Complete generators in 3 -valued logic and wrong Wheeler's results

M.A. Malkov ${ }^{\dagger}{ }^{1}$
${ }^{\dagger}$ Russian Research Center for Artificial Intelligence, Russia.

Abstract

One of central problems of k-valued logic is identification and construction of complete generators (Sheffer functions). This problem is solved in 3-valued logic but some important results getting by Wheeler are wrong. We discuss Martin's, Foxley's Wheeler's and Rousseau's results in 3-valued logic. We construct classes of functions with the same ranges and complete generators for these classes in 3-valued logic.

Keywords : multiple-valued logics, Sheffer functions.
AMS Subject Classification: 03B50.

1 Introduction

Multiple-valued logics attract the intense attention for connection with computer technology. But the most fruitful of the logics is Post's [1, 2. We use this logic in our paper. In Post's k-valued logic [2] the negation, disjunction, and conjunction are presented by computable functions: $\varnothing x=x+1(\bmod k), x_{1} \vee x_{2}=\max \left(x_{1}, x_{2}\right)$, and $x_{1} \wedge x_{2}=\min \left(x_{1}, x_{2}\right)$. One of central problems of k-valued logic is identification and construction of complete generators (Sheffer functions). This problem is very complex since the number of objects (functions) of k-valued logic is very large and the number of complete generators is very large, too. These numbers increase quickly with growth of k. Thus investigation of complete generators of 3 -valued logic is more simple than for greater k. More detailed investigation of complete generators for $k=3$ was given by R.F. Wheeler [6]. But some his results are wrong. In particular, he gave the number of complete generators for any number of variables and the

[^0]number was used in some papers (for example, [3). But the number is wrong. The paper contains 3 sections. This introduction is the first section. The second section discusses results getting by N.M. Martin [4], E. Foxley [5], R.F. Wheeler [6], and G. Rousseau [7. The last section contains all contemporary results, in particular, the numbers of complete generators of functions taking 1 and 2 values. Further complete generators are called just generators.

2 Some results in 3-valued logic

2.1 Martin's results ([4], 1954)

Martin formulated four conditions that are fulfilled by non-generators: substitution, co-substitution, t-closing, and closing. We will give more precise definitions of the conditions. A function $f\left(x_{1}, x_{2}\right)$ satisfies substitution, if

$$
\exists D \forall x_{1}, x_{2}, x_{3}, x_{4} \quad x_{1} \sim x_{3} \wedge x_{2} \sim x_{4}(D) \rightarrow f\left(x_{1}, x_{2}\right) \sim f\left(x_{3}, x_{4}\right)(D)
$$

where D is a decomposition of $\{0,1,2\}$ into two or three disjoint subsets, \sim means to belong to the same subset. There are 4 decompositions: $\{\{0\},\{1,2\}\},\{\{1\},\{0,2\}\},\{\{2\}\{0,1\}\},\{\{0\},\{1\} \cdot\{2\}\}$. A function $f\left(x_{1}, x_{2}\right)$ satisfies co-substitution, if

$$
\exists D \forall x_{1}, x_{2}, x_{3}, x_{4} f\left(x_{1}, x_{2}\right) \sim f\left(x_{3}, x_{4}\right)(D) \rightarrow x_{1} \sim x_{3} \vee x_{2} \sim x_{4}(D)
$$

A function $f\left(x_{1}, x_{2}\right)$ satisfies t-closing, if

$$
\exists t, k \forall x, i, j \sim f\left(t^{i}(x), t^{j}(x)\right)=t^{k}(x)
$$

where $t(x) \in\{\bar{x}, \overline{\bar{x}}\}, t^{0}(x)=t(x), t^{n+1}=t^{n}(t(x))$ and $i, j, k \in\{0,1,2\}$. The functions $t(x)$ are cyclic: $t^{3}(x)=t(x)$. Martin used any cyclic functions as $t(x)$ but only the functions $\varnothing x$ and $\varnothing \varnothing x$ are cyclic. A function $f\left(x_{1}, x_{2}\right)$ satisfies closing, if

$$
\exists X \sim X \subset\{0,1,2\} \wedge X \neq \varnothing \wedge \forall x_{1}, x_{2} \quad x_{1}, x_{2} \in X \rightarrow f\left(x_{1}, x_{2}\right) \in X
$$

Martin proved that a function which does not satisfy these four conditions is a generator.

