( p2−4
4

)x = 0, as in the above theorem, defines a class of solutions.

We prove that these four classes of solutions are the only solutions for the Diophantine equation x2−pxy+y2 +( p2−4
4

)x = 0

in the following section.

4.2.2. The Four Classes of Solutions for each of the Diophantine Equations x2±pxy+y2±(p
2−4
4 )x = 0

In this section, we prove that the four classes of solutions obtained in the above are the only solutions of the Diophantine

equation x2 − pxy + y2 + ( p2−4
4

)x = 0.

Theorem 4.9. If positive integers p, x and y satisfy the equations x2 − pxy + y2 + ( p2−4
4

)x = 0 then there exists c, e such

that (x, y) = (c2, ce) with gcd(c, e) = 1, where c and e are positive integers.

Proof. Similar to Theorem (1) in [7].
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Theorem 4.10. For an odd positive integer p, every positive solution of x2 − pxy + y2 + ( p2−4
4

)x = 0 is of the form(
C2

2n, C2n−1C2n

)
.

Proof. Consider p to be an odd positive integer. Let (x, y) be any solution of x2−pxy+y2 +( p2−4
4

)x = 0 which is positive

then by Theorem 4.4 above note that there exists c and e, positive integers such that (x, y) = (c2, ce) with gcd(c, e) = 1.

Then on substituting (c2, ce) we have

c4 − pc3e + c2e2 + (
p2 − 4

4
)c2 = 0

c2 − pce + e2 + (
p2 − 4

4
) = 0

We have (c, e) =
(
C2n, C2n−1

)
. Therefore (x, y) = (c2, ce) =

(
C2

2n, C2n−1C2n

)
.

Theorem 4.11. For an even positive integer p, every positive solution (x, y) of x2 − pxy + y2 + ( p2−4
4

)x = 0 is of the form(
C2

2n, C2n−1C2n

)
.

Proof. Consider p to be an even positive integer. Let (x, y) be any solution of x2−pxy+y2 +( p2−4
4

)x = 0 which is positive

then by Theorem 4.5 above note that there exists c and e, positive integers such that (x, y) = (c2, ce) with gcd(c, e) = 1.

Then on substituting (c2, ce) we have

c4 − pc3e + c2e2 + (
p2 − 4

4
)c2 = 0

c2 − pce + e2 + (
p2 − 4

4
) = 0

We have (c, e) =
(
C2n, C2n−1

)
. Therefore for a positive even integer p, every positive solution of x2−pxy+y2 +( p2−4

4
)x = 0

is of the form (x, y) = (c2, ce) =
(
C2

2n, C2n−1C2n

)
.

Theorem 4.12. For a positive integer p, all the solutions of x2 − pxy + y2 + ( p2−4
4

)x = 0 are

(1).
(
C2

2n, C2n−1C2n

)
(2).

(
C2

2n, C2nC2n+1

)
(3).

(
C2

2n+1, C2nC2n+1

)
(4).

(
C2

2n+1, C2n+1C2n+2

)
for all integers n ≥ 0.

Proof. Let p be any integer and (x, y) be any solution of x2 − pxy + y2 + ( p2−4
4

)x = 0. Then (x, y) has to be (0, 0),

(( p2−4
4

), 0), positive solution or non-positive solution. If (x, y) is a solution that is non-positive then it is of the form

(i). x > 0, y < 0 or

(ii). x < 0, y < 0 or

(iii). x < 0, y > 0.

Case (i): If the solution (x, y) is as in (i) with x > 0 and y < 0; note by taking x′ = x and y′ = −y we have (x′, y′) is a

solution of the x2 + pxy + y2 + ( p2−4
4

)x = 0 that is positive.

Case (ii): If (x, y) is as in (ii) with x < 0 and y < 0; then by taking x′ = −x and y′ = −y we have (x′, y′) is a solution of

x2 − pxy + y2 − ( p2−4
4

)x = 0 that is positive.
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Case (iii): If (x, y) is as in (iii) with x < 0 and y > 0; then by taking x′ = −x and y′ = y we have (x′, y′) is a solution of

x2 + pxy + y2 − ( p2−4
4

)x = 0 that is positive.

Therefore the solution (x, y), that are positive, are the only solution of x2 − pxy + y2 + ( p2−4
4

)x = 0. Now note if (x, y) is

any positive solutions then by Theorem 3.7 and Theorem 3.2 we get that

(1).
(
C2

2n, C2n−1C2n

)
(2).

(
C2

2n, C2nC2n+1

)
(3).

(
C2

2n+1, C2nC2n+1

)
(4).

(
C2

2n+1, C2n+1C2n+2

)
are all the solutions of x2 − pxy + y2 + ( p2−4

4
)x = 0.

The above theorem in general classifies all the solutions of the equations x2 ± pxy + y2 ± ( p2−4
4

)x = 0 as shown in the

following theorems.

Theorem 4.13. For a positive integer p all the solutions of x2 + pxy + y2 + ( p2−4
4

)x = 0 are

(1).
(
C2

2n,−C2n−1C2n

)
(2).

(
C2

2n,−C2nC2n+1

)
(3).

(
C2

2n+1,−C2nC2n+1

)
(4).

(
C2

2n+1,−C2n+1C2n+2

)
for all integers n ≥ 0.

Theorem 4.14. For a positive integer p all the solutions of x2 − pxy + y2 − ( p2−4
4

)x = 0 are

(1).
(
− C2

2n,−C2n−1C2n

)
(2).

(
− C2

2n,−C2nC2n+1

)
(3).

(
− C2

2n+1,−C2nC2n+1

)
(4).

(
− C2

2n+1,−C2n+1C2n+2

)
for all integers n ≥ 0.

Theorem 4.15. For a positive integer p all the solutions of x2 + pxy + y2 − ( p2−4
4

)x = 0 are

(1).
(
− C2

2n, C2n−1C2n

)
(2).

(
− C2

2n, C2nC2n+1

)
(3).

(
− C2

2n+1, C2nC2n+1

)
(4).

(
− C2

2n+1, C2n+1C2n+2

)
for all integers n ≥ 0.

Remark 4.16. It is observed that for any positive solution (x, y) of any of the equations x2 ± pxy + y2 ± ( p2−4
4

)y = 0, the

interchanged pair (y, x) is a positive solution of the corresponding equations x2 ± pxy + y2 ± ( p2−4
4

)x = 0 and vice versa.

Hence by the above arguments the solutions of x2 ± pxy + y2 ± ( p2−4
4

)y = 0 also can be obtained in terms of Generalised

Lucas Balancing Sequences.
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5. Conclusion

In this paper we discussed some properties of the Generalised Lucas Balancing Sequences Cn+1 = pCn−Cn−1. We considered

the Diophantine Equations x2 ± pxy + y2 ± ( p2−4
4

)x = 0 that are generated by the property of Generalised Lucas Balancing

Sequences and obtained all the solutions of each of the equation expressed in terms of Generalised Lucas Balancing Sequences.
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