2.2 Foxley's results ([5], 1962)

Foxley gave a simple rule of t-closing: a function $f\left(x_{1}, x_{2}\right)$ satisfies t-closing, if

$$
\exists m \forall x, i, j \quad i \neq 2 \wedge j \neq 2 \rightarrow f\left(t^{i}(x), t^{j}(x)\right)=t^{m}(x)
$$

where $t^{0}(x)=x, t^{1}(x)=\bar{x}, t^{2}(x)=\overline{\bar{x}}$ and $i, j, k \in\{0,1,2\}$. He proved also that the condition co-substitution is superfluous.

2.3 Wheeler's results $([6], 1964)$

Further reduction of the number of conditions was pointed by Wheeler. We will introduce his results in more simple way. After Post we call a function δ if $f(x, \ldots, x) \neq x$. Further we use only 2 -ary δ functions taking all
three values. We will denote by δ_{2} a δ functions for which $f(x, x)$ takes only two values and denote by δ_{3} a δ function for which $f(x, x)$ takes all three values. Wheeler found by calculation that a function δ_{3} is a generator iff t-closing condition is not fulfilled, and the function δ_{2} is a generator iff two conditions of closing and substitution are not fulfilled. Wheeler replaced t-closing by conjuction: a function $f\left(x_{1}, x_{2}\right)$ satisfies conjuction, if

$$
\mid\left\{\varphi\left(x_{1}, x_{2}\right): \forall t \varphi\left(x_{1}, x_{2}\right)=t\left(f\left(t\left(x_{1}\right), t\left(x_{2}\right)\right)\right\} \mid \neq 6\right.
$$

where $|X|$ is a cardinal of a set X, t is an element of the symmetric group G_{3} (top row has values of x, bottom row has values of $t(x)$):

$$
t \in\left\{\binom{0,1,2}{0,1,2},\binom{0,1,2}{0,2,1},\binom{0,1,2}{1,0,2},\binom{0,1,2}{1,2,0},\binom{0,1,2}{2,0,1},\binom{0,1,2}{2,1,0}\right\}
$$

The condition is more simple for computations than t-closing. Wheeler found that the number of δ_{3} functions satisfying t-closing equals 18. He found also that the number of δ_{2} functions satisfying closing equals 1944. In the next subsection we will show that all the other Wheeler's results are wrong. In particular, the number of δ_{2} functions satisfying substitution is wrong.

2.4 Rousseau's results (1968, [7])

Rousseau replaced t-closing by automorphism: a function $f\left(x_{1}, x_{2}\right)$ satisfies automorphism if

$$
f\left(t\left(x_{1}\right), t\left(x_{2}\right)\right)=t\left(f\left(x_{1}, x_{2}\right)\right)
$$

where $t(x) \in\{\bar{x}, \overline{\bar{x}}\}$. The condition is more simple for computations than t-closing and conjuction.

3 All results

We use the next equivalent relation: two functions are equivalent if they have the same range. Classes of equivalences are isomorphic if they have the same cardinal. So we will use only classes with ranges $\{0\},\{0,1\}$, and $\{0,1,2\}$ (but there is a class of constants with empty range, too). The class with range $\{0\}$ has the unique generator $f\left(x_{1}, x_{2}\right)=0$. The class with range $\{0,1\}$ has 60 generators from of 512 two-ary functions and from of 128δ functions. The least generator has values $(1,0,0,0,0,0,0,0,1)$ whenever values of variables are $((0,0),(0,1),(0,2),(1,0),(1,1),(1,2), \quad(2,0),(2,1),(2,2))$. The greatest generator has values $(1,1,1, \quad 1,0,1, \quad 1,1,0)$.

Further we use the class with range $\{0,1,2\}$. The class has 3774 generators from of 19683 two-place functions, this is 19% of the functions and 86% of δ functions (their number is 4374). The least generator has values ($1,0,0$, $0,2,0,0,0,0)$, the greatest generator has values $(2,2,2,2,2,2,2,0,1)$.

Co-substition condition is superfluous. T-closing condition was simplified by Rousseau. Substitution condition was not changed. Now we will give the properties of functions δ_{2} and δ_{3}. The functions δ_{2} are generators iff they do not satisfy substitution and clousing conditions. All δ_{2} functions do not satisfy t-closing. The functions δ_{2} have 6 options of $f(x, x)$ values (for values of $x=(0,1,2)):(1,0,0),(1,0,1),(1,2,1),(2,0,0),(2,2,0),(2,2,1)$. For
each option there are $389 \delta_{2}$ functions that are generators. So the number of the function for all options equals 2334 and this is 53% of all δ_{2} functions.

The number of δ_{2} functions is equal to 4374 , of which 1944 functions satisfy closing, 726 functions satisfy substitution, and 630 functions satisfy both conditions of closing and substitution. Wheeler [6] found the number of δ_{2} functions satisfying closing but could not find the well number of functions satisfying substitution (this number is 726 , not 150) and satisfying both conditions of closing and substitution (this number is 630 , not 54 , but $726-630=150-54$, this explains the coincidence with Martin's results).

In particular, Wheeler stated that the number of δ_{2} functions satisfying both conditions of closing and substitution equals 9 (for one option), but there are 10 (out of 105) δ_{2} functions satisfying these conditions. These functions $f\left(x_{1}, x_{2}\right)$ have values:

$$
\begin{aligned}
& (1,0,0,0,0,0,2,2,0),(1,0,0,0,0,1,2,2,0),(1,0,0,1,0,0,2,0,0) \\
& (1,0,0,1,0,0,2,2,0),(1,0,0,1,0,1,2,2,0),(1,0,1,0,0,0,2,2,0), \\
& (1,0,1,0,0,1,2,2,0),(1,0,1,1,0,0,2,2,0),(1,0,1,1,0,1,2,2,0), \\
& (1,0,2,0,0,2,0,0,0)
\end{aligned}
$$

The functions δ_{3} have the next properties. These functions are generators, iff they do not satisfy t-clousing. All δ_{3} functions (generators and non-generators) do not satisfy closing and do not satisfy substitution. The functions δ_{3} have two options for values of $f(x, x):(1,2,0)$ and $(2,0,1)$. For each option there are $720 \delta_{3}$ functions which are generators and 9 functions which are non-generators. The number of generators for all options equals 1440 . This is 99% of all δ_{3} functions.

References

[1] E. L. Post, Determination of all closed systems of truth tables, Bull. Amer. Math. Soc., 26(1920), 437-437.
[2] E. L. Post, Introduction to a general theory of elementary propositions, Amer. J. Math., 43(4)(1921), 163-185.
[3] I. Stojmenović, On Sheffer symmetric functions in three-valued logic, Discrete Applied Mathematics, 22(1988/89), 267-274.
[4] Norman M. Martin, The Sheffer functions of 3-valued logic, J. of Symb. logic, 19(1)(1954), 45-51.
[5] Eric Foxley, The determination of all Sheffer functions in 3-valued logic, using a logical computer, Notre Dame J. of Formal logic, 46(1962), 18-23.
[6] Roger F. Wheeler, Complete connectives for the 3-valued propositional calculus, Proc. London Math. Soc., 16(3)(1966), 167-191.
[7] G. Rousseau, Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc., 18(1968), 1009-1013.

[^0]: ${ }^{1}$ Corresponding author E-Mail: mamalkov@gmail.com (M.A. Malkov)